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Abstract

Prior approaches to human guidance using robots in-
side a building have typically been limited to a single
robot guide that navigates a human from start to goal.
However, due to their limited mobility, the robot is of-
ten unable to keep up with the human’s natural speed. In
contrast, this paper addresses this difference in mobility
between robots and people by presenting an approach
that uses multiple robots to guide a human. Our ap-
proach uses a compact topological graph representation
of the environment, and we first present the procedure
for generating this representation. Next, we formulate
the multi-robot guidance problem as a Markov Deci-
sion Process (MDP). Using a model of human motion in
the presence of guiding robots, we define the transition
function for this MDP. Finally, we solve the MDP using
Value Iteration to obtain an optimal policy for placing
robots and evaluate this policy’s effectiveness.

Indoor environments such as airports, shopping malls, hos-
pitals, and warehouse stores are characteristically full of
people hurrying towards a destination or trying to locate
a particular item. Often, they are unfamiliar with the envi-
ronment and spend a fair amount of time locating these re-
sources. With recent advancements in service robots, it is be-
coming far more feasible to deploy a large number of robots
to aid humans in these environments. This paper studies how
ubiquitous robots in an environment can be used to guide
people efficiently to their destinations.

Past research has explored the possibility of using a sin-
gle robot to guide people (Thrun et al. 1999; Philippsen and
Siegwart 2003). However, in environments densely packed
with moving people and goods, navigating a guide robot the
entire length from a human’s start location to their goal can
be a significant challenge. The same navigation task can be
completed far more efficiently by people, and yet they be-
come limited by the navigation speed of the guide. A multi-
robot solution can make use of a human’s ease of naviga-
tion by proactively placing robots where the human is likely
to need help in the future. Whenever the system needs to
guide a human at a specific location, it can commission a
nearby robot to direct the human towards the next objec-
tive, whether it be another guide robot or the goal. Once that
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robot’s task is completed, it can go back to performing its
other duties. Potentially, this approach can greatly reduce the
time each individual robot has to spend guiding the human,
allowing robots to assist more people in the same time.

This paper specifically studies the problem of deciding
where to place robots in an environment to guide a human as
he or she moves around. First, we formulate this multi-robot
guidance problem as a Markov Decision Process (MDP),
and use a hand-coded model of human motion in the pres-
ence of guide robots to define the transition function for this
MDP. We then use Value Iteration (Sutton and Barto 1998)
to solve this MDP, generating an optimal solution for placing
robots. Such a solution can take the uncertainty in a human’s
movement into account and avoid actions that have a signifi-
cant probability of failure. Finally, we evaluate the generated
policy by comparing it against a heuristic solution for decid-
ing robot placements. Experiments are run using the model
of human motion, as well as with avatars controlled by real
humans in a simulation environment.

To reason about human movement and robot placements,
a representation of the environment is required. This paper
uses a topological graph representation of the environment
for reasoning (see Fig. 1h). Topological graphs can provide
a compact representation of the environment while still re-
taining all key locations and the connectivity between these
locations. The process of topological graph generation de-
scribed in this paper is built on previous work (Thrun and
Bücken 1996). As such, the main contribution of this paper
is the procedure for generating topological graphs, formu-
lating the multi-robot guidance problem as an MDP using
these topological graphs, and solving the MDP using Value
Iteration to produce the best graph nodes for placing robots.
All code in this paper has been implemented using the ROS
middleware package (Quigley et al. 2009) and is available in
the public domain along with videos from the experiments1.

Related Work
Single robot guides have been used over the past two
decades to guide humans on a tour (Thrun et al. 1999), or
provide navigation assistance to the elderly and visually im-
paired (Montemerlo et al. 2002; Lacey and Dawson-Howe
1998). In contrast, the goal of our work is to navigate able-

1
https://github.com/utexas-bwi/bwi_guidance
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bodied individuals inside a building by using multiple robots
to guide them. The work of Rogers et al. has taken a much
more subtle approach to influencing human routes inside a
building using ambient displays (Rogers et al. 2010), and
aims to change people’s behavior towards making healthier
choices such as taking the staircase instead of an elevator.
In contrast, we use a much more direct interface by using a
robot’s screen to influence short term navigation decisions.

To efficiently guide a person inside a building, it is neces-
sary to have a model of human motion based on their inter-
action with guide robots. Past work has looked into building
models of how humans interpret natural language naviga-
tion instructions (Chen and Mooney 2011), and how such
instructions can be used by robots to get to a navigation
goal (Tellex et al. 2011). In this paper, we use directional
arrows on a robot’s screen to guide a person, which simpli-
fies how we formulate the multi-robot guidance problem as
a Markov Decision Process (MDP). In future work, we hope
to test additional interfaces for human robot interaction.

In this paper, we use a topological graph representa-
tion of the environment to formulate the multi-robot guid-
ance problem as an MDP and reason about human move-
ment. Topological graphs have been used in the past for
learning maps of the environment (Choset and Nagatani
2001), and for robot path planning and navigation (Thrun
and Bücken 1996; Konolige, Marder-Eppstein, and Marthi
2011). The approach for topological map generation dis-
cussed in this paper is built upon previous work (Thrun and
Bücken 1996), and produces graphs similar to Generalized
Voronoi Graphs (Choset and Burdick 1995). We will explain
why graphs generated in prior work are insufficient for rea-
soning about human movement, and present a refinement
procedure to improve connectivity between key real world
locations.

Problem Statement
Given an occupancy grid representation of the environment,
along with the start and goal locations, a multi-robot guid-
ance solution should produce locations for placing multiple
robots to guide a human towards the goal. Solutions are eval-
uated based on how well they minimize the overall distance
traveled by the human before reaching the goal. Our desider-
ata for such a solution are presented below:

• The solution should reason about the uncertainty in the
human’s movement, and avoid situations that result in a
significant probability of the human making a costly mis-
take.

• The solution should be reactive as the human moves
around in the environment, and commission robots when
necessary to direct the human.

Additionally, in this paper we make the following as-
sumptions regarding multi-robot guidance solutions:

1. The maximum number of robots that the solution can
place is pre-specified.

2. Each robot can direct a human by displaying a directed
arrow on its screen, and there may be some uncertainty as

to how this information will be interpreted by the human.
Other interfaces are not studied in this paper.

3. Whenever a robot is commissioned and assigned to a spe-
cific location, the robot gets there instantaneously.

4. Robots in the environment that have not been commis-
sioned (or have been decommissioned) do not influence
the human being guided.

With regards to assumptions 3 and 4, we leave consideration
of robot path planning and travel cost to future work in or-
der to focus on the robot placement problem in isolation. In a
small environment with robots that move at moderate speed,
this assumption, though not fully realistic, does not signifi-
cantly affect the decision-making problem in question.

Topological Map Generation
An occupancy grid is a 2D matrix representation of the en-
vironment, where each cell in the matrix corresponds to a
tile in the real world. The value contained in each cell re-
flects a probability measure of the corresponding real world
tile being occupied. While such a representation is suitable
for robot navigation and mapping, it does not support rea-
soning about key locations where humans decide to move in
a particular direction. In contrast, this section discusses the
construction of a topological graph from the occupancy grid
representation. The graph representation is more compact,
and only contains key locations along with the connectivity
between these locations (see Fig. 1h), making it well suited
for reasoning about human motion.

We formalize a topological graph asG = 〈VG, EG〉, where
VG is the set of all vertices and EG is the set of all edges
in the graph. Each vertex v ∈ VG is defined as a 3-tuple
〈x, y, size〉 representing the location of the vertex and the
size of the underlying region. We define some functions on
vertices u, v ∈ G that will be used throughout the text:

isVisible(u, v) = true if ∃ a line-of-sight obstacle free
path between u and v in the grid
representation, false otherwise.

nodeAngle(u, v) = arctan((v.y − u.y)/(v.x− u.x))

euclidDist(u, v) =
√

(v.y − u.y)2 + (v.x− u.x)2
pathDist(u, v,G) = Distance of the shortest path between

u and v in G using Dijkstra’s Alg.
over Euclidean distance.

adjacentNodes(v) = {w : evw ∈ EG}
visibleNodes(v) = {w : w ∈ VG | isVisible(v, w)}

Constructing the graph follows an approach closely mod-
eled after the work of Thrun et al. (Thrun and Bücken 1996).
First, the Voronoi diagram (Aurenhammer 1991) of the grid-
based representation of the environment is computed. The
Voronoi diagram is the set of points in free space which are
equidistant to their closest obstacles (see Fig. 1a). This dis-
tance is defined as the clearance of that Voronoi point, and
the closest obstacles are called the basis points. From the set
of Voronoi points, critical points are selected such that no
Voronoi point within an ε-neighborhood of a critical point



(a) Voronoi Points (b) Critical Pts., Lines & Regions (c) Original Graph G0 (d) Pass 1 Graph G1

(e) Pass 2 Graph G2 (f) Pass 3 Graph G3 (g) Pass 4 Graph G4 (h) Final Graph G5

Figure 1: Fig. 1a shows the Voronoi diagram in blue generated over the occupancy grid representation of the environment. The environment
is 29.6m × 18.4m in size. Fig. 1b shows the critical points and lines demarcating space into different regions, which can be used to directly
construct the graph G0 in Fig. 1c. Figs. 1d-1h show the graph refinement process as explained in the paper.

has lower clearance than that critical point (with ε = 0.25m).
Critical points when connected to their basis points form
critical lines that divide the environment into a number of
regions (see Fig. 1b). The centroids of these regions can be
joined together to produce the graph G0 (see Fig. 1c).

Even with good region segmentation, the graph produced
by directly connecting adjacent regions may be unsuitable
for reasoning about human motion in large spaces. For in-
stance, a human walking directly from node 15 to node 14
in G0 will pass through the region represented by node 22
(n22), but not necessarily the point 〈n22.x, n22.y〉.G0 does
not capture the fact that when people move in large open
spaces, they tend to move directly towards their intended
exit from that space. Since this information is valuable when
reasoning about human motion, we present a 5-pass graph
refinement strategy that incorporates direct movements in
large spaces into the graph:

1. In pass 1, any vertex v ∈ G0 such that v.size > splitRe-
gionSize is split into its constituent critical points to pro-
duce G1 (Fig. 1d). splitRegionSize is a user defined pa-
rameter and 15m2 was used in this paper.

2. There are a number of vertices in G1 that are not neces-
sary to reason about human movement, such as node 3
while moving between nodes 7 and 8. In this pass, graph
G2 (Fig. 1e) is produced by removing any vertex v ∈ G1

that satisfies the following two conditions:

|adjacentNodes(v)| = 2 ∧
∀ u,w ∈ adjacentNodes(v), u 6= w [isVisible(u,w)]

3. Pass 3 aims to remove nodes in G2 that are too close
to other nodes, as close nodes can introduce unnecessary
transitions in the system while mapping real world loca-
tions to a graph node. This pass forms graph G3 by merg-
ing any vertices u, v ∈ G2 that satisfy:

euclidDist(u, v) < vertexMergeDistance

where vertexMergeDistance is user-defined (set to 2m).
4. Some vertices u, v ∈ G3 may not be visible as the line-

of-sight path may skim a wall in the environment, such as

the edge between nodes 10 and 12 in G3. Pass 4 produces
graph G4 (Fig. 1g) by nudging every vertex v ∈ G3 to
any randomly selected point within a ε-neighborhood (ε
= 0.25m) that maximizes its visibility |visibleNodes(v)|.

5. Multiple close edges are irrelevant for reasoning about hu-
man motion. InG4, when a human moves right from node
11, it is unnecessary to have a direct edge to node 12, and
the movement can be captured by transitioning through
node 13. Pass 5 removes any edge euv in G4 that can be
represented by a suitable combination of other edges:

pathDist(u, v,G4 \ {euv}) ≤
edgeMergeFactor × euclidDist(u, v)

where edgeMergeFactor is another user defined parame-
ter set to 1.05. Fig. 1h shows the final graph G5.

Additional examples of the result of this procedure appear
in Fig. 4. Once a graph suitable for reasoning about human
movement is constructed, it can be used by the multi-robot
guidance solution as elaborated in the next section.

Multi-robot Guidance Solution
In this section, we frame the multi-robot guidance problem
as an episodic Markov Decision Process (MDP). This MDP
defines the choices the system can make for placing robots
and directing people, and treats the choices of the human
moving around in the system as part of the environment’s
transition function. Once the MDP has been framed, any
MDP solver can be used to compute an optimal or approxi-
mate policy for placing robots. We use Value Iteration (Sut-
ton and Barto 1998) to find this policy.

MDP Formulation
Given a topological graphG and a goal node g, we define the
MDP as M = 〈S,As, P ass′ , Rass′〉, where S represents the
environment’s state space.As is the set of actions the system
can take at all states s ∈ S, where actions control placing
robots around and directing people, and P and R are the
transition and reward functions, respectively. The following
sections define these elements of the MDP in detail.



State Each state s ∈ S is represented by the 5-tuple
〈curNode, curDir, visRobotLoc, pointToDir, robotsLeft〉. All
members of the state tuple are discrete and described below:

1. curNode is the node mapped from the human’s current
location. curNode can take any value in VG. Any state s
where s.curNode is the goal node is considered terminal.

2. curDir is an estimate of the humans’ current direction of
motion, which we discretize into 16 bins in the state repre-
sentation. At the start of an episode, curDir is initialized
by discretizing the human’s true orientation and subse-
quently computed as the human moves to a new graph
node as explained in Alg. 1 at Line 18.

3. visRobotLoc - A robot can be present at any node visible
from curNode, and visRobotLoc tracks if and where such
a robot exists. It assumes any value in:

{NONE} ∪ visibleNodes(curNode) \ {curNode}
It is sufficient for visRobotLoc to track one robot only as
only one robot is required to serve as the human’s next
objective. curNode is excluded from the set of possible
values as the case where a robot is present at the current
node is handled by pointToDir.

4. pointToDir - Once the human reaches a robot, the system
uses that robot to guide the human in a given direction.
pointToDir reflects whether the current node contains a
robot, and if that robot has been assigned an adjacent node
towards which it will guide the human. pointToDir as-
sumes any value in:

{NONE,UNASSIGNED} ∪ adjacentNodes(curNode)

5. robotsLeft is the number of robots left to be placed.
It can take any value in {0, 1, . . . ,maxRobots}, where
maxRobots is problem dependent.

Actions There are 3 different types of actions
that the system can perform, and each individ-
ual state has a variable number of actions de-
pending on |adjacentNodes(s.curNode)| and
|visibleNodes(s.curNode)|.

1. placeRobot(v) - Placing a robot provides the human with
his next objective. The system can place a robot at any
location v visible from the current location, and the fol-
lowing actions are available at state s ∈ S:

{placeRobot(v) : v ∈ visibleNodes(s.curNode)}
placeRobot(v) can only be taken if s.robotsLeft > 0. The
transition to the next state s′ is deterministic and s′ = s
except the number of robots left to be placed is one less
(s′.robotsLeft = s.robotsLeft − 1). There are additional
conditions depending on the choice of v:
• Case 1: v 6= s.curNode. The robot can only be placed

if a robot is not visible (s.visRobotLoc = NONE). In
the next state s′, the system starts tracking this robot
(s′.visRobotLoc = v).
• Case 2: v = s.curNode. A robot can only be

placed on the current node if no robot is present al-
ready (s.pointToDir = NONE). The next state s′ has
s′.pointToDir = UNASSIGNED.

2. directHuman(v) - When a human reaches a robot, the
robot has yet to be assigned a direction to guide the human
(s.pointToDir = UNASSIGNED). The system can only
take one of the following directHuman actions to guide
the human towards an adjacent node:

{directHuman(v) : v ∈ adjacentNodes(s.curNode)}

Once directHuman(v) is taken, the system determinis-
tically transitions to a next state s′ where the robot
guides the human by displaying an arrow towards v
(s′.pointToDir = v).

3. wait - The system does not change the state of the system
directly, but waits for the human to move inside the envi-
ronment. This action is nondeterministic, as the transition
depends on the graph node to which the human moves to.

Transitions The placeRobot and directHuman actions are
completely deterministic and transition to a known state.
Defining the transition function when the wait action is taken
is considerably more complex, as it depends on how a hu-
man decides to move in the environment, and a model of
human motion in the presence of guiding robots is required.
In this paper, a hand-coded model of human movement is
used which will be discussed in the next section.

When a human moves to an adjacent node nNode, the
movement is represented as a transition to a unique MDP
state s′, which we compute as explained in Alg. 1. If no
robot was visible in s, it is impossible for any robots to be
present in s′ (Lines 3-5). On the other hand, if a robot was
visible in s, the human may have moved to the node contain-
ing it. The system updates pointToDir to reflect that a robot
without an assigned direction is present(Lines 7-9). The hu-
man may also move such that a previously visible robot is
no longer visible, and the system stops tracking that robot
(Lines 10-12). If that robot is still visible, the system con-
tinues to track it (Lines 13-15). The human’s direction of

Algorithm 1 State transition when a human moves
1: s← Current State, s′ ← new State()
2: nNode← Graph node after human movement
3: if s.visRobotLoc = NONE then
4: s′.pointToDir← NONE
5: s′.visRobotLoc← NONE
6: else
7: if s.visRobotLoc = nNode then
8: s′.pointToDir← UNASSIGNED
9: s′.visRobotLoc← NONE

10: else if s.visRobotLoc 6∈ visibleNodes(nNode) then
11: s′.pointToDir← NONE
12: s′.visRobotLoc← NONE
13: else . the case where tracked robot is still visible
14: s′.pointToDir← NONE
15: s′.visRobotLoc← s.visRobotLoc
16: end if
17: end if
18: s′.curDir← discretize(nodeAngle(nNode, s.curNode))
19: s′.robotsLeft← s.robotsLeft
20: s′.curNode← nNode



(a) Visible robot at node 12 (b) No Robots
Figure 2: Fig. 2a shows that the transition distribution is heavily
in the favor of node 12 if a robot is visible there. On the other hand,
Fig. 2b shows more variation if no robots are present.

motion is computed based on the transition to nNode, and
other state members are updated accordingly (Lines 18-20).

Rewards A transition reward simply reflects the distance
traveled by the human when the system goes from s to s′:

Rass′ = −euclidDist(s.curNode, s ′.curNode)

By this reward formulation, the optimal MDP solution min-
imizes the expected distance traveled by the human. Addi-
tionally, a reward is non zero if and only if the wait action is
taken and a human moves in the environment:

Rass′ 6= 0 ⇐⇒ a = wait

Human Motion Model
The human motion model needs to account for transitions to
adjacent graph vertices under the influence of guiding robots
(nNode in Alg. 1). This model can then be used to define the
transition function of the MDP when the wait action is taken.
A fully realistic human motion model should be stochastic
and determined empirically by recording the decisions that
real people make when moving around real maps.

Since the focus of this paper is on map representation and
multi-robot guidance, a hand-coded human model has been
used for experiments. This model computes transition prob-
abilities according to these 2 cases:

• Case 1: s.visRobotLoc 6= NONE. If the human sees a
robot clearly visible from the current node, then it is ex-
pected that the human moves towards that robot. We de-
fine a robot as being clearly visible when it lies in the
visibility cone by satisfying the following condition:

absAngleDiff (expDir , radians(s.curDir)) < π/3,

where expDir = nodeAngle(s.curNode, s.visRobotLoc)

If this condition is true, then we compute the likely adja-
cent node v the human should transition to as:

v = argmin
w∈W

(absAngleDiff (expDir ,wAngle)),where

wAngle = nodeAngle(s.curNode, w) and
W = adjacentNodes(s.curNode)

In case a robot is additionally present at the current node
and points to v, or is not present (s.pointToDir = v ∨
s.pointToDir = NONE), then the model states that with
99% probability the human moves to v. On the other hand,
if a robot at the current node does not point to v (i.e. in the

direction of a robot further up that the human can clearly
see), the human is presented with a confusing situation.
In this case, the model splits 99% probability evenly be-
tween v and s.pointToDir. The remaining 1% probabil-
ity is split evenly among all outgoing edges to give each
transition a finite probability, as illustrated in Fig. 2a.

• Case 2: s.visRobotLoc = NONE. If no robot is present at
the current node (s.pointToDir = NONE), then the human
is expected to continue moving in the current direction
of motion, i.e. the expected direction of motion (expDir)
is radians(s.curDir). Alternatively, if a robot is present at
the current node and pointing towards an adjacent node
(s.pointToDir 6= NONE), then the human is expected to
move towards that adjacent node along the direction:

expDir = nodeAngle(s.curNode, s.pointToDir)

If there are multiple adjacent nodes in the direction of
expDir, there may still be some uncertainty about the
node the human decides to move to. The hand-coded
model simulates this uncertainty by assigning a weight
weightv to every outgoing transition to adjacent node
v ∈ adjacentNodes(s.curNode) as:

edgeAngle = nodeAngle(s.curNode, v)
weightv = exp

(
−absAngleDiff (edgeAngle,expDir)2

2σ2

)
where σ2 = 0.1 controls the spread of the Gaussian func-
tion. 90% of the transition distribution is assigned using
edge weights {weightv}, and the remaining 10% is split
evenly among all outgoing edges to give each transition a
positive probability, as illustrated in Fig. 2b.

Solving the MDP using Value Iteration
Given an MDP and a model of human motion in the presence
of robots, a complete description of the domain is available
including the transition model P ass′ . Any MDP solver can
now be used to compute an optimal or approximate policy
for placing robots as a human moves around in the environ-
ment. In this paper, Value iteration (VI) (Sutton and Barto
1998) has been used to solve the MDP.

Value Iteration defines an expected value V (s) ∀ s ∈ S,
which is the maximum possible long term expected reward
that the system can receive from the state s. Given the for-
mulation of the reward structure in our MDP, V (s) reflects
the expected distance a human has to walk from state s to the
goal, given that the system takes the best possible actions to
reduce this distance. V (s) can be computed iteratively using
a simple backup operation:

Vk+1(s) = max
a∈As

∑
s′

P ass′ [R
a
ss′ + γVk(s

′)]

In practice, the backup is run iteratively until the maximum
value change becomes less than a threshold ε:

∀ s ∈ S [max(Vk+1(s)− Vk(s)) < ε]

In this paper, we used ε = 0.05m and ran VI without any
discounting (γ = 1). Additionally, V (s) was never allowed
to go below a threshold δ to speed up convergence. In states



where no robots are left to be placed, V (s) can be extremely
low and take many iterations to converge. It is sufficient to
identify these states as being unfavorable by selecting a low
enough δ, set to -500m in experiments, and the following
additional step was run after every backup:

Vk+1(s) = max(Vk+1(s), δ)

Once V (s) has been computed, the system can select the
optimal policy π(s) for placing robots and directing humans:

π(s) = argmax
a∈As

∑
s′

P ass′ [R
a
ss′ + γVk(s

′)]

On a fixed map, this policy π(s) can be pre-computed offline
for any given goal beforehand, and looked up as needed.

Experiments
In this section, we present two experiments that evaluate the
effectiveness of the VI-based solution for guiding a human,
and compare it against the following heuristic solution.

Heuristic Solution
For comparison purposes, we also define a simple heuristic
solution that iteratively finds a suitable location in the path in
front of a human to place a robot. Given the human’s current
location and direction of motion, the likely path P ⊆ G
is the set of nodes that the human is likely going to traverse
while walking as straight as possible. Alg. 2 gives the precise
methodology for computing P , as illustrated in Fig. 3a.

Once the likely path P is available, the node n in P which
is closest to the goal g is selected such that:

n = argmin
p∈P

(pathDist(p, g,G))

A robot is then placed at node n to guide the human to the
goal through the shortest path, as shown in Fig. 3b.

A robot is decommissioned when it is no longer required.
This situation can happen if the human successfully reaches
the robot’s position and moves forward, or if the human

Algorithm 2 Heuristic for computing the likely path P
1: curNode← Human’s current location (graph node)
2: curDir← Human’s direction of movement (radians)
3: P ← ∅
4: while true do
5: P.insert(curNode)
6: A← adjacentNodes(curNode)
7: diff ← Map(), dir← Map()
8: for all a ∈ A do
9: dir[a]← nodeAngle(curNode, a)

10: diff [a]← absAngleDiff (curDir, dir[a])
11: end for
12: nextNode← argmin(diff )
13: if diff [nextNode] > π/4 then
14: break
15: end if
16: curDir← dir[nextNode]
17: curNode← nextNode
18: end while

(a) Likely Straight Path P (b) Robot Placement
Figure 3: Fig. 3a shows the likely path P that the human is ex-
pected to follow starting at node 4 and pointing rightwards. With
the goal at node 10, Fig. 3b shows that node 1 in p is closest to
the goal. A robot is then placed at node 1 guiding the human in the
direction of the shortest path towards the goal.

moves such that the placed robot is no longer visible. Once a
robot is decommissioned, the algorithm is re-run to compute
the next placement for a robot if robots are available.

Simulated Human Agent
The first experiment compares the performance of both so-
lutions through an agent exactly following the hand-coded
human motion model described in this paper. Since the same
model was used while generating the VI solution, the policy
computed by the VI solution is optimal for this agent.

All evaluations in this experiment are made on the three
maps shown in Fig. 4. The first map is a grid-like environ-
ment, and where 2 or 3 robots should be sufficient to guide
the human to the goal. The second map introduces barri-
cades in this grid-like environment, thereby inducing a need
for more robots. The third and final map introduces some
open spaces into the environment with the goal of creating
interesting transition dynamics as the human moves around.

The experiment was run by first generating 1000 different
problem instances on each map. Each problem was set up
with randomly selected start and goal locations as follows:

〈startNode, startDir, goalNode〉, startNode 6= goalNode

Each problem instance was further split into 5 separate sub-
problems by setting the maximum number of robot place-
ments (maxRobots) to every value ∈ {1, . . . , 5}, and ev-
ery sub-problem was evaluated once through the agent using
both the VI and heuristic solutions. startNode, startDir and
maxRobots were used to compute the system’s state s at the
start of each episode.

Since the distance between start and goal in each problem
is variable, it is necessary to normalize the agent’s distance
in each problem before this information can be aggregated.
We normalize the distance the agent travels in each problem
by the shortest distance between startNode and goalNode for
that problem (i.e. pathDist(startNode, goalNode, G)). These
normalized distances have been averaged across the 1000
instances to produce the plots shown in Fig. 4.

Results from map 1 in Fig. 4d show that as expected, both
the VI and the heuristic solution reach a normalized distance
close to optimal once three robots are available for place-
ment. In a grid-like environment 2 robots are sufficient to
guide the person to the goal node, and a final robot is placed
at the goal node itself by both approaches to entice the hu-
man to walk towards it. The difference in performance be-
tween the approaches when only a single robot is available



(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 1 Results (e) Map 2 Results (f) Map 3 Results
Figure 4: Fig. 4 shows different evaluation maps (each of size 48.8m × 46.8m) and the average performance of the heuristic and VI
approaches on these maps with standard error bounds. The value above each set of bars indicates the ratio between the heuristic and VI
solutions, and is bold when the difference between the two approaches is significant using a two sample t-test with 95% confidence.

is because the VI solution is much better at reasoning about
human movement, and an example is illustrated in Fig. 5.

When barricades are introduced in Map 2, the VI
approach significantly outperforms the heuristic solution
which runs out of robots to place. On average, the heuristic
solution would require 9 robots to achieve the same expected
distance as that of the VI solution with 5 robots. With an in-
sufficient number of robots being available, it becomes nec-
essary to reason about human movement so that robots are
only placed at strategic locations. With large open spaces in
Map 3, the VI approach is much better at realizing that sim-
ply placing a robot with a directional arrow when a person
enters an open space is insufficient to guide the person to-
wards the intended exit from the space. Consequently, the
VI approach typically also places a robot at this exit to en-
sure that the human walks towards it.

(a) Heuristic - Map 1 (b) VI - Map 1
Figure 5: Fig. 5a shows that in the situation where the goal is at
32 and the human is currently moving upwards at node 41, the
heuristic solution immediately directs the human to the goal by
placing the last remaining robot at 41 itself. In a large majority
of cases, the human misses the goal. On the other hand, VI reasons
about human movement and waits for the person to naturally turn
right before directing him to the goal at node 46.

Human experiments
The second experiment evaluates both the VI and heuristic
solution with real humans inside a 3D simulation environ-
ment. We set up the simulation using Gazebo (Koenig and
Howard 2004), and constructed a 3D maze based on Map 3
(Fig. 4c). The simulator allows a human to control an avatar
inside the environment, and provides sensory information
through a simulated camera as shown in Fig. 6a. Human po-
sition inside the environment is mapped to a graph node to
compute the system state inside the MDP, and the simulator
queries the policy being evaluated for the action at that state
to move robots into their assigned locations as requested. In
this experiment, since real humans control what happens in
the environment, their behavior may significantly differ from
the hand-coded human motion model, and the VI solution is
no longer guaranteed to be optimal.

This experiment required some small changes to the hu-
man motion model and the MDP, as explained below:

1. Visibility in the simulator is limited up to 30 meters, and
isVisible(u,v) ∀ u, v ∈ G was modified appropriately.

2. There is a slight delay between when the state of the MDP
is updated and when the robots are moved into place. This
duration gives the possibility for the human to collide
with or bypass a robot being placed at the current node.
Consequently, placing robots at the current node (placeR-
obot(s.curNode)) was disabled.

3. The humans are told to look for a red ball in the environ-
ment. Since the ball is visible in the simulator, it induces
an effect in the human motion model similar to that pro-
duced by a visible robot in the distance. Case 1 in the
hand-coded human motion model was modified accord-
ingly to also account for the goal being visible.



(a) Simulator Interface (b) Distance - Experiment 2
Figure 6: Fig. 6a shows the input available for the user to move
around in the environment. Fig. 6b shows the average distance trav-
eled in each problem instance. Significant differences are in bold.

With real humans in the loop, it quickly becomes imprac-
tical to test performance across an extensive set of problems.
Instead, we randomly selected 5 problem instances such that
the length of the shortest path between start and goal in each
instance was greater than 40m (the side of the square map
is 46.8m). Each problem instance was tested with a specific
value of maxRobots, and between the 5 problems all values
in {1, . . . , 5} were covered. Each human subject first went
through 2 small tutorial problems to first get acquainted with
the simulator interface. Next, either the heuristic or the VI
policy was randomly selected for the system to use while
guiding them over these 5 problem instances. 9 and 10 hu-
mans were guided using robot placements provided by the
heuristic and VI solutions, respectively.

As before, distances traveled by the humans have been
normalized against the shortest graph distance and averaged
to produce the results in Fig. 6b. In all experiments, the
difference between the 2 policies is either insignificant, or
the VI solution significantly outperforms the heuristic. Of
particular note is the case with 1 robot, where the heuris-
tic performs better than the VI solution (not significantly).
The heuristic places its single robot immediately to point
the human in the general vicinity of the goal, and the human
executes a search strategy in the correct region to find the
goal. Since the hand-coded human motion model does not
account for this strategy, the VI solution is quite conserva-
tive about placing its single robot unless it can place a robot
on a location directly visible from the goal, and the human
wanders aimlessly for some time. A more realistic human
model may be able to improve the VI solution in such cases.

Discussion
In this paper, we have introduced the multi-robot human
guidance problem, formulated the problem as an MDP using
a model of human motion and solved the MDP to generate
an optimal policy for placing multiple robots in an environ-
ment to efficiently guide a human. Our MDP formulation
uses a topological graph representation of the environment,
and we have discussed how such a representation can be
constructed. Our ongoing research agenda includes extend-
ing this work by collecting data from real humans interacting
with real guide robots to construct realistic models of human
motion. Given such a model, solving the MDP will have the
potential to produce equivalent or better solutions than any
heuristic-based approach.
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