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Abstract

Layered learning is a hierarchical machine learning paradigm
that enables learning of complex behaviors by incrementally
learning a series of sub-behaviors. A key feature of layered
learning is that higher layers directly depend on the learned
lower layers. In its original formulation, lower layers were
frozen prior to learning higher layers. This paper considers
an extension to the paradigm that allows learning certain be-
haviors independently, and then later stitching them together
by learning at the “seams” where their influences overlap.
The UT Austin Villa 2014 RoboCup 3D simulation team, us-
ing such overlapping layered learning, learned a total of 19
layered behaviors for a simulated soccer-playing robot, orga-
nized both in series and in parallel. To the best of our knowl-
edge this is more than three times the number of layered be-
haviors in any prior layered learning system. Furthermore, the
complete learning process is repeated on four different robot
body types, showcasing its generality as a paradigm for effi-
cient behavior learning. The resulting team won the RoboCup
2014 championship with an undefeated record, scoring 52
goals and conceding none. This paper includes a detailed ex-
perimental analysis of the team’s performance and the over-
lapping layered learning approach that led to its success.

1 Introduction

Task decomposition is a popular approach for learning com-
plex control tasks when monolithic learning (trying to learn
the complete task all at once) is difficult or intractable (Singh
1992; Whitehead, Karlsson, and Tenenberg 1993; Whiteson
et al. 2005). Layered learning (Stone 2000) is a hierarchical
task decomposition machine learning paradigm that enables
learning of complex behaviors by incrementally learning a
series of sub-behaviors. A key feature of layered learning
is that higher layers directly depend on the learned lower
layers. In its original formulation, lower layers were frozen
prior to learning higher layers. This can be restrictive, how-
ever, as freezing lower layers limits the combined behav-
ior search space over all layers. Concurrent layered learn-
ing (Whiteson and Stone 2003) reduced this restriction in the
search space by introducing the possibility of learning some
of the behaviors simultaneously by “reopening” learning at
the lower layers while learning the higher layers. A potential
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drawback of increasing the size of the search space, how-
ever, is an increase in the dimensionality and thus possibly
the difficulty of what is being learned.

This paper considers an extension to the layered learn-
ing paradigm, known as overlapping layered learning, that
allows learning certain behaviors independently, and then
later stitching them together by learning at the “seams”
where their influences overlap. Overlapping layered learn-
ing aims to provide a middle ground between reductions in
the search space caused by freezing previously learned lay-
ers and the increased dimensionality of concurrent layered
learning. Additionally, for complex tasks where it is hard
learning one subtask in the presence of another, it reduces
the dimensionality of the parameter search space by focus-
ing only on parts responsible for subtasks working together.

The UT Austin Villa 2014 RoboCup 3D simulation team,
using overlapping layered learning, learned a total of 19 lay-
ered behaviors for a simulated soccer-playing robot, orga-
nized both in series and in parallel. To the best of our knowl-
edge this is more than three times the number of layered be-
haviors in any prior layered learning system. Furthermore,
the complete learning process is repeated on four different
heterogeneous robot body types, showcasing its generality
as a paradigm for efficient behavior learning. The resulting
team won the RoboCup 2014 championship with an unde-
feated record, scoring 52 goals and conceding none.

Primary contributions of this paper are twofold. First, we
introduce and motivate general scenarios for using the over-
lapping layered learning paradigm. Second, we provide a de-
tailed description and analysis of our machine learning ap-
proach, incorporating overlapping layered learning, to create
a large and complex control system that was a core compo-
nent of the 2014 3D simulation league championship team.

The remainder of this paper is organized as follows. Sec-
tion 2 specifies and motivates the overlapping layered learn-
ing paradigm while contrasting it with traditional and con-
current layered learning. In Section 3 we introduce the
RoboCup 3D simulation domain this research takes place in.
Section 4 details the overlapping layered learning approach
of the 2014 UT Austin Villa team and in Section 5 we pro-
vide detailed analysis of its performance. Section 6 discusses
related work while Section 7 concludes.



Figure 1: Different paradigms for layered learning with layers or
parts of layers being learned shown in red.

2 Overlapping Layered Learning

Layered learning is a hierarchical learning paradigm that en-
ables learning of complex behaviors by incrementally learn-
ing a series of sub-behaviors (each learned sub-behavior is a
layer in the learning progression). Higher layers depend on
lower layers for learning. This dependence can include pro-
viding features for learning, such as seed values for param-
eters, as well as a previous learned layer’s behavior being
incorporated into the learning task for the next layer to be
learned. In its original formulation, layers are learned in a
sequential bottom-up fashion and, after a layer is learned, it
is frozen before beginning learning of the next layer.

Concurrent layered learning, on the other hand, purposely
does not freeze newly learned layers, but instead keeps them
open during learning of subsequent layers. This is done so
that learning may enter areas of the behavior search space
that are closer to the combined layers’ optimum behavior as
opposed to being confined to areas of the joint layer search
space where the behaviors of previously learned layers are
fixed. While concurrent layered learning does not restrict the
search space in the way that freezing learned layers does,
the increase in the search space’s dimensionality can make
learning slower and more difficult.

Overlapping layered learning seeks to find a tradeoff be-
tween freezing each layer once learning is complete and
leaving previously learned layers open. It does so by keep-
ing some, but not necessarily all, parts of previously learned
layers open during learning of subsequent layers. The part
of previously learned layers left open is the “overlap” with
the next layer being learned. In this regard concurrent lay-
ered learning can be thought of as an extreme of overlapping
layered learning with a “full overlap” between layers.

The following are several general scenarios, depicted in
the bottom row of Figure 1, for overlapping layered learn-
ing that help to clarify the learning paradigm and identify
situations in which it is useful:

Combining Independently Learned Behaviors (CILB):
Two or more behaviors are learned independently in the
same layer, but then are combined together for a joint
behavior at the subsequent layer by relearning some sub-
set of the behaviors’ parameters or “seam” between the
behaviors. This scenario is best when subtask behaviors
are too complex and/or potentially interfere with each
other during learning, such that they must be learned
independently, but ultimately need to work together for
a combined task. Example: A basketball playing robot
that must be able to dribble the ball across the court and

shoot it in the basket. The tasks of dribbling and shooting
are too complex to attempt to learn them together, but
after the tasks are learned independently they can be
combined by re-optimizing parameters that control the
point on the court at which the robot stops dribbling and
the angle at which the robot shoots the ball.

Partial Concurrent Layered Learning (PCLL): Only
part, but not all, of a previously learned layer’s behavior
parameters are left open when learning a subsequent
layer with new parameters. The part of the previously
learned layer’s parameters left open is the “seam” be-
tween the layers. Partial concurrent learning is beneficial
if full concurrent learning unnecessarily increases the
dimensionality of the search space to the point that it
hinders learning, and completely freezing the previous
layer diminishes the potential behavior of the layers
working together. Example: Teaching one robot to pick
up and hand an object to another robot. First a robot is
taught to pick up an an object and then reach out its arm
and release the object. The second robot is then taught
to reach out its arm and catch the object released by the
first robot. During learning by the second robot to catch
the object, the part of the previously learned behavior of
the first robot to hand over the object is left open so that
the first robot can adjust its release point of the object to
a place that the second robot can be sure to reach.

Previous Learned Layer Refinement (PLLR): After a
layer is learned and frozen, and then a subsequent layer is
learned, part or all of the previously learned layer is then
unfrozen and relearned to better work with the newly
learned layer that is now fully or partially frozen. We
consider re-optimizing a previously frozen layer under
new conditions as a new learned layer behavior with
the “seam” between behaviors being the unfrozen part
of the previous learned layer. This scenario is useful
when a subtask is required to be learned before the next
subsequent task layer can be learned, but then refining or
relearning the original learned task layer to better work
with the newly learned layer provides a benefit. Example:
Teaching a robot to walk. First the robot needs to learn
how to stand up so that if it falls over it can get back up
and continue trying to walk. Eventually the robot learns
to walk so well that it barely if ever falls over during
training. Later, when the robot does eventually fall over,
it is found that the walking motion learned by the robot
is not stable if the robot tries to walk right after standing
up. The robot needs to relearn the standing up behavior
layer such that after doing so it is in a stable position to
start walking with the learned walking behavior layer.

3 Domain Description

Robot soccer has served as an excellent testbed for learn-
ing scenarios in which multiple skills, decisions, and con-
trols have to be learned by a single agent, and agents them-
selves have to cooperate or compete. There is a rich literature
based on this domain addressing a wide spectrum of topics
from low-level concerns, such as perception and motor con-
trol (Behnke et al. 2006; Riedmiller et al. 2009), to high-



Figure 2: A screenshot of the Nao humanoid robot (left), and a
view of the soccer field during a 11 versus 11 game (right).

level decision-making (Kalyanakrishnan and Stone 2010).
The RoboCup 3D simulation environment is based on

SimSpark,1 a generic physical multiagent system simulator.
SimSpark uses the Open Dynamics Engine2 (ODE) library
for its realistic simulation of rigid body dynamics with col-
lision detection and friction. ODE also provides support for
the modeling of advanced motorized hinge joints.
The robot agents in the simulation are modeled after the

Aldebaran Nao robot,3 which has a height of about 57 cm
and a mass of 4.5 kg. The agents interact with the simula-
tor by sending torque commands and receiving perceptual
information. Each robot has 22 degrees of freedom: six in
each leg, four in each arm, and two in the neck. Joint per-
ceptors provide the agent with noise-free angular measure-
ments every simulation cycle (20ms), while joint effectors
allow the agent to specify the torque and direction in which
to move a joint. Although there is no intentional noise in
actuation, there is slight actuation noise that results from ap-
proximations in the physics engine and the need to constrain
computations to be performed in real-time.
In addition to the standard Nao robot model, four addi-

tional variations of the standard model, known as heteroge-
neous types, are available for use. The variations from the
standard model include changes in leg and arm length, hip
width, and also the addition of toes to the robot’s foot. Fig-
ure 2 shows a visualization of the standard Nao robot and
the soccer field during a game.

4 Overlapping Layered Learning Approach

The 2014 UT Austin Villa team used an extensive layered
learning approach to learn skills for the robot such as get-
ting up, walking, and kicking. This includes sequential lay-
ered learning where a newly learned layer is frozen before
learning of subsequent layers, as well as overlapping layers
where parts of previously learned layers are re-optimized as
part of the current layer being learned.
In total over 500 parameters were optimized during the

course of layered learning. All parameters were optimized
using the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) algorithm (Hansen 2009), which has been
successfully applied previously to learning skills in the
RoboCup 3D simulation domain (Urieli et al. 2011). A total

1http://simspark.sourceforge.net/
2http://www.ode.org/
3http://www.aldebaran-robotics.com/eng/

of 705,000 learning trials were performed during the process
of optimizing 19 behaviors. Optimization was performed on
a Condor (Thain, Tannenbaum, and Livny 2005) distributed
computing cluster allowing for many jobs to be run in paral-
lel. Running the complete optimization process took about 5
days, and we calculated it could theoretically be completed
in as little as 49 hours assuming no job queuing delays on
the computing cluster, and all possible parallelism during
the optimization process is exploited. Note that this same
amount of computation, when performed sequentially on a
single computer,4 would take approximately 561 days, or a
little over 1.5 years, to finish.

The following subsections document the overlapping lay-
ered learning parts of the approach used by the team. Due to
space constraints full details of some of the learned behavior
layers are omitted, however a diagram of how all the differ-
ent layered learning behaviors fit together during the course
of learning can be seen in Figure 3 with a brief description
of each behavior provided in Figure 4.

4.1 Getup and Walking using PLLR

The UT Austin Villa team employs an omnidirectional walk
engine using a double inverted pendulum model to control
walking. The walk engine has many parameters that need
to be optimized in order to create a stable and fast walk in-
cluding the length and frequency of steps as well as center
of mass offsets. Instead of having a single set of parameters
for the walk engine, which in previous work we found to
limit performance, walking is broken up into different sub-
tasks for each of which a set of walk engine parameters is
learned (MacAlpine et al. 2012a).
Before optimizing parameters for the walk engine, getup

behaviors are optimized so that if the robot falls over it is
able to stand back up and start walking again. Getup behav-
iors are necessary for faster learning during walk optimiza-
tions, as without the ability to get up after falling, a walk
optimization task would have to be terminated as soon as
the robot fell over. There are two such behaviors for getting
up: GetUp Front Primitive for standing up from lying face
down and Getup Back Primitive for standing up from lying
face up. Each getup behavior is parametrized by a series of
different joint angles and is evaluated on how quickly the
robot is able to stand up (MacAlpine et al. 2013).

After learning both the Walk GoToTarget and
Walk Sprint walk engine parameter sets, we re-optimize
the getups by learning the GetUp Front Behavior and
GetUp Back Behavior behaviors. GetUp Front Behavior
and GetUp Back Behavior are overlapping layered
learning behaviors as they contain the same parameters
as the previously learned GetUp Front Primitive and
GetUp Back Primitive behaviors respectively. The getup
behavior parameters are re-optimized from their primitive
behavior values through the same optimization as the getup
primitives, but with the addition that right after completing
a getup behavior the robot is asked to walk in different
directions and is penalized if it falls over while trying to

4As measured on an Intel(R) Xeon(R) CPU E31270 @
3.40GHz.



Figure 3: Different layered learning behaviors with the number of parameters optimized for each behavior shown in parentheses. Solid black
arrows show number of learned and frozen parameters passed from previously learned layer behaviors, dashed red arrows show the number of
overlapping parameters being passed and relearned from one behavior to another, and the dotted blue arrows show the number of parameter
values being passed as seed values to be used in new parameters at the next layer of learning. Overlapping layers are colored with CILB layers
in orange, PCLL in green, and PLLR in yellow. Descriptions of the layers are given in Figure 4.

do so. Unlike the getup primitives, which were learned in
isolation, the getup behaviors are stable transitioning from
standing up and then almost immediately walking. One
might think that the walk parameter sets learned would be
stable transitioning from the getups due to the getup prim-
itives being used in the walk parameter optimization tasks,
however this is not always the case as during learning walks
become stable such that toward the end of optimizing a walk
parameter set the robot almost never falls and thus rarely
uses the getup primitives. Learning the getup behaviors is
an example of previous learned layer refinement (PLLR).

Getup Front Behavior: Getup front primitive with walk.

Getup Back Behavior: Getup back primitive with walk.

Getup Front Primitive: Stand up when lying on front.

Getup Back Primitive: Stand up when lying on back.

KickOff Kick Behavior: Two agent behavior scores on kickoff with one agent

touching ball before other kicks.

KickOff Kick Primitive: Single agent kick behavior that scores on a kickoff from

a motionless ball.

KickOff Touch Primitive: Single agent behavior where agent lightly touches ball

resulting in little ball motion.

Kick Fast Behavior: Fast kick primitive with walk.

Kick Fast Primitive: Fast and short kick.

Kick High Behavior: High kick primitive with walk.

Kick High Primitive: Kick for kicking over opponents.

Kick Low Behavior: Low kick primitive with walk.

Kick Low Primitive: Kick ball below goal height.

Kick Long Behavior: Long kick primitive with walk.

Kick Long Primitive: Long kick.

Walk ApproachToKick: Walk parameters for stopping at a precise position be-

hind the ball before kicking.

Walk GoToTarget: General default walk parameters.

Walk PositionToDribble: Dribbling walk parameters.

Walk Sprint: Walk parameters for walking forward fast.

Figure 4: Description of layered learning behaviors in Figure 3.

4.2 Kicking using CILB

Four primitive kick behaviors were learned by the
2014 UT Austin Villa team (Kick Long Primitive,
Kick Low Primitive, Kick High Primitive, and
Kick Fast Primitive. Each kick primitive, or kicking
motion, was learned by placing the robot at a fixed position
behind the ball and having it optimize joint angles for a
fixed set of key motion frames. Note that initial attempts at
learning kicks directly with the walk, instead of learning
kick primitives independently, proved to be too difficult due
to the variance in stopping positions of the walk as the robot
approached to kick the ball.

While the kick primitive behaviors work quite well when
the robot is placed in a standing position behind the ball,
they are very hard to execute when the robot tries to
walk up to the ball and kick it. One reason for this dif-
ficulty is that when the robot approaches the ball to kick
it using the Walk ApproachToKick walk parameter set the
precise offset position from the ball that the kick prim-
itives were optimized to work with do not match that
of the position the robot stops at after walking up to
the ball. In order to allow the robot to transition from
walking to kicking, full kick behaviors for all the kicks
are optimized (Kick Long Behavior, Kick Low Behavior,
Kick High Behavior, Kick Fast Behavior). Each full kick
behavior is learned by having the robot walk up to the ball
and attempt to kick it from different starting positions (as
opposed to having the robot just standing behind the ball as
was done when optimizing the kick primitive behaviors).

The full kick behaviors are overlapping layered learning
behaviors as they are re-optimizing previous learned param-
eters. In the case ofKick Fast Behavior only the x and y kick
primitive offset position parameters from the ball, which is
the target position for the walk to reach for the kick to be
executed, are re-optimized. The fast kick is quick enough
that it almost immediately kicks the ball after transitioning
from walking, and thus just needs to be in the correct posi-



Figure 5: Performance of different layered learning
paradigms across generations of CMA-ES when optimizing
Kick Fast Behavior. Results are averaged across five optimization
runs and error bars show the standard error.

tion near the ball to do so. A comparison of overlapping lay-
ered learning paradigms for learning Kick Fast Behavior is
shown in Figure 5. The above overlapping layered approach
of first independently learning the walk approach and kick,
and then learning the two position parameters, does better
than both the sequential layered learning approach where
all kick parameters are learned after freezing the approach,
and the concurrent layered learning approach where both ap-
proach and kick parameters are learned simultaneously.
For the other full kick behaviors all kick parameters from

their respective kick primitive behaviors are re-optimized.
Unlike the fast kick, there is at least a one second delay be-
tween stopping walking and kicking the ball during which
the robot can easily become destabilized and fall over. By
opening up all kicking parameters the robot has the neces-
sary freedom to learn kick motions that maintain its stability
between stopping after walking and making contact with the
ball. Learning the kick behaviors by combining them with
the kick approach walk behavior are all examples of com-
bining independently learned behaviors (CILB).

4.3 KickOff using both CILB and PCLL

For kickoffs the robot is allowed to teleport itself to a starting
position next to the ball before kicking it, and thus does not
need to worry about walking up to the ball. Scoring directly
off a kickoff is not allowed, however, as another robot must
first touch the ball before it goes into the opponent’s goal.
In order to score on a kickoff we perform a multiagent task
where one robot touches the ball before another kicks it.
The first behavior optimized for scoring off the kickoff is

KickOff Kick Primitive in which a robot kicks the ball from
the middle of the field. The robot is rewarded for kicking the
ball as high and as far as possible as long as the ball crosses
the goal line below the height of the goal. In parallel a be-
havior for another robot is learned to lightly touch the ball
calledKickOff Touch Primitive. Here a robot is rewarded for
touching the ball lightly and, after ensuring that the robot
has made contact with the ball, that the ball moves as little
as possible. Finally an overlapping layered behavior called
KickOff Kick Behavior is learned which re-optimizes x, y,

and angle offset positions from the ball from both the Kick-
Off Kick Primitive and KickOff Touch Primitive behaviors.
Re-optimizing these positioning parameters together is im-
portant so that the robots do not accidentally collide with
each other and also so that the kicking robot is at a good po-
sition to kick the ball after the first agent touches it. Learning
KickOff Kick Behavior is another example of combining in-
dependently learned behaviors (CILB).
In addition to the positioning parameters of both robots

being re-optimized for KickOff Kick Behavior, a new pa-
rameter that determines the time at which the first robot
touches the ball is optimized. This synchronized timing pa-
rameter is necessary so that the robots are synced with each
other and the kicking robot does not accidentally try to kick
the ball before the first robot has touched it. As a new param-
eter is optimized along with a subset of previously learned
parameters, learning KickOff Kick Behavior is also an ex-
ample of partial concurrent layered learning (PCLL).
Further information about the kickoff, including how a

seed for the kick was learned through observation, can be
found in (Depinet, MacAlpine, and Stone 2015).

5 Results and Analysis
The 2014 UT Austin Villa team finished first among 12
teams at the RoboCup 3D simulation competition while
scoring 52 goals and conceding none across 15 games. Con-
sidering that most of the team’s strategy layer, including
team formations using a dynamic role assignment and for-
mation positioning system (MacAlpine, Price, and Stone
2015), remained unchanged from that of the previous year’s
second place finishing team, a key component to the 2014
team’s improvement and success at the competition was the
new overlapping layered learning approach to learning the
team’s low level behaviors.
After every RoboCup competition teams are required to

release the binaries that they used during the competition.
In order to analyze the performance of the different com-
ponents of our overlapping layered learning approach we
played 1000 games with different versions of the UT Austin
Villa team against each of the top three teams from the
RoboCup 2013 competition (at the time of writing this paper
team binaries from the 2014 competition were not yet avail-
able). The following subsections provide analysis of game
results when turning on and off the kickoff and kicking com-
ponents learned though an overlapping layered learning ap-
proach. Additionally, to demonstrate the generality of our
overlapping layered learning approach, we provide data that
isolates the performance of our complete overlapping lay-
ered learning approach applied to different robot models.

5.1 Overall Team Performance

Table 1 shows the average goal difference across all games
against each opponent achieved by the complete 2014 UT
Austin Villa team. Against all opponents the team had a
significantly positive goal difference and in fact out of
the 3000 games played the team only lost one game (to
AustinVilla2013). This shows the effectiveness of the team’s
overlapping layered learning approach in dramatically im-
proving the performance of the team from the previous year



Table 1: Full game results, averaged over 1000 games. Each row
corresponds to one of the top three finishing teams at RoboCup
2013. Entries show the average goal difference achieved by the
2014 UT Austin Villa team versus the given opponent team. Values
in parentheses are the standard error. Total number of wins, losses,
and ties across all games was 2852, 1, and 147 respectively.

Opponent Average Goal Difference

Apollo3D 2.726 (0.036)

AustinVilla2013 1.525 (0.032)

FCPortugal 3.951 (0.049)

Table 2: Full game results, averaged over 1000 games. Each row
corresponds to one of the top three finishing teams at RoboCup
2013. Entries show the average goal difference achieved by a ver-
sion of the 2014 UT Austin Villa team not attempting to score on a
kickoff versus the given opponent team. Values in parentheses are
the standard error. Total number of wins, losses, and ties across all
games was 2644, 5, and 351 respectively.

Opponent Average Goal Difference

Apollo3D 2.059 (0.038)

AustinVilla2013 1.232 (0.032)

FCPortugal 3.154 (0.046)

in which the team achieved second place at the competition
(and is now able to beat last year’s team by an average of
1.525 goals).
Recent data released in (MacAlpine et al. 2015) showing

the overall team’s performance when playing against the re-
leased 2014 teams’ binaries corroborates the overall team’s
strong performance. When playing 1000 games against each
of the eleven 2014 opponents UT Austin Villa did not lose
a single game out of the 11,000 played, and had at least an
average goal difference of 2 against every opponent.

5.2 KickOff Performance

To isolate the performance of the learned multiagent behav-
ior to score off the kickoff, we disabled this feature and in-
stead just had the robot taking the kickoff kick the ball to-
ward the opponent’s goal to a position as close as possible to
one of the goal posts without scoring. Table 2 shows results
from playing against the top three teams at RoboCup 2013
without attempting to score on the kickoff.
By comparing results in Table 2 to that of Table 1 we see

a significant drop in performance when not attempting to
score on kickoffs. This result is not surprising as we found
that the kickoff was able to score around 90% of the time
against Apollo3D and FCPortugal, and over 60% of the time
against the 2013 version of UT Austin Villa. The combi-
nation of using both CILB and PCLL overlapping layered
learning garnered a large boost to the team’s performance.

5.3 Kicking Performance

To isolate the performance of kicking learned through an
overlapping layered learning approach we disable all kick-
ing (except for on kickoffs where we once again have a robot
kick the ball as far as possible toward the opponent’s goal
without scoring) and used an always dribble behavior. Data
from playing against the top three teams at the RoboCup
2013 competition when only dribbling is shown in Table 3.

Table 3: Full game results, averaged over 1000 games. Each row
corresponds to one of the top three finishing teams at RoboCup
2013. Entries show the average goal difference achieved by a ver-
sion of the 2014 UT Austin Villa team using a dribble only strategy
versus the given opponent team. Values in parentheses are the stan-
dard error. Total number of wins, losses, and ties across all games
was 2480, 15, and 505 respectively.

Opponent Average Goal Difference

Apollo3D 1.790 (0.033)

AustinVilla2013 0.831 (0.023)

FCPortugal 1.593 (0.028)

Table 4: Full game results, averaged over 1000 games. Each row
corresponds to one of the top three finishing teams at RoboCup
2013. Entries show the average goal difference achieved by a ver-
sion of the 2014 UT Austin Villa team using different heteroge-
neous robot types versus the given opponent team.

Avg. Goal Difference per Robot Type

Opponent Type 0 Type 1 Type 2 Type 3 Type 4

Apollo3D 1.788 1.907 1.892 1.524 2.681

AustinVilla2013 0.950 0.858 1.152 0.613 1.104

FCPortugal 2.381 2.975 3.331 2.716 3.897

Here we saw another significant drop in performance
when comparing Table 3 to Table 2. Kicking provided a
large gain in performance, nearly doubling the average goal
difference against FCPortugal, compared to only dribbling.
This result is in stark contrast to when UT Austin Villa won
the 2011 RoboCup competition, in which the team tried to
incorporate kicking skills without using an overlapping lay-
ered learning approach, and found that kicking actually hurt
the performance of the team (MacAlpine et al. 2012b).

5.4 Different Robot Models

At the RoboCup competition teams were given the option of
using five different robot types with the requirement that at
least three different types of robots must be used on a team
and no more than seven of any one type. The five types of
robots available were the following:
Type 0: Standard Nao model

Type 1: Longer legs and arms

Type 2: Quicker moving feet

Type 3: Wider hips and longest legs and arms

Type 4: Added toes to foot

We applied our overlapping layered learning approach
for learning behaviors to each of the available robot types.
Game data from playing against the top three teams at
RoboCup 2013 is provided in Table 4 for each robot type.
While there are some differences in performance between

the different robot types, likely due to the differences in their
body models, all of the robot types are able to reliably beat
the top teams from the 2013 RoboCup competition. This
shows the efficacy of our overlapping layered learning ap-
proach and its ability to generalize to different robot models.
During the 2014 competition the UT Austin Villa team used
seven type 4 robot models as they showed the best perfor-
mance, two type 0 robot models as they displayed the best
performance on kickoffs, and one each of the type 1 and type
3 robot models as they were the fastest at walking.



6 Related Work

Within RoboCup soccer domains there has been previous
work in using layered learning approaches to learn com-
plex agent behaviors. Stone used layered learning to train
three behaviors for agents in the RoboCup 2D simulation do-
main and specified an additional two that could be learned
as well (2000). Gustafson et al. used two layers of learn-
ing when applying genetic programming to the keep away
subtask within the RoboCup 2D simulation domain (2001).
Whiteson and Stone later introduced concurrent layered
learning within the same keepaway domain during which
four layers were learned. Cherubini et al. used layered learn-
ing for teaching AIBO robots soccer skills that included six
behaviors (2008). Layered learning has also been applied
to non-RoboCup domains such as Boolean logic (Jackson
and Gibbons 2007) and non-playable characters in video
games (Mondesire and Wiegand 2011). To the best of our
knowledge our overlapping layered learning approach, con-
taining 19 learned behaviors, has more than three times the
behaviors of any previous layered learning systems.
Work by Mondesire has discussed the concept of learned

layers overlapping, and focuses on a concern of informa-
tion needed to perform a subtask being lost or forgotten as
it is replaced during the learning of a task in a subsequent
layer (2014). Our work differs in that we are not concerned
with the performance of individual subtasks in isolation, but
instead are interested in maximizing the performance of sub-
tasks when they are combined.

7 Summary and Discussion

This paper introduces and motivates general scenarios for
using overlapping layered learning. The paper also includes
a detailed description and experimental analysis of the ex-
tensive overlapping layered learning approach used by the
UTAustin Villa team in winning the 2014 RoboCup 3D sim-
ulation competition.5 Future work in this area includes the
automated determination of appropriate subtasks for layered
learning as well as automated identification of useful layer
overlap or “seams” to use for overlapping layered learning.
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