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Abstract

Sustainable energy systems of the future will no longer be
able to rely on the current paradigm that energy supply fol-
lows demand. Many of the renewable energy resources do
not produce power on demand, and therefore there is a need
for new market structures that motivate sustainable behav-
iors by participants. The Power Trading Agent Competition
(Power TAC) is a new annual competition that focuses on the
design and operation of future retail power markets, specifi-
cally in smart grid environments with renewable energy pro-
duction, smart metering, and autonomous agents acting on
behalf of customers and retailers. It uses a rich, open-source
simulation platform that is based on real-world data and state-
of-the-art customer models. Its purpose is to help researchers
understand the dynamics of customer and retailer decision-
making, as well as the robustness of proposed market de-
signs. This paper introduces TACTEX’13, the champion agent
from the inaugural competition in 2013. TACTEX’13 learns
and adapts to the environment in which it operates, by heav-
ily relying on reinforcement learning and prediction meth-
ods. This paper describes the constituent components of
TACTEX’13 and examines its success through analysis of
competition results and subsequent controlled experiments.

1 Introduction

Sustainable energy systems of the future will have to in-
clude a robust solution to a major challenge presented by
many of the renewable energy resources (wind, solar, tidal,
etc.): these resources do not produce power on demand. As
a result, energy consumption patterns will have to adapt
to the availability of renewable energy supply (Ramchurn
et al. 2012). This creates a need for new market struc-
tures that financially incentivize desired consumer behav-
iors, such as shifting consumption to times when more en-
ergy is available, and utilizing distributed storage and small-
scale production technologies more effectively (Ketter, Pe-
ters, and Collins 2013). Indeed, governments around the
world are acting to re-engineer their electricity grid into a
smart-grid with supporting retail market infrastructure and
customer participation in power markets through demand-
side management and distributed generation (U.S 2003;
Eur 2011). As a part of this process, energy markets are be-
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ing opened to competition, however, the transition to com-
petitive markets can be risky (Borenstein 2002).
The Power Trading Agent Competition (Power TAC) is

a low-risk platform for modeling and testing retail power
market designs and related automation technologies. It sim-
ulates a future smart grid environment with renewable en-
ergy production, smart metering, autonomous agents acting
on behalf of customers and retailers, state-of-the-art cus-
tomer models, and realistic market designs. Since whole-
sale markets are not designed for individual customer partic-
ipation, retail brokers can serve as financial intermediaries,
representing large number of customers and thus minimiz-
ing risk-adjusted costs, so that they make profit while re-
ducing energy prices for their customers (Ketter, Collins,
and Reddy 2013). In Power TAC, several self-interested,
autonomous broker agents compete with each other with
the goal of maximizing profits through energy trading. Two
of Power TAC’s main goals are to help researchers under-
stand (1) the dynamics of customer and retailer decision-
making, as well as (2) the robustness of proposed market
designs. This paper contributes to the former by introducing
TACTEX’13, the champion agent from the Power TAC 2013
competition. TACTEX is a complete, fully implemented
agent that learns and adapts to the environment in which it
operates, by heavily relying on online reinforcement learn-
ing and prediction methods. This paper details the imple-
mentation of TACTEX’s constituent components and evalu-
ates the performance of TACTEX and the contributions of
each of these components through analysis of the competi-
tion and subsequent controlled experiments.

2 Power TAC Game Description

We start with an overview of the main elements of
the Power TAC simulation. For more details, see (Ket-
ter, Peters, and Collins 2013) and the full game spec-
ification (available at http://www.powertac.org).
Power TAC models a competitive retail power market in a
smart-grid environment of a medium-sized city. The sim-
ulation proceeds in a series of discrete timeslots, each
representing one hour in the simulated world. A typical
simulation runs for approximately 60 simulated days, and
takes about two hours. Figure 1 shows the structure of the
Power TAC simulation environment. At a high level, au-
tonomous broker agents compete with each other by acting



in three markets: (1) a wholesale market, in which energy
is traded with traditional generation companies, (2) a tariff
market, in which energy is traded with consumers, as well as
distributed renewable energy producers, and (3) a balancing
market, which serves to ensure that supply and demand are
balanced at all times, and which determines the fees paid by
brokers whenever they contribute to the total imbalance.

More specifically, local renewable energy producers (so-
lar, wind) generate electric energy that is transmitted to
the grid whenever weather conditions (wind, sun) allow
for electricity generation. Power TAC uses real weather
data and forecasts from different geographical zones. Lo-
cal consumers such as office buildings, residential houses,
and hospitals, consume energy according to their needs, and
based on weather conditions and calendar factors such as
day of week and hour of day. All customers are equipped
with smart-meters, so consumption and production are re-
ported every hour. Autonomous broker agents compete with
each other on gaining market share and maximizing prof-
its by trading electricity. Brokers interact with local pro-
ducers and consumers through a retail market, called tariff
market, by publishing tariff contracts for energy consump-
tion/production that may include usage and per-day charges,
fixed and varying prices, signup bonuses, and early with-
drawal penalties. Customers have ranges of preferences over
tariff terms and they subscribe to tariffs they find attractive.
Some factors that affect preferences are expected costs of
tariffs, and the expected inconvenience of shifting consump-
tions to times when energy is cheaper due to variable-rate
tariffs. Some customers represent whole populations (e.g. a
village of 30,000 people) and can subscribe subsets of their
populations to different tariffs. Brokers may publish one or
more tariffs once every 6 hours, 4 times per day.

In addition to the tariff market Power TAC models a tra-
ditional wholesale market in which brokers can buy or sell
energy for future delivery. The wholesale market is a day-
ahead market modeled based on real-world North American
and European markets. At any given time, brokers may place
orders in the wholesale market to buy or sell power in par-
allel, independent 24 double-auctions, where each auction
is for power to be delivered in one of the next 24 hours
(timeslots). For instance, a broker may procure energy in
the wholesale market to satisfy the predicted demand of its
portfolio. Other main participants in the wholesale market
are large generation companies, that typically sell power and
simulate utility-scale power suppliers.

On the electricity grid, supply and demand must be bal-
anced at all times. Power TAC assumes that any imbalance
is resolved by transmitting energy to/from the national grid,
where prices are determined in a balancing market. Typi-
cally, a broker has a strong incentive to maintain a supply-
demand balance, since the prices in the balancing market are
much less attractive then the prices in the two other markets.
Finally, a distribution utility charges the broker a fixed price
for each kWh of energy distributed to the broker’s portfolio.

The state of the game is rich and high-dimensional: it in-
cludes the set of all active tariffs and customer subscriptions,
the wholesale market deliveries and orders of all brokers for
the next 24 hours, the current energy consumption of all cus-

tomers, the current weather and weather forecast, the current
time, and the bank balance of all brokers. The game state is
partially observable to brokers. For instance, brokers sees all
published tariffs in the tariff market but they only know the
customer subscriptions for their own tariffs. Similarly, when
an auction finishes in the wholesale market, brokers only see
the clearing price of the auction and a list of uncleared or-
ders, but they do not know the list of cleared orders, or the
future deliveries of other brokers. The action space of bro-
kers is also high-dimensional. For instance, tariff publica-
tions can include up to 7 × 24 = 168 hourly energy prices,
and wholesale market actions can include up to 24 parallel
limit orders of the form bid(energy-amount,limit-price).

Balancing 

Market

Wholesale 

Market Tariff 

Market

electricity

generation 

companies

renewables

production

commercial/residential

consumers

national grid

competing

broker

agents

Electricity

Grid

Figure 1: High-level structure of the Power TAC game

3 The TacTex’13 Agent

TACTEX is a utility-maximizing broker agent that operates
simultaneously in multiple markets. TACTEX’s utility mea-
sure is the cash amount in its bank account, called cash po-
sition. At each timeslot, TACTEX executes zero or more ac-
tions in both the tariff market and the wholesale market. The
executed actions are those that are predicted to maximize its
expected long-term utility. In the tariff market, the actions
considered by TACTEX are consumption-tariff publications,
while in the wholesale market the considered actions are
bids and asks, to procure and sell energy respectively.
To maximize its utility, TACTEX must simultaneously op-

timize its income and costs and find a long-term profit-
maximizing combination of (1) energy-selling prices (de-
noted p), (2) total energy demand of its customers (de-
noted D, controllable by how many customers it agrees
to serve), and (3) energy-procurement costs (denoted C)
for satisfying this demand. Fully optimizing this combined
decision-making problem is intractable; therefore TACTEX

approximates its solution. Let t be some future timeslot,
and let pt, Dt, and Ct be TACTEX’s timeslot-specific pub-
lished energy-price, customers’ energy-demand and energy-
procurement costs, respectively. Let ut(Dt, Ct, pt) = Dt ×
(pt − Ct) be the utility (i.e. profit) contribution at time t.

Let D̂t, Ĉt, p̂t be the current predictions of Dt, Ct, pt. Let
A := AD ∪ AC ∪ p be the set of available actions, where
here AD and p are tariffs and price publications, and AC are
wholesale market bids. Let At ⊂ A be the subset of actions
that is taken at timeslot t. TACTEX approximates a solution



to the following interdependent optimization problems (us-
ing ’+i’ to denote ’i timeslots into the future’):

1. Optimize costs given predicted demand:

arg max
{ACt}

+T
t=+1

+T∑

t=+1

E[ut(D̂t, Ct, p̂t)] (1)

2. Optimize demand and selling prices given predicted costs:

arg max
{ADt,pt}

+T
t=+1

+T∑

t=+1

E[ut(Dt, Ĉt, pt)] (2)

Thus, instead of optimizing over all possible combina-
tions, we separately optimize demand and costs, each con-
ditioned on the current estimate of the other. Each of the
two interdependent optimizations perform local improve-
ment steps, however the gain with respect to global opti-
mization is a reduction of the search complexity from multi-
plicative to additive. The two optimization problems defined
by Equations 1 and 2 are still individually intractable. Their
solutions are approximated by TACTEX’s two constituent
components: its wholesale market strategy (Section 3.1), and
its tariff market strategy (Section 3.2).

3.1 Wholesale Market Strategy

In the wholesale market, TACTEX optimizes the costs Ct

of procuring the energy needed for satisfying the predicted

demand D̂t resulting from selling-prices p̂t. p̂t is assumed

to be the currently published prices; D̂t is predicted from p̂t

similarly to the demand prediction described in Section 3.2.
To Minimize the energy costs Ct, TACTEX needs to (1)

minimize the rates for which it procures energy in the whole-
sale market, and (2) minimize its imbalance costs, by satis-
fying the future demand as accurately as possible. To do the
latter, it must (2.1) have accurate predictions of future de-
mand, and (2.2) be able to procure all the energy predicted
to be demanded. The actions that affect the energy cost for a
target timeslot ttar are the 24 bidding (or not-bidding) ac-
tions in each of the 24 preceding timeslots, (ttar − 24)–
(ttar − 1), which thus comprise a sequential bidding pro-
cess with 24 steps. Thus, at each timeslot t , TACTEX exe-
cutes, respectively, steps 1, 2, . . . , 24 of 24 independent bid-
ding processes for timeslots t + 24, . . . , t + 1.

TACTEX’s wholesale market bidding strategy uses a mod-
ified version of Tesauro’s bidding algorithm (Tesauro and
Bredin 2002). We model the sequential bidding process as a
Markov Decision Process (MDP) (Puterman 1994) in a spe-
cific way that allows for computational efficiency, and more
importantly in the competitive environment that TACTEX

operates in, it allows for high reuse of data, and thus quick
online learning with little data. TACTEX’s MDP is defined
next, followed by the rationale behind its design:

• States: s ∈ {0, 1, . . . , 24, success}, s0 := 24
• Actions: limit-price ∈ R

• Transition: a state s ∈ {1, . . . , 24} transitions to one of
two states. If a bid is partially or fully cleared, it tran-
sitions to the terminal state success. Otherwise, a state
s transitions to state s − 1. The clearing (i.e. transition)
probability pcleared(s, limit-price) is initially unknown.

• Reward: In state s = 0, the reward is the balancing-
price per energy unit. In states s ∈ {1, . . . , 24}, the re-
ward is 0. In state success, the reward is the limit-price of
the successful bid. Both balancing-price and limit-price
are taken as negative, so maximizing the reward results in
minimizing costs. balancing-price is initially unknown.

• Terminal States: {0, success}

In a sequential bidding process for a target times-
lot, the broker actions are bids of the form bid(energy-
amount,limit-price). Tesauro’s bidding MDP uses these ac-
tions as the MDP actions. However, in TACTEX’s MDP
model energy-amount is not part of the decision making;
it is always set to the difference between predicted demand
and the energy that is already procured for the target times-
lot. The solution to our MDP is a sequential bidding strat-
egy that minimizes the expected energy unit-cost for the next
fraction of the procured amount. Note that there is a transi-
tion to a terminal state success even in cases where the bid
is partially cleared. One implication of excluding energy-
amount from the MDP’s state and action representations is
that every sequential bidding process executes over the same
sequence of states. As seen next, this allows for computa-
tional and data efficiency.
Since the MDP is acyclic (linear), solving it requires one

back-sweep, starting from state 0 back to state 24, applying
the following backup operator to compute a value function:

V (s) =

8

>

<

>

:

balancing-price if s = 0

minlimit-price{pcleared × limit-price+

(1 − pcleared) × V (s − 1)} if 1 ≤ s ≤ 24

The MDP’s solution determines an optimal limit-price for
each of the 24 states. Using our MDP model, TACTEX is al-
ways in states 1, . . . , 24 of 24 concurrent bidding processes.
Therefore, TACTEX solves the MDP once per timeslot, and
submits the 24 optimal limit-prices to the 24 auctions.

Before solving this MDP, TACTEX needs to learn
the MDP’s unknown quantities, namely the expected
balancing-price at s = 0 and the transition func-
tion pcleared. TACTEX learns the transition function
from past data by recording, for each state s ∈
{1, . . . , 24}, the wholesale trades executed in s into a
set Ps. Each trade has the form (clearing-price,cleared-
energy-amount). The set Ps is treated as a non-
parametric density estimation and a transition probabil-
ity is estimated from it as pcleared(s, limit-price) :=
P

tr∈trades[s],tr.clearing-price<limit-price tr.cleared-energy-amount
P

tr∈trades[s] tr.cleared-energy-amount
. To esti-

mate the mean balancing-price, TACTEX similarly main-
tains a set P0 of past balancing data. Since every bid-
ding MDP executes over the same sequence of states s ∈
{0, . . . , 24}, every trade executed in state s can be used by
all future bidding processes as a part of Ps. Thus, our state
representation allows TACTEX to efficiently reuse data and
thus speed-up learning. Clearly, our state representation re-
lies on the assumption that time-to-target-timeslot is a dom-
inant feature in determining the transition function, i.e. the
distribution of auction closing prices. Were that not the case,
other features would need to be added to the MDP’s state.

TACTEX’s bidding strategy is summarized in Algorithm 1
which is TACTEX’s main routine in the wholesale market,



executed at every timeslot. It computes the needed energy
for the coming 24 timeslots using demand-predictions (line
1), then adds the previous timeslot’s wholesale market trades
and balancing information to the Ps sets (line 2). If not
enough (specifically fewer than 6) trades were recorded for
each state, a randomized bidding strategy is executed, oth-
erwise the MDP-based bidding strategy is executed (lines
3-7). The number 6 was chosen to trade off quick learning
with reasonable density estimations.

Algorithm 1 Online RL Wholesale Market Strategy

1: neededEnergy[1 . . . 24] = ComputeNeededEnergy()

2: densities[0 . . . 24]← AddRecentTradesAndBalancing()

3: if HasEnoughData(densities) then

4: limitPrices[1 . . . 24] = SolveMDP(densities)

5: else
6: limitPrices[1 . . . 24] = RandomizedBiddingPolicy()

7: SubmitBids(neededEnergy[1 . . . 24], limitprices[1 . . . 24])

To summarize, TACTEX starts a game with no data and
learns to bid online, while acting. Its estimates are refined
during the game as it collects more data. At each timeslot, it
solves the MDP with all the data collected so far. The result
is an online reinforcement learning (RL) bidding algorithm
that allows TACTEX to adapt and optimize its bidding strat-
egy to each game’s specific market conditions.

3.2 Tariff Market Strategy

In the tariff market, TACTEX optimizes future demands Dt

and selling-prices pt given the predicted energy costs Ĉt. Al-
gorithm 2 is TACTEX’s main routine in the tariff market, ex-
ecuted at every tariff-publication timeslot. It starts by gener-
ating a set of 100 fixed-rate candidate tariffs, with rates that
are equally spaced in a range that contains the current best
(lowest) published rates (line 1). Next, EstimateUtility()
predicts the expected long-term utility of each candidate
tariff-publication action, and the action with the highest pre-
dicted value is executed (lines 2-6).

Algorithm 2 Utility-based Tariff Market Strategy

1: candidateTariffs← GenerateCandidateTariffs()

2: for tariff in candidateTariffs do
3: utilities[tariff]← EstimateUtility(tariff)

4: bestTariff, bestUtility← FindMax(utilities)

5: if bestUtility > EstimateUtility(no-op) then

6: PublishTariff(bestTariff)

Due to the high-dimensionality of the state-space, Algo-
rithm 2 is implemented as a lookahead policy (Powell 2011),
where candidate actions’ long-term utilities are estimated
using a lookahead search (also called Monte Carlo search)
over some future horizon starting at the current state. The
length of the horizon over which utility is estimated is one
week (7×24 = 168 timeslots), chosen as a trade-off between
shorter horizons, which might not capture weekly consump-
tion/production patterns, and longer horizons which present
higher uncertainty and require more computation.
Using a lookahead policy aims at reducing the complex-

ity of searching in high-dimensional state-spaces. To reduce
the complexity of searching over high-dimensional action-
spaces, or on top of that, over sequences of subsets of high-
dimensional actions, TACTEX further approximates the so-
lution to the search problem in several ways. First, TACTEX

searches over single actions rather than over subsets of

actions, by considering only a single tariff-publication at
a time. Second, instead of running a tree-search over se-
quences of future actions, TACTEX estimates the current
action’s utility assuming no other tariff actions are going
to be taken during the lookahead horizon. Third, TACTEX

searches solely over one type of action, namely fixed-rate
tariff publications, and therefore optimizes only one selling-
price rather than a separate price for each future timeslot.

EstimateUtility() works by estimating long-term income
and costs after publishing a candidate tariff, as described in
Algorithm 3. At the core of EstimateUtility() lies the prob-
lem of estimating the demand resulting from a tariff publi-
cation, which in turn is decomposed into the two problems
of predicting (1) the resulting customer migration between
tariffs (line 3 and Algorithm 4), and (2) the demand of each
of the customers over the lookahead horizon (line 4). The
latter is addressed by maintaining records with average past
demand for each customer, in each of the 168 weekly times-
lots. Predicting energy costs (line 5) is addressed similarly
by maintaining a record of average past costs in each of
the 168 weekly timeslots. Using the information gathered
in lines 3-5, the total utility is computed by summing over
all customer-tariff pairs (line 6-13). A one-time tariff publi-
cation fee is added to the estimated costs (line 12).

Algorithm 3 EstimateUtility(tariff)

1: totalIncome← 0
2: totalCosts← 0
3: subs← PredictChangeInSubscriptions(tariff)

4: demandProfiles← PredictCustomerDemandProfiles()

5: costs[1 . . . 168]← PredictEnergyCosts()

6: for cust in customers do
7: for tariff in {tariff ∪ existingTariffs} do

8: n← subs[cust,tariff]

9: demand[1 . . . 168]← n× demandProfiles[cust]

10: totalIncome +=
P168

i=1 demand[i]× tariff.rate()

11: totalCosts +=
P168

i=1 demand[i]× costs[i]

12: totalCosts += pubFee(tariff)

13: return totalIncome - totalCosts

Algorithm 4 describes how TACTEX predicts the changes
in subscriptions as a result of a new tariff publication.
TACTEX focuses on customers that represent whole pop-
ulations and can subscribe subsets of their population to
different tariffs. TACTEX predicts the change in subscrip-
tions separately for each of these customers (line 2). It mul-
tiplies the predicted weekly demand of a single member
of the population (line 3) with a tariff’s rate to compute
the expected weekly charge for a single member under this
tariff (line 6). The pairs 〈charge, subs〉 of existing-tariffs’
expected charges and subscribed-populations are used as a
training set for a supervised learning algorithm, specifically
Locally Weighted Linear Regression (LWR), that predicts
the subscribed-population size for a candidate tariff based
on its expected charge (lines 8-12). LWR (see, e.g. (Atke-
son, Moore, and Schaal 1997)) was chosen since, being
non-parametric, it requires very minimal assumptions about
the representation of the predicted function (the customer
preference function). Since new subscribers to the candi-
date tariff must migrate from other tariffs (published by ei-
ther TACTEX or its competitors), predicted subscriptions are
scaled down to sum to the customer’s population (line 13).



Algorithm 4 PredictChangeInSubscriptions(tariff)

1: allTariffs←{tariff ∪ existingTariffs}

2: for cust in customers do
3: demand[1 . . . 168]← PredictDemandProfile(cust)

4: charge2subs← {}

5: for t in existingTariffs do

6: charge← ExpectedTariffCharge(demand, t)

7: subs← GetNumCurrentSubscriptions(cust, t)

8: charge2subs← charge2subs ∪ 〈charge, subs〉

9: charge← ExpectedTariffCharge(demand, tariff)

10: trainingSet← charge2subs

11: subs← PredictWithLWR(trainingSet, charge)

12: charge2subs← charge2subs ∪ 〈charge, subs〉

13: charge2subs← Normalize(charge2subs)

14: for t in allTariffs do
15: predSubs[cust,t]← ExtractSubscriptions(charge2subs,t)

16: return predSubs

4 Results

This section examines the success of TACTEX through anal-
ysis of the competition and controlled experiments.

4.1 Power TAC 2013 Finals Analysis

The Power TAC 2013 finals were held in conjunction with
the AAAI’13 conference. The qualifying competitors were
7 brokers developed by research groups from Europe and
the USA. The competition included all possible combina-
tions of 2-broker and 4-broker games (21 and 35 games re-
spectively), and 4 7-broker games. Table 1 shows the final
cumulative scores in each of the game sizes. In the 2-agent
games TACTEX won all of its 6 games. In the 4-agent games,
TACTEX won 15 out of the 16 games it completed success-
fully (TACTEX got disconnected from 4 games due to tech-
nical issues with the infrastructure we used). TACTEX did
not win the 7-agent games despite having the largest volume
of customers. Next, we analyze these results.

Table 1: Results of the Power TAC 2013 finals
Broker 7-broker 4-broker 2-broker Total (not normalized)

TACTEX -705248 13493825 17853189 30641766

cwiBroker 647400 12197772 13476434 26321606

MLLBroker 8533 3305131 9482400 12796064

CrocodileAgent -361939 1592764 7105236 8336061

AstonTAC 345300 5977354 5484780 11807435

Mertacor -621040 1279380 4919087 5577427

INAOEBroker02 -76112159 -497131383 -70255037 -643498580

Figure 2 shows averages of the main components of the
brokers’ cash flow, for each of the game sizes.1 Brokers are
ordered based on their final ranking in the competition, from
left to right. For each broker, the bars show (from left to
right) its average (1) profit (2) income from consumption
tariff subscribers (3) tariff publication fees (proportional the
number of tariffs published) (4) wholesale market costs (5)
balancing costs, and (6) energy distribution costs (propor-
tional to the amount of traded energy).
At a high level, TACTEX’s wholesale market strategy and

tariff market strategy were responsible for TACTEX’s suc-
cess in the finals. The wholesale market strategy maintained
low-costs, while the tariff market strategy balanced its of-
fered tariff prices with the resulting predicted demand to
optimize profits given the costs achieved by the wholesale
strategy. More specifically, in the 2-agent games TACTEX

1We excluded INAOEBroker; its large negative scores, caused
by large tariff-publication fees, affected the readability of the plots.

Ta
cT
ex

cw
iBr
ok
er

ML
LB
ro
ke
r

Cr
oc
od
ile
Ag
en
t

As
to
nT
AC

Me
rta
co
r−2000000

−1000000
0

1000000
2000000
3000000
4000000
5000000
6000000
7000000

ca
sh

Ta
cT
ex

cw
iBr
ok
er

ML
LB
ro
ke
r

Cr
oc
od
ile
Ag
en
t

As
to
nT
AC

Me
rta
co
r−2000000

−1000000

0

1000000

2000000

3000000

4000000

ca
sh

Profit

Tariff-Cons

Pub. Fees

Wholesale

Balancing

Distribution

Ta
cT
ex

cw
iBr
ok
er

ML
LB
ro
ke
r

Cr
oc
od
ile
Ag
en
t

As
to
nT
AC

Me
rta
co
r−1500000

−1000000
−500000

0
500000
1000000
1500000
2000000
2500000

ca
sh

Figure 2: Power TAC 2013 Finals: avg. income/costs in 2-agent
(top-left), 4-agent (top-right), and 7-agent games (bottom-right)

made 32.4% and 88.2% more profits than the 2nd (cwi)
and 3rd (MLL) place brokers while maintaining similar
levels of income-to-costs ratio (1.97), compared to cwi’s
(2.07) and MLL’s (2.26). In Power TAC’s wholesale mar-
ket, energy unit-cost is typically an increasing function of
the procured amount. Despite that, TACTEX sold 50.5% and
72.5% more energy then cwi and MLL with a competi-
tive cost-per-kWh (4.4 cents/kWh) compared to cwi’s and
MLL’s (4.6, 3.1 cents/kWh)2. It can be seen that the ma-
jority of TACTEX’s costs were spent on wholesale market
procurement and (non-controllable) distribution fees. There-
fore, TACTEX’s low cost-per-kWh is attributed to its whole-
sale market strategy. At the same time, given these costs, its
tariff market strategy published tariffs at an average rate that
is slightly lower than cwi’s and slightly higher than MLL’s
(8.8, vs 9.5 and 7.1 cents/kWh), which resulted in 39.0%
and 113.6% more income compared to cwi and MLL. In
the 4-agent games, TACTEX traded 9% less energy compar-
ing to the 2-agent games, while maintaining similar average
wholesale market costs. Due to the stronger competition,
TACTEX’s income decreased by 61%, since its tariff mar-
ket strategy recognized it had to reduce prices (by 66.6%) to
maximize its profits. TACTEX’s profits (and income) were
higher by 38.1% (139.9%) and 404.5% (542.2%) compared
to cwi’s and MLL’s, while its income-to-cost ratio decreased
to 1.28 compared to 1.62 and 1.39 of cwi and MLL. In the
7-agent games, TACTEX’s tariff strategy had to lower prices
further, but also recognized a stopping point beyond which it
did not decrease rates. However, due to an underestimation
of the predicted costs, TACTEX ended up with losses despite
having large customer volume and income.

4.2 Controlled Experiments

In this section we perform controlled experiments to identify
the contribution of each of TACTEX’s major components. To
do that, we generate test agents by disabling components of
TACTEX and comparing the resulting performance. Specifi-
cally, agent U9 MDP LWR is the full TACTEX agent. Agent

2Not shown in the figure due to space constraints.



Table 3: Ablation analysis using 3 finalist agents.
Broker Cash

cwiBroker 340.9 (8.4)

Mertacor -276.2 (40.2)

CrocodileAgent -287.1 (14.5)

B -334.6 (8.0)

Broker Cash

cwiBroker 315.4 (9.3)

U1 135.3 (12.3)

CrocodileAgent -372.1 (17.0)

Mertacor -485.5 (28.1)

Broker Cash

cwiBroker 316.2 (9.1)

U9 182.8 (12.4)

CrocodileAgent -338.2 (17.0)

Mertacor -476.6 (28.6)

Broker Cash

U9 MDP 389.9 (13.3)

cwiBroker 138.3 (8.7)

CrocodileAgent -333.3 (17.0)

Mertacor -494.1 (29.6)

Broker Cash

U9 MDP LWR 350.8 (13.3)

cwiBroker 132.4 (9.0)

CrocodileAgent -336.9 (17.3)

Mertacor -566.1 (26.8)

U9 MDP is generated from U9 MDP LWR by removing
the LWR-based customer-subscriptions prediction compo-
nent and replacing it with linear interpolation and conser-
vative extrapolation. Agent U9 is generated from U9 MDP
by disabling the MDP-based wholesale market strategy and
replacing it with a baseline, randomized strategy that starts
by trying lower buying prices and increasing them as time
gets closer to target timeslot. Agent U1 was generated from
U9 by publishing 1, instead of 9, initial sample tariffs for
probing customer tariff subscriptions, used by Algorithm 4.
Finally, a baseline agent B was generated from U1 by dis-
abling the tariff-market strategy (Algorithm 2), and replac-
ing it with a strategy that reacts to competitor tariffs by pub-
lishing slightly better rates.

Table 2: Round-Robin ablation analysis.
B U1 U9 MDP

U9 MDP LWR 1278.3 (43.2) 708.9 (35.6) 34.2 (23.2)

U9 MDP 966.4 (40.5) 592.6 (22.2)

U1 547.4 (27.7))

We compared the above agents in two groups of experi-
ments. The first group is a 2-agent round-robin tournament
between U9 MDP LWR, U9 MDP, U1 and B. The sec-
ond group compared the performance of all versions in 4-
agent games against a fixed set of opponents, composed of
the 3 finalist agent binaries that are currently available to
us: cwiBroker, CrocodileAgent and Mertacor. In all of our
experiments, each given combination of agents was tested
over a fixed set of 200 full games. Each game takes about
2 hours of real-time (about 60 days of simulated time), and
was generated by loading a set of random-number seeds that
initialize the random number generators of the simulation,
and a weather data file that completely determines the sim-
ulated weather. We note that even after loading weather and
seeds, there is still some randomness of unknown source in
the simulation. Each weather file contains around 3 months
of real-world weather, recorded in the default location simu-
lated by Power TAC. We used 8 different weather files (each
file used by 25 out of the 200 games), using the record-
ing start dates of January, April, July, October of 2009 and
2010, thus covering a period of 2 years. The results of the
first group of experiments are reported in Table 2. Each en-
try in the table is the the mean score-difference (in 1000s)
over the set of 200 games. The results of the second group
of experiments is reported in Table 3. Each of the 5 two-
column sub-tables shows the results when playing one of our
agent versions against the 3 finalist agents over the set of 200
games. Each entry shows the average score of each agent,
and rows are ordered by ranking. In both groups, adding the
tariff market strategy and the wholesale market strategies re-
sulted in significant improvements. Adding the LWR-based
prediction (U9 MDP LWR) seems to be beneficial only for
2-agent games, possibly since its less conservative extrapo-
lations work better with small number of competitors.

5 Related Work

Since Power TAC is a new domain there is not much pub-
lished work on other broker approaches. SELF (Peters et al.
2013) uses the sarsa RL algorithm for selecting tariff market
actions. It is designed to choose one of 6 tariffs actions and
therefore is less flexible then TACTEX’s tariff market strat-
egy, which is not constrained to a finite set of actions. The
AstonTAC agent uses a different MDP model for wholesale
bidding (Kuate et al. 2013). It assumes an underlying dis-
crete model for wholesale clearing prices (HMM), where 20
possible states are built offline from a game’s bootstrap data.
Our MDP does not assume an underlying model of the mar-
ket, but rather uses a more flexible, non-parametric model of
clearing prices at every state. Furthermore, TACTEX uses a
different state representation, designed to allow high reuse of
data and computation, and therefore fast learning. Our bid-
ding algorithm is a modified version of Tesauro’s bidding
algorithm for double-auctions (Tesauro and Bredin 2002),
as explained in Section 3.2. Earlier approaches to broker de-
velopment (Reddy and Veloso 2011a; 2011b) worked un-
der a more limited setup that did not include wholesale trad-
ing, and assumed fixed customer consumption instead of the
variable daily load profile of Power TAC customers. Utility-
based approaches to trading agents were presented in the
prior trading agent competitions, however the game setups
and the problems they solved, and consequently the methods
used, were different than TACTEX’s utility-based approach
in the Power TAC domain. In TAC-travel, decision theoretic
bidding using Monte-Carlo estimation of the clearing price
distribution was used for one-sided auctions (Stone et al.
2003). In TAC Supply Chain Management, (Pardoe 2011)
used an interdependent optimization of supply and demand,
but trading was done through requests for quotes, rather
than through a tariff market and a wholesale market as in
the Power TAC setup. In past TAC competitions, other pro-
posed approaches to agent design included a game theoretic
analysis of the economy (Kiekintveld, Vorobeychik, and
Wellman 2006) and fuzzy reasoning (He et al. 2005). Inter-
dependent optimization in a different but related context is
executed by the simulated customers in Power TAC (Reddy
and Veloso 2012), to simultaneously optimize tariff sub-
scriptions and consumption profiles.

6 Conclusions

This paper introduced TACTEX, the champion power trad-
ing agent from the Power TAC 2013 finals. This paper de-
scribes the complex decision making problem faced by a
broker agent, and details and evaluates the approximate so-
lution implemented by TACTEX. Future research directions
include investigating the usage and optimization of differ-
ent types of tariffs and energy balancing methods, as well as
their overall impact on the smart grid.
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