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REPRESENTATIVE SELECTION IN NONMETRIC DATASETS

Elad Liebman1, Benny Chor2, and Peter Stone1
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2The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

� This study considers the problem of representative selection: choosing a subset of data points from
a dataset that best represents its overall set of elements. This subset needs to inherently reflect the
type of information contained in the entire set, while minimizing redundancy. For such purposes,
clustering might seem like a natural approach. However, existing clustering methods are not ideally
suited for representative selection, especially when dealing with nonmetric data, in which only a
pairwise similarity measure exists. In this article we propose δ-medoids, a novel approach that can be
viewed as an extension of the k-medoids algorithm and is specifically suited for sample representative
selection from nonmetric data. We empirically validate δ-medoids in two domains: music analysis
and motion analysis. We also show some theoretical bounds on the performance of δ-medoids and
the hardness of representative selection in general.

INTRODUCTION

Consider the task of a teacher who is charged with introducing his class
to a large corpus of songs (for instance, popular western music since 1950).
In drawing up the syllabus, this teacher will need to select a relatively small
set of songs to discuss with his students such that (1) every song in the larger
corpus is represented by his selection (in the sense that it is relatively sim-
ilar to one of the selected songs) and (2) the set of selected songs is small
enough to cover in a single semester. This task is an instance of the represen-
tative selection problem. Similar challenges often arise in tasks related to data
summarization and modeling. For instance, finding a characteristic subset
of Facebook profiles out of a large set, or a subset of representative news
articles from the entire set of news information gathered during a single day
from many different sources.
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808 E. Liebman et al.

On its surface, representative selection is quite similar to clustering, a
more widely studied problem in unsupervised learning. Clustering is one
of the most widespread tools for studying the structure of data. It has seen
extensive usage in countless research disciplines. The objective of clustering
is to partition a given dataset of samples into subsets so that samples within
the same subset are more similar to one another than samples belonging to
different subsets. Several surveys of clustering techniques can be found in
the literature (Jain, Murty, and Flynn 1999; Xu and Wunsch 2005).

The idea of reducing a full set to a smaller set of representatives has been
suggested before in specific contexts, such as clustering xml documents (De
Francesca et al. 2003) or dataset editing (Eick, Zeidat, and Vilalta 2004),
and more recently in visual (Hadi, Essannouni, and Thami 2006; Chu and
Lin 2008) and text summarization (Nenkova and McKeown 2012). It has
also been discussed as a general problem in Wang et al. (2013). These recur-
ring notions can be formalized as follows. Given a large set of examples, we
seek a minimal subset that is rich enough to encapsulate the entire set, thus
achieving two competing criteria—maintaining a representative set as small
as possible while satisfying the constraint that all samples are within δ from
some representative. In the next subsections we define this problem in more
exact terms and motivate the need for such an approach.

Although certainly related, clustering and representative selection are
not the same problem. A seemingly good cluster might not necessarily con-
tain a natural single representative, and a seemingly good partitioning might
not induce a good set of representatives. For this reason, traditional cluster-
ing techniques are not necessarily well suited for representative selection.
We expand on this notion in the next sections.

Representative Selection: Problem Definition

Let S be a dataset, d : S × S → R
+ be a distance measure (not necessarily

a metric), and δ be a distance threshold below which samples are considered
sufficiently similar. We are tasked with finding a representative subset C ⊂ S
that best encapsulates the data. We impose the following two requirements
on any algorithm for finding a representative subset:

– Requirement 1: The algorithm must return a subset C ⊂ S such that for
any sample x ∈ S, there exists a sample c ∈ C satisfying d(x, c) ≤ δ.

– Requirement 2: The algorithm cannot rely on a metric representation of
the samples in S.

To compare the quality of different subsets returned by different algorithms,
we measure the quality of encapsulation by two criteria:
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Representative Selection in Nonmetric Datasets 809

– Criterion 1: |C |—we seek the smallest possible subset C that satisfies
Requirement 1.

– Criterion 2: We would also like the representative set to best fit the data
on average. Given representative subsets of equal size, we prefer the one
that minimizes the average distance of samples from their respective
representatives.

Criteria 1 and 2 are applied on a representative set solution. In addition, we
expect the following desiderata for a representative selection algorithm.

– Desideratum 1: We prefer representative selection algorithms that are
stable. Let C1 and C2 be different representative subsets for dataset S
obtained by two different runs of the same algorithm. Stability is defined
as the overlap |C1∩C2|

|C1∪C2| . The higher the expected overlap is, the more sta-
ble the algorithm is. This desideratum ensures that the representative set
is robust to randomization in data ordering or the choices made by the
algorithm.

– Desideratum 2: We would like the algorithm to be efficient and to scale
well for large datasets.

Though not crucial for correctness, the first desideratum is useful for con-
sistency and repeatability. We further motivate the reason for Desideratum 1
in Appendix B, and show that it is reasonably attainable.

The representative selection problem is similar to the ε-covering number
problem in metric spaces (Zhang 2002). The ε-covering number measures
how many small spherical balls would be needed to completely cover (with
overlap) a given space. The main difference is that in our case we also wish
the representative set to closely fit the data (Criterion 2). Criteria 1 and 2 are
competing goals, because larger representative sets allow for lower average
distance. In this article we focus primarily on Criterion 1, using Criterion 2
as a secondary evaluation criterion.

Testbed Applications

Representative selection is useful in many contexts, particularly when
the full dataset is either redundant (due to many near-identical samples) or
when using all samples is impractical. For instance, given a large document
and a satisfactory measure of similarity between sentences, text summa-
rization (Mani and Maybury 1999) could be framed as a representative
selection task—obtain a subset of sentences that best captures the nature of
the document. Similarly, one could map this problem to extracting “visual
words” or representative frames from visual input (Yuan, Wu, and Yang 2007;
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810 E. Liebman et al.

Mayol and Murray 2005). This work examines two concrete cases in which
representatives are needed:

– Music analysis—the last decade has seen a rise in the computational anal-
ysis of music databases for music information retrieval (Casey et al. 2008),
recommender systems (Lamere 2008), and computational musicology
(Cook 2004). A problem of interest in these contexts is to extract short
representative musical segments that best represent the overall character
of the piece (or piece set). This procedure is in many ways analogous to
text summarization.

– Team strategy/behavior analysis—opponent modeling has been discussed
in several contexts, including game playing (Billings et al. 1998), real-time
agent tracking (Tambe 1995), and general multiagent settings (Carmel
and Markovitch 1996). Given a large dataset of recorded behaviors, one
may benefit from reducing this large set into a smaller collection of proto-
types. In the results section, we consider this problem as a second testbed
domain.

What makes both these domains appropriate as testbeds is that they are
realistically rich and induce complex, nonmetric distance relations between
samples.

The structure of this article is as follows. In the following section we pro-
vide a more extensive context to the problem of representative selection and
discuss why existing approaches might not be suitable. In

“The δ -Medoids Algorithm,” we introduce δ-medoids, an algorithm
specifically designed to tackle the problem as we formally defined it. In
“Analysis Summary,” we show some theoretical analysis of the suggested algo-
rithm, and in “Empirical Results” we show its empirical performance in the
testbed domains described above. “Summary and Discussion” follow.

BACKGROUND AND RELATED WORK

There are several existing classes of algorithms that solve problems
related to representative selection. This section reviews them and discusses
the extent to which they are (or are not) applicable to our problem.

Limitations of Traditional Clustering

Given the prevalence of clustering algorithms, it is tempting to solve
representative selection by clustering the data and using cluster centers (if
they are in the set) as representatives, or the closest point to each center. In
some cases it might even seem sufficient, once the data is clustered, to select
samples chosen at random from each cluster as representatives. However,
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Representative Selection in Nonmetric Datasets 811

FIGURE 1 Clustering vs. representative selection. (a) When applying k-medoids, k = 77 clusters
are required to satisfy the distance condition. (b) A better representative set does so with only 13
representatives.

such an approach usually considers only the average distance between rep-
resentatives and samples, and it is unlikely to yield good results with respect
to any other requirement, such as minimizing the worst case distance or
maintaining the smallest set possible. Moreover, the task of determining
the desirable number of clusters k for a sufficient representation can be a
difficult challenge in itself.

Consider the example in Figure 1: given a set of |S| = 100 points and a
distance measure (in this case, the Euclidean distance metric), we seek a set
of representatives that is within distance 1 of every point in the set, thus satis-
fying Criterion 1 with δ = 1. Applying a standard clustering approach on this
set, the distance constraint is only consistently met when k ≥ 77 (and rarely
with less than 70 samples). Intuitively, a large number of clusters is required
to ensure that no sample is farther than δ from a centroid. However, we
can obtain the same coverage goal with only 13 samples. Defining a distance
criterion rather than a desired number of clusters has a subtle but crucial
impact on the problem definition.

Clustering and Spatial Representation

The above limitation of clustering applies even when the data can be
embedded as coordinates in some n-dimensional vector space. However, in
many cases, including our motivating domain of music analysis, the data
does not naturally fit in such a space. This constraint renders many com-
mon clustering techniques inapplicable, including the canonical k-means
(MacQueen et al. 1967), or more recent works such as Wang et al. (2013).
Furthermore, the distance function we construct (detecting both local and
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812 E. Liebman et al.

global similarities) is not a metric, because it violates the triangle inequality.
Because of this property, methods reliant on a distance metric are also
inapplicable. Among such methods are neighbor-joining (Saitou and Nei
1987), which becomes unreliable when applied on nonmetric data, or the
k-prototypes algorithm (Azran and Ghahramani 2006).1

Nevertheless, certain clustering algorithms still apply, such as the k-
medoids algorithm, hierarchical clustering (Sibson 1973), and spectral
clustering (Von Luxburg 2007). These methods can be employed directly
on a pairwise (symmetric) similarity matrix,2 whereas, satisfying the triangle
inequality is not a requirement.

The k-Medoids Algorithm

The k-medoids algorithm (Rousseeuw and Kaufman 1990) is a variation
on the classic k-means algorithm that selects only centers from the original
dataset, and is applicable to data organized as a pairwise distance matrix. The
algorithm partitions a set of samples to a predetermined number k based
on the distance matrix. Similarly to the k-means algorithm, it does so by
starting with k random centers, partitioning the data around them, and iter-
atively moving the k centers toward the medoids of each cluster (a medoid
is defined as medoidS = argmin

s∈S

∑
x∈S d(x, s)).

All of the approaches mentioned so far are specifically designed for
dividing the data into a fixed number of partitions. In contrast, represen-
tative selection defines a distance (or coverage) criterion δ, rather than a
predetermined number of clusters k. In that respect, k-medoids, or spectral
and hierarchical clustering, force us to search for a partition that satisfies this
distance criterion. Applying a clustering algorithm to representative selec-
tion requires an outer loop to search for an appropriate k, a process that can
be quite expensive.

We note that, traditionally, both hierarchical methods and spectral clus-
tering require the full pairwise distance matrix. If the sample set S is large
(the usual use case for representative selection), computing a pairwise
|S| × |S| distance matrix can be prohibitively expensive. In the case of spec-
tral clustering, an efficient algorithm that does not compute the full distance
matrix exists (Shu et al. 2011), but it relies on a vector space representa-
tion of the data, rendering it inapplicable in our case.3 The algorithm we
introduce in this article does not require a distance metric, nor does it rely

1In certain contexts, metric learning (Xing et al. 2002; Davis et al. 2007) can be applied, but current
methods are not well suited for data without vector space representation, and in some sense, learning
a metric is of lesser interest for representative selection, because we care less about classification or the
structural relations latent in the data.

2For spectral clustering, the requirement is actually an affinity (or proximity) matrix.
3In some cases, the distance matrix can be made sparse via KD-trees and nearest-neighbor

approximations, which also require a metric embedding (Chen et al. 2011).
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Representative Selection in Nonmetric Datasets 813

on such a spatial embedding of the data, which makes it useful even in
cases when very little is known about the samples beyond some proximity
relation.

Algorithm 1. Extended Greedy K-Centers Approach (farthest first traversal)

1: Input: data sampleSet = x0 . . . xm , required distance δ

2: choose random starting representative xi
3: representativeSet = {xi}
4: sampleSet = x0 . . . xi−1, xi+1 . . . xm
5: maximalDist = maxs∈sampleSet d(s, representativeSet)
6: while maximalDist > δ do
7: maximalElement = argmaxs∈sampleSet d(s, representativesSet)
8: representativeSet = representativeSet ∪ {maximalElement}
9: sampleSet = representativeSet/{maximalElement}

10: maximalDist = maxs∈sampleSet d(s, representativeSet)
11: end while

k-Centers Approach

A different, yet related, topic in clustering and graph theory is the k-
centers problem. Let the distance between a sample s and a set C be:
d(s, C) = minc∈Cd(s, c). The k-centers problem is defined as follows: Given
a set S and a number k, find a subset R ⊂ S, |R| = k so that maxs∈Sd(s, R) is
minimal (Hochbaum and Shmoys 1985).

In metric spaces, an efficient two-approximation algorithm for this prob-
lem exists as follows.4 First choose a random representative. Then, for k − 1
times, add the element farthest away from the representative set R to R . This
approach can be directly extended to suit representative selection—instead
of repeating the addition step k − 1 times, we can continue adding elements
to the representative set until no sample is > δ away from any representative
(see Algorithm 1).

Although this algorithm produces a legal representative set, it ignores
Criterion 2 (average distance).

Another algorithm that is related to this problem is Gonzales’ approx-
imation algorithm for minimizing the maximal cluster diameter (Gonzalez
1985), which iteratively takes elements out of existing clusters to generate
new clusters based on the intercluster distance. This algorithm is applicable
in our setting because it, too, requires out pairwise distances and can
produce a legal coverage by partitioning the data into an increasing number
of clusters until the maximal diameter is less than δ (at which point any

4We note that no better approximation scheme is possible under standard complexity theoretic
assumptions (Hochbaum and Shmoys 1985).
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814 E. Liebman et al.

sample within a cluster covers it). This approach is wasteful for the pur-
pose of representative selection, because it forces a much larger number
of representatives than needed.

Finally, in a recent, strongly related study(Elhamifar, Sapiro, and Vidal
2012), the authors consider a similar problem of selecting exemplars in
data to speed up learning. They do not pose hard constraints on the max-
imal distance between exemplars and samples but rather frame this task
as an optimization problem, softly associating each sample with a “likeli-
hood to represent” any other sample, and trying to minimize the aggregated
coverage distance while also minimizing the norm of the representation
likelihood matrix. Though very interesting, it’s difficult to enable this
method to guarantee a desired minimal distance, and the soft association
of representatives to samples is inadequate for our purposes.

THE δ-MEDOIDS ALGORITHM

In this section, we present the novel δ-medoids algorithm, specifically
designed to solve the representative selection problem. The algorithm does
not assume a metric or a spatial representation; rather it relies solely on
the existence of some (not necessarily symmetric) distance or dissimilarity
measure d : S × S → R

+. Similarly to the k-centers solution approach, the
δ-medoids approach seeks to directly find samples that sufficiently cover the
full dataset. The algorithm does so by iteratively scanning the dataset and
adding representatives if they are sufficiently different from the current set.
As it scans, the algorithm associates a cluster with each representative, com-
prising the samples it represents. Then, the algorithm refines the selected
list of representatives in order to reduce the average coverage distance. This
procedure is repeated until the algorithm reaches convergence. Thus, we
address both minimality (Criterion 1) and average-distance considerations
(Criterion 2). We show in “Empirical Results” that this algorithm achieves
its goal efficiently in two concrete problem domains, and does so directly,
without the need to optimize a metaparameter k.

We first introduce a simpler, single-iteration δ-representative selection
algorithm on which the full δ-medoids algorithm is based.

Straightforward δ-Representative Selection

Let us consider a more straightforward “one-shot” representative selec-
tion algorithm that meets the δ-distance criterion. The algorithm sweeps
through the elements of S and collects a new representative each time it
observes a sufficiently “new” element. Such an element needs to be > δ

away from any previously collected representative. The pseudocode for this
algorithm is presented in Algorithm 2.
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Representative Selection in Nonmetric Datasets 815

Algorithm 2. One-shot δ-representatives selection algorithm

1: Input: data x0 . . . xm , required distance δ

2: Initialize representatives = ∅.
3: Initialize clusters = ∅
4: representative assignment subroutine, RepAssign, lines 5–22:
5: for i = 0 to m do
6: Initialize dist = ∞
7: Initialize representative = null
8: for rep in representatives do
9: if d(xi, rep) ≤ dist then

10: representative = rep
11: dist = d (xi, rep)
12: end if
13: end for
14: if dist ≤ δ then
15: add xi to clusterrepresentative
16: else
17: representative = xi
18: Initialize clusterrepresentative = ∅
19: add xi to clusterrepresentative
20: add clusterrepresentative to clusters
21: end if
22: end for

Although this straightforward approach works well in the sense that it
does produce a legal representative set, it is sensitive to scan order, therefore
violating the desired stability property. More importantly, it does not address
the average distance criterion. For these reasons, we extend this algorithm
into an iterative one, a hybrid of sorts between direct representative selection
and expectation-maximization (EM) clustering approaches.

The Full δ-Medoids Algorithm

This algorithm is based on the straightforward approach, as described
in previously. However, unlike Algorithm 2, it repeatedly iterates through
the samples. In each iteration, the algorithm associates each sample to a
representative so that it is never ≥ δ away from some representative (the
RepAssign subroutine, see Algorithm 3), just as in Algorithm 2. The main
difference is that at the end of each iteration it subsequently finds a closer-
fitting representative for each cluster S associated with representative s.
Concretely, representativeS = medoidS = argmin

sÎS

∑
x∈S d(x, s) (lines 8–13),

under the constraint that no sample ∈ S is farther than δ from medoidS. This step
ensures that a representative is “best-fit” on average to the cluster of sam-
ples it represents, without sacrificing coverage. In other words, while trying
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816 E. Liebman et al.

to minimize the size of the representative set, the algorithm also addresses
Criterion 2—average distance as low as possible. This step also drastically
improves the stability of the retrieved representative set under different
permutations of the data (Desideratum 1). We note that by adding the con-
straint that new representatives must still cover the clusters from which they
were selected, we guarantee that the number of representatives k does not
increase after the first scan.

The process is repeated until δ-medoids reaches convergence, or until
we reach a representative set which is “good enough” (remember that at
the end of each cluster-association iteration we have a set that satisfies the
distance criterion). This algorithm uses a greedy heuristic that is indeed
ensured to converge to some local optimum (Theorem 1). This local opti-
mum is dependent on the value of δ and the structure of the data. In the
later subsection “NP-Hardness of the Representative Selection Problem,”
we show that solving the representative selection problem for a given δ is
NP-hard, and therefore heuristics are required.

Algorithm 3. The δ-medoid representative selection algorithm.

1: Input: data x0 . . . xm required distance δ

2: t = 0
3: initialize representativest=0 = ∅.
4: initialize clusters = ∅
5: repeat
6: t = t + 1
7: call RepAssign subroutine, lines 5–22 of Algorithm 2
8: initialize representativest = ∅
9: for cluster in clusters do

10: representative = argmin
s∈cluster

∑
x∈cluster d(x, s)s.t.∀x ∈ cluster .d(x, s) ≤ δ

11: add representative to representativest
12: end for
13: until representativest = representativest–1

Theorem 1. Algorithm 3 converges after a finite number of steps.
See Appendix A for proof sketch.

Merging Close Clusters

Because satisfying the distance constraint with a minimal set of repre-
sentatives (Criterion 1) is NP-hard (see “Analysis Summary”), the δ-medoids
algorithm is not guaranteed to do so. A simple optimization procedure
can reduce the number of representatives in certain cases. For instance, in
some cases, oversegmentation may ensue. To abate such an occurrence, it is
possible to iterate through representative pairs that are no more than δ apart
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Representative Selection in Nonmetric Datasets 817

to see whether joining their respective clusters could yield a new representa-
tive that covers all the samples in the joined clusters. If it is possible, the two
representatives are eliminated in favor of the new joint representative. The
process is repeated until no pair in the potential pair list can be merged.
This procedure can be generalized for larger representative group sizes,
depending on computational tractability. These refinement steps can be
taken after each iteration of the algorithm. If the number of representatives
is high, however, this approach might be computationally infeasible alto-
gether. Although this procedure was not required in our problem domains
(see “Empirical Results”), we believe it could still prove useful in certain
cases.

ANALYSIS SUMMARY

In this section, we present the hardness of the representative selection
problem, and briefly discuss the efficiency of the δ-medoids algorithm. We
show that the problem of finding a minimal representative set is NP-hard and
provide certain bounds on the performance of δ-medoids in metric spaces
with respect to representative set size and average distance. We continue to
show that approximating the representative selection problem is NP-hard
in nonmetric spaces, both in terms of the representative set size and with
respect to the maximal distance. For the sake of readability, we present full
details in Appendix D.

NP-Hardness of the Representative Selection Problem

Theorem 2. Satisfying Criterion 1 (minimal representative set) is NP-Hard.

Bounds on δ-Medoids in Metric Spaces

The δ-medoids algorithm is agnostic to the existence of metric space in
which the samples can be embedded. That said, it can work equally well in
cases when the data is metric (in Appendix C we demonstrate the perfor-
mance of the δ-medoids algorithm in a metric space test case). However, we
can show that if the measure that generates the pairwise distances is in fact
a metric, then certain bounds on performance exist.
Theorem 3. In a metric space, the average distance of a representative set |C | = k
obtained by the δ-medoids algorithm is bound by 2OPT where OPT is the maximal dis-
tance obtained by an optimal assignment of k representatives (with respect to maximal
distance).
Theorem 4. The size of the representative set returned by the δ-medoids algorithm, k,
is bound by k ≤ N

(
δ
2

)
where N (x) is the minimal number of representatives required

to satisfy distance criterion x.
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818 E. Liebman et al.

Hardness of Approximation of Representative Selection in

Nonmetric Spaces

In nonmetric spaces, the representative selection problem becomes
much harder. We now show that no c-approximation exists for the rep-
resentative selection problem either with respect to the first criterion
(representative set size) or the second criterion (distance—we focus on
maximal distance but a similar outcome for average distance is implied).
Theorem 5. No constant-factor approximation exists for the representative selection
set problem with respect to representative set size.
Theorem 6. For representative sets of optimal size k5 no constant-factor approxima-
tion exists with respect to the maximal distance between the optimal representative set
and the samples.

Efficiency of δ-Medoids

The actual runtime of the algorithm is largely dependent on the data
and the choice of δ. An important observation is that at each iteration, each
sample is compared only to the current representative set, and a sample is
introduced to the representative set only if it is >δ away from all other rep-
resentatives. After each iteration, the representatives induce a partition to
clusters and only those samples within the same cluster are compared to
one another. Whereas, in the worst case the runtime complexity of the algo-
rithm can be O(|S|2), in practice we can get considerably better runtime
performance, closer asymptotically to |S|1.5. We note that in each iteration
of the algorithm, after the partitioning phase (the RepAssign subroutine in
Algorithm 3) the algorithm maintains a legal representative set, so, in prac-
tice, we can halt the algorithm well before convergence, depending on need
and resources.

EMPIRICAL RESULTS

In this section, we analyze the performance of the δ-medoids algorithm
empirically in two problem domains—music analysis and agent movement
analysis. We show that δ-medoids does well on Criterion 1 (minimizing
the representative set) while obtaining a good solution for Criterion 2
(maintaining a low average distance). We compare our algorithm to three
alternative methods—k-medoids, the greedy k-center heuristic, and spectral
clustering (using cluster medoids as representatives; Shi and Malik 2000)
and show that our algorithm outperforms all three. We note that although
these methods weren’t necessarily designed to tackle the representative
selection problem, they, and clustering approaches in general, are used for

5In fact, this proof applies for any value of k that cannot be directly ma nipulated by the algorithm.
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Representative Selection in Nonmetric Datasets 819

such purposes in practice (see Hadi, Essannouni, and Thami (2006), for
instance). To obtain some measure of statistical significance, for each dataset
we analyze, we take a random subset of |S| = 5000 samples and use this sub-
set as input for the representative selection algorithm. We repeat this process
N = 20 times, averaging the results and obtaining standard errors. We show
that the δ-medoid algorithm produces representative sets at least as compact
as those produced by the k-centers approach, but obtains a much lower aver-
age distance. We further note it does so directly, without the need for first
optimizing the number of clusters k, unlike k-medoids or spectral clustering.

In Appendix C, we also demonstrate the performance of the algorithm
in a standard metric space, and show that it outperforms the other methods
in this setting as well.

Distance Measures

In both our problem domains, no simple or commonly accepted mea-
sure of distance between samples exists. For this reason, we devised a
distance function for each setting, based on domain knowledge and experi-
mentation. Feature selection and distance measure optimization are beyond
the scope of this work. For completeness, the full details of our distance
functions appear in Appendix E. We believe the results are not particularly
sensitive to the choice of a specific distance function, but we leave such
analysis to future work.

Setting 1—Musical Segments

In this setting, we wish to summarize a set of musical pieces. This domain
illustrates many of the motivations listed in the “Introduction.” The need
for good representative selection is driven by several tasks, including style
characterization, comparing different musical corpora (see Dubnov et al.
2003), and music classification by composer, genre, or period (Bergstra et
al. 2006).

For the purpose of this work we used the Music21 corpus, provided in
MusicXML format (Cuthbert and Ariza 2010). For simplicity, we focus on the
melodic content of the piece, which can be characterized as the variation of
pitch (or frequency) over time.

Data

We use 30 musical pieces: 10 representative pieces by Mozart, Beethoven,
and Haydn. The melodic lines in the pieces are isolated and segmented
using basic grouping principles adapted from Pearce, Müllensiefen, and
Wiggins (2008). In the segmentation process, short overlapping melodic
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820 E. Liebman et al.

FIGURE 2 Three musical segments as pitch (in MIDI format) over time, along with the musical notation
of the first segment (1stViolinSeg).

sequences 5–8 beats long are generated. For example, three such segments
are plotted in Figure 2 as pitch variation over time. For each movement
and each instrument, segmentation results in 55–518 segments. All in all, we
obtain 20,000–40,000 segments per composer.

Distance Measure

We devise a fairly complex distance measure between any two musical
segments S1 and S2. Several factors are taken into account:

– Global alignment—the global alignment score between the two segments,
calculated using the Needleman–Wunsch algorithm (Needleman and
Wunsch 1970).

– Local alignment—the local alignment score between the two segments,
calculated using the Smith–Waterman algorithm (Smith and Waterman
1981). Local alignment is useful if two sequences are different overall but
share a meaningful subsequence.

– Rhythmic overlap, interval overlap, step overlap, pitch overlap—the extent
to which one-step melodic and rhythmic patterns in the two segments
overlap, using a “bag”-like distance function dset(A1, A2) = |A1 � A2|

|A1 ∪ A2| .

The different factors are then weighted and combined. This measure was
chosen because similarity between sequences is multifaceted, and the differ-
ent factors capture different aspects of similarity, such as sharing a general
contour (global alignment), a common motif (local alignment), or a similar
“musical vocabulary” (the other factors, each of which, by themselves, cap-
ture a different aspect of musical language). The result is a measure but not
a metric because local alignment may violate the triangle inequality.
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Representative Selection in Nonmetric Datasets 821

Results

We compare δ-medoids to the k-medoids algorithm and the greedy k-
center heuristic for five different δ values. The results are presented in Figure
3. For each composer and δ, we searched exhaustively for the lowest k value
for which k-medoids met the distance requirement. We study both the size
of the representative set obtained and the average sample-representative
distance.

From the representative set size perspective, for all choices of δ, the δ-
medoids algorithm obtains better coverage of the data compared to the
k-medoids, and does at least as well (and most often better) compared
to the greedy k-centers heuristic. However, in terms of average distance,
δ-medoids performs much better compared to the k-centers heuristic, imply-
ing that the δ-medoids algorithm outperforms the other two. Although
spectral clustering seems to satisfy the distance criteria with a small repre-
sentative set for small values of δ, its noncentroid-based nature makes it less
suitable for representative selection, because a more lax δ criterion might
not necessarily mean a smaller representative set will be needed (as apparent
from the result). Indeed, as the value of δ increases, the δ-medoids algorithm
significantly outperforms spectral clustering.

FIGURE 3 Representative set size percentage from entire set and average representative set distance for
three different composers, ten different pieces each, and five different distance criteria. Each column
represents data for a different composer; δ-medoids yields the most compact representative set overall
while still obtaining a smaller average distance than the k-centers heuristic.
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822 E. Liebman et al.

FIGURE 4 The RoboCup 2D Simulation. Three potential movement trajectories for a specific agents are
marked.

Setting 2—Agent Movement in Robot Soccer Simulation

As described earlier, analyzing agent behavior can be of interest in
several domains. The robot world-cup soccer competition (RoboCup) is a
well-established problem domain for AI in general (Kitano et al. 1997). In
this work, we chose to focus on the RoboCup 2D Simulation League. We
have collected game data from several full games from the past two Robocup
competitions. An example for the gameplay setting and potential movement
trajectories can be seen in Figure 4.

Our purpose is to extract segments that best represent agent move-
ment patterns throughout gameplay. In the specific context of the Robocup
simulation league, there are several tasks that motivate representative selec-
tion, including agent and team characterization, and learning training
trajectories for optimization.

Data

Using simulation log data, we extract the movement of the 22 agents
over the course of the game (#timesteps = 6000). The agents move in
two-dimensional space (three example trajectories can be seen in Figure 5).
We extract 1-second (10 timestamps) long, partially overlapping segments
from the full game trajectories of all the agents on the field except the goal-
keeper, who tends to move less frequently and in a more confined space and
for the purpose of this task is of lesser interest. That leads to 900 · 20 =
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Representative Selection in Nonmetric Datasets 823

FIGURE 5 Representative set size percentage from entire set for four different teams, five different
game logs each, and five distance criteria. Each column represents game data for a different team. Axes
denoting distance are in log-scale.

18,000 movement segments in total per game. We analyzed four teams and
five games (90,000 segments) per team.

Distance Measure

Given two trajectories, one can compare them as contours in two-
dimensional space. We take an alignment-based approach, with edit costs
being the RMS distance between them. Our distance measure comprises
three elements: global and local alignment (same as in music analysis),
and a “bag of words”-style distance based on patterns of movement-and-turn
sequences (turning is quantized into six angle bins). As in music analysis,
the reason for this approach is that similarity in motion is difficult to define,
and we believe each feature captures different aspects of similarity. As in the
previous setting, this is not a metric, because local alignment could violate
the triangle inequality.

Results

As in the previous setting, we compare δ-medoids to the k-medoids
algorithm as well as the greedy k-center heuristic, for five different game
logs and five different δ values. The results are presented in Figure 5. As
before, for each δ, we searched exhaustively for the optimal choice of k
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824 E. Liebman et al.

in k-medoids. The results reinforce the conclusions reached in the previ-
ous domain—for all choices of δ, we meet the distance requirement using
a much smaller representative set compared to the k-medoids and spectral
clustering approaches (which does much worse in this domain compared to
the previous one). Furthermore, δ-medoids once again does at least as well
as the k-centers heuristic. In terms of average distance, our algorithm per-
forms much better compared to the k-centers heuristic, suggesting that the
δ-medoids algorithm generally outperforms the other approaches.

Stability of the δ-Medoids Algorithm

In this section we establish that, indeed, the δ-medoids algorithm is
robust with respect to scan order (satisfying Desideratum 1). To test stability,
we ran δ-medoids, k-medoids, the k-center heuristic, and spectral clustering
multiple times on a large collection of datasets, reshuffling the input order
on each iteration, and examined how well preserved the representative set
was across iterations and methods. Our analysis indicated that the first three
algorithms consistently obtain > 90% average overlap, and the level of sta-
bility observed is almost identical. Spectral clustering yields drastically less
stable representative sets. For a more complete description of these results
see Appendix B.

SUMMARY AND DISCUSSION

In this article, we present a novel heuristic algorithm to solve the rep-
resentative selection problem: finding the smallest possible representative
subset that best fits the data under the constraint that no sample in the data
is more than a predetermined parameter δ away from some representative.
We introduce the novel δ-medoids algorithm and show that it outperforms
other approaches that are concerned only with either best fitting the data
into a given number of clusters, or minimizing the maximal distance.

There is a subtle yet significant impact to focusing on a maximal distance
criterion δ rather than choosing the number of clusters k. Although both
δ-medoids and k-medoids aim to minimize the sum of distances between
representatives and the full set, k-medoids does so with no regard to any
individual distance. Because of this, we need to increase the value of k dras-
tically in order to guarantee that our distance criterion is met and that
sparse regions of our sample set are sufficiently represented. This results in
overrepresentation of dense regions in our sample set. By carefully balanc-
ing between minimality under the distance constraint and average distance
minimization, the δ-medoids algorithm adjusts the representation density
adaptively, based on the sample set, without any prior assumptions.
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Representative Selection in Nonmetric Datasets 825

Although this study establishes δ-medoids as a leading algorithm for rep-
resentative selection, we believe that more sophisticated algorithms can be
developed to handle different variations of this problem, putting different
emphasis on the minimality requirement for the representative set versus
how well the set fits the data. Depending on the specific nature of the
task for which the representatives are needed, different trade-offs might be
most appropriate and lead to algorithmic variations. For instance, an exten-
sion of interest could be to modify the value of δ adaptively, depending of
the density of sample neighborhoods. However, we show that δ-medoids is
a promising approach to the general problem of efficient representative
selection.

FUNDING

This work has taken place in the Learning Agents Research Group
(LARG) at the Artificial Intelligence Laboratory, The University of Texas
at Austin. LARG research is supported in part by grants from the National
Science Foundation (CNS-1330072, CNS-1305287), ONR (21C184-01),
AFRL (FA8750-14-1-0070), AFOSR (FA9550-14-1-0087), and Yujin Robot.

REFERENCES

Azran, A., and Z. Ghahramani. 2006. A new approach to data driven clustering. In Proceedings of the 23rd
international conference on machine learning , 57–64. Pittsburgh, PA: ACM.

Bergstra, J., N. Casagrande, D. Erhan, D. Eck, and B. Kégl. 2006. Aggregate features and ADABOOST for
music classification. Machine Learning 65 (2–3):473–84. doi:10.1007/s10994-006-9019-7.

Billings, D., D. Papp, J. Schaeffer, and D. Szafron. 1998. Opponent modeling in poker. Proceedings of
the National Conference on Artificial Intelligence, 493–99. July 26–30, 1998, Madison, WI.

Carmel, D., and S. Markovitch. 1996. Opponent modeling in multi-agent systems. In Adaption and learning
in multi-agent systems, 40–52. Berlin Heidelberg: Springer.

Casey, M. A., R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. 2008. Content-based music
information retrieval: Current directions and future challenges. Proceedings of the IEEE 96 (4):668–
96. doi:10.1109/JPROC.2008.916370.

Chen, W.-Y., Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. 2011. Parallel spectral clustering in distributed
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 33 (3):568–86. doi:10.1109/
TPAMI.2010.88.

Chu, W.-T., and C.-H. Lin. 2008. Automatic selection of representative photo and smart thumbnailing
using near-duplicate detection. In Proceedings of the 16th ACM international conference on multimedia,
829–32. New York, NY: ACM.

Clarke, E. and N. Cook. (eds.). 2004. Computational and comparative musicology. In Empirical musicology:
Aims, methods, prospects, 103–26. Oxford: Oxford University Press.

Cuthbert, M. S., and C. Ariza. 2010. Music21: A toolkit for computer-aided musicology and symbolic music
data. International Society for Music Information Retrieval Conference (ISMIR 2010). Utrecht, The
Netherlands.

Davis, J. V., B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. 2007. Information-theoretic metric learning. In
Proceedings of the 24th international conference on machine learning , 209–16. New York, NY: ACM.

De Francesca, F., G. Gordano, R. Ortale, and A. Tagarelli. 2003. Distance-based clustering of xml
documents. ECML/PKDD 3:75–78.

D
ow

nl
oa

de
d 

by
 [

75
.1

3.
93

.2
18

] 
at

 1
8:

03
 1

2 
O

ct
ob

er
 2

01
5 

http://dx.doi.org/10.1007/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}s10994-006-9019-7
http://dx.doi.org/10.1109/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}JPROC.2008.916370
http://dx.doi.org/10.1109/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}TPAMI.2010.88
http://dx.doi.org/10.1007/s10994-006-9019-7
http://dx.doi.org/10.1109/JPROC.2008.916370


826 E. Liebman et al.

Dubnov, S., G. Assayag, O. Lartillot, and G. Bejerano. 2003. Using machine-learning methods for musical
style modeling. Computer 36 (10):73–80. doi:10.1109/MC.2003.1236474.

Eick, C. F., N. Zeidat, and R. Vilalta. 2004. Using representative-based clustering for nearest neighbor
dataset editing. Fourth IEEE International Conference on Data Mining, 2004. ICDM’04, 375–78.
IEEE. November 1–4, 2004, Brighton, UK.

Elhamifar, E., G. Sapiro, and R. Vidal. 2012. Finding exemplars from pairwise dissimilarities via simul-
taneous sparse recovery. In Proceedings of Advances in neural information processing systems, 19–27.
December 3–8, 2012, Harrahs and Harveys, Lake Tahoe, CA.

Garey, M. R., and D. S. Johnson. 1979. Computers and intractability: A guide to the theory of np-completeness.
San Francisco, CA: WH Freeman & Co.

Gonzalez, T. F. 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science 38:293–306. doi:10.1016/0304-3975(85)90224-5.

Hadi, Y., F. Essannouni, and R. O. H. Thami. 2006. Video summarization by k-medoid clustering. In
Proceedings of the 2006 ACM symposium on applied computing , 1400–01. New York, NY: ACM.

Hochbaum, D. S., and D. B. Shmoys. 1985. A best possible heuristic for the k-center problem. Mathematics
of Operations Research 10 (2):180–84. doi:10.1287/moor.10.2.180.

Hochbaum, D. S., and D. B. Shmoys. 1986. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM (JACM) 33 (3):533–50. doi:10.1145/5925.5933.

Jain, A. K., M. N. Murty, and P. J. Flynn. 1999. Data clustering: A review. ACM Computing Surveys (CSUR)
31 (3):264–323. doi:10.1145/331499.331504.

Karp, R. M. 1972. Reducibility among combinatorial problems. Springer US.
Kaufman, L. and P. J. Rousseeuw. 1990. Finding groups in data: An introduction to cluster analysis. New York,

NY: John Wiley & Sons.
Kitano, H. et al. 1998. The robocup synthetic agent challenge 97. RoboCup-97: Robot Soccer World Cup

I, 62–73. Berlin Heidelberg: Springer.
Lamere, P. 2008. Social tagging and music information retrieval. Journal of New Music Research 37 (2):101–

14. doi:10.1080/09298210802479284.
MacQueen, J., et al. 1967. Some methods for classification and analysis of multivariate observations.

Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, 14.
California, USA.

Mani, I., and M. T. Maybury. 1999. Advances in automatic text summarization. Cambridge, MA: MIT press.
Mayol, W. W., and D. W. Murray. 2005. Wearable hand activity recognition for event summarization.

Proceedings of the Ninth IEEE International Symposium on Wearable Computers, 2005, 122–29.
Osaka, Japan: IEEE.

Needleman, S. B., and C. D. Wunsch. 1970. A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology 48 (3):443–53. doi:10.1016/
0022-2836(70)90057-4.

Nenkova, A., and K. McKeown. 2012. A survey of text summarization techniques. In Mining Text Data,
eds. C. C. Aggarwal and C. Zhai, 43–76. Springer US.

Pearce, M. T., D. Müllensiefen, and G. A. Wiggins. 2008. A comparison of statistical and rule-based
models of melodic segmentation. Proceedings of the Ninth International Conference on Music
Information Retrieval, 89–94. Philadelphia, PA.

Raz, R., and S. Safra. 1997. A sub-constant error-probability low-degree test, and a sub-constant error-
probability pcp characterization of np. In Proceedings of the twenty-ninth annual ACM symposium on
theory of computing , 475–84. New York, NY: ACM.

Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phyloge-
netic trees. Molecular Biology and Evolution 4 (4):406–25.

Shi, J., and J. Malik. 2000. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22 (8):888–905. doi:10.1109/34.868688.

Shu, L., A. Chen, M. Xiong, and W. Meng. 2011. Efficient spectral neighborhood blocking for entity
resolution. In 2011 IEEE 27th international conference on data engineering (ICDE), 1067–78. IEEE.

Sibson, R. 1973. Slink: An optimally efficient algorithm for the single-link cluster method. The Computer
Journal 16 (1):30–34. doi:10.1093/comjnl/16.1.30.

Smith, T. F., and M. S. Waterman. 1981. Identification of common molecular subsequences. Journal of
Molecular Biology 147 (1):195–97 . doi:10.1016/0022-2836(81)90087-5.

D
ow

nl
oa

de
d 

by
 [

75
.1

3.
93

.2
18

] 
at

 1
8:

03
 1

2 
O

ct
ob

er
 2

01
5 

http://dx.doi.org/10.1109/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}MC.2003.1236474
http://dx.doi.org/10.1016/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}0304-3975(85)90224-5
http://dx.doi.org/10.1287/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}moor.10.2.180
http://dx.doi.org/10.1145/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}5925.5933
http://dx.doi.org/10.1145/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}331499.331504
http://dx.doi.org/10.1080/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}09298210802479284
http://dx.doi.org/10.1016/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}0022-2836(70)90057-4
http://dx.doi.org/10.1109/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}34.868688
http://dx.doi.org/10.1093/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}comjnl/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}16.1.30
http://dx.doi.org/10.1016/\gdef yes{no}\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}\gdef \ \gdef \ {\ }\gdef no{no}\gdef yes{yes}{\penalty \z@ \gdef \ {\penalty \z@ }\gdef no{no}\gdef yes{yes}}0022-2836(81)90087-5
http://dx.doi.org/10.1109/MC.2003.1236474
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1287/moor.10.2.180
http://dx.doi.org/10.1145/5925.5933
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1080/09298210802479284
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1093/comjnl/16.1.30
http://dx.doi.org/10.1016/0022-2836(81)90087-5


Representative Selection in Nonmetric Datasets 827

Tambe, M. 1995. Recursive Agent and Agent-Group Tracking in a Real-Time Dynamic Environment.
Proceedings of the First International Conference on Multiagent Systems, June 12–14, 1995, San
Francisco, California, USA.

Von Luxburg, U. 2007. A tutorial on spectral clustering. Statistics and Computing 17 (4):395–416.
doi:10.1007/s11222-007-9033-z.

Wang, Y., S. Tang, F. Liang, Y. Zhang, and J. Li. 2013. Beyond kmedoids: Sparse model based medoids algo-
rithm for representative selection. In Advances in multimedia modeling , 239–50. Berlin Heidelberg:
Springer.

Xing, E. P., A. Y. Ng, M. I. Jordan, and S. Russell. 2002. Distance metric learning, with application to
clustering with side-information. Advances in Neural Information Processing Systems 15:505–12.

Xu, R., and D. Wunsch. 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks 16
(3):645–78. doi:10.1109/TNN.2005.845141.

Yuan, J., Y. Wu, and M. Yang. 2007. Discovery of collocation patterns: From visual words to visual phrases.
In IEEE conference on computer vision and pattern recognition, 2007. CVPR’07 , 1–8. IEEE.

Zhang, T. 2002. Covering number bounds of certain regularized linear function classes. The Journal of
Machine Learning Research 2:527–50.

APPENDICES

A. Proof of Convergence for the δ-Medoids Algorithm

In this section, we show that the full proof that the δ-medoids algorithm
converges in finite time.

Theorem 1. Algorithm 3 converges after a finite number of steps.

Proof Sketch: For any sample s let us denote its associated cluster repre-
sentative at iteration i Ci(s). Let us denote the distance between the sample
and its associated cluster representative as d(s, Ci(s)). Observe the overall
sum of distances from each point to its associated cluster representative,∑

s d(s, Ci(s)). Assume that after the ith round, we obtain a partition to k
clusters, C1...Ck. Our next step is to go over each cluster and reassign a rep-
resentative sample that minimizes the sum of distances from each point to
the representative of that cluster, argmin

s∈S

∑
x∈S d(x, s), under the constraints

that all samples within the cluster are still within δ distance of the repre-
sentative. Because this condition holds prior to the minimization phase, the
new representative must still either preserve or reduce the sum of distances
within the cluster.

We do this independently for each cluster. If the representatives
are unchanged, we have reached convergence and the algorithm stops.
Otherwise, the overall sum of distances is diminished. At the (i + 1)–ith
round, we reassign clusters for the samples. A sample can either remain
within the same cluster or move to a different cluster. If a sample remains in
the same cluster, its distance from its associated representative is unchanged.
However, if it moves to a different cluster it means that d(s, Ci(s)) >

d(s, Ci+1(s)), necessarily, so the overall sum of distances from associated
cluster representatives is reduced. Therefore, after each iteration either we
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reach convergence or the sum of distances is reduced. Because there is a
finite number of samples, there is a finite number of distance sums, which
implies that the algorithm must converge after a finite number of iterations.

B. Stability of δ-Medoids

In this section we establish that, indeed, the δ-medoids algorithm is
robust with respect to scan order (satisfying Desideratum 1 from the
“Introduction”). To test this issue, we generated a large collection (N =
1000) of datasets (randomly sampled from randomly generated multimodal
distributions). For each dataset in the collection, we ran the algorithm #repe-
titions = 100 times, each time reshuffling the input order. Next, we calculated
the average overlap between any two representative sets generated by this
procedure for the same dataset. We then calculated a histogram of average
overlap score over all the data inputs. Finally, we compared these stability
results to those obtained by the k-medoids algorithm (which randomizes
starting positions), the k-centers heuristic (which randomizes the starting
node), and spectral clustering (which uses k-means to partition the eigen-
vectors of the normalized Laplacian). Our analysis indicated that for the first
three algorithms, in more than 90% of the generated datasets, there was a
> 90% average overlap. The overlaps observed are almost exactly the same,
implying that the expected extent of overlap is dependent more on the struc-
ture of the data than on the type of randomization the algorithm employs.

FIGURE 6 The histograms (plotted as density functions, i.e., counts normalized as percentages) of the
average overlap between representative sets found for each method for the same data under different
permutations (overlap measured in %). For k-medoids, δ-medoids, and the k-centers heuristic, in more
than 90% of the datasets, there was a > 90% average overlap. Spectral clustering yields drastically less
consistent representation sets. The overlaps observed are almost exactly the same, implying that the
expected extent of overlap depends more on the structure of the data than on the type of randomization
the algorithm employs.
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Representative Selection in Nonmetric Datasets 829

This serves as evidence that δ-medoids is sufficiently stable, as desired. It
should be noted that spectral clustering yields drastically less-stable results
(ranging between 15% and 40% overlap), implying a heightened level of
stochasticity in the partitioning phase. A histogram indicating our results can
be found in Figure 6. One can see that our algorithm has virtually identical
stability compared to both k-medoids and the greedy k-center approaches
(which, as stated before, are not sensitive to scan order but contain other
types of randomization).

C. Performance of δ-Medoids in Metric Spaces

As we state in the article, though the δ-medoids algorithm is designed to
handle nonmetric settings, it can easily be used in metric cases as well. In this
section we compare the performance of the algorithm to the benchmark
methods used in the “Empirical Results” section. To generate a standard
metric setting, we consider a 10-dimensional metric space where samples are
drawn from a multivariate Gaussian distribution. We sample a 1000 samples
per experiment, 20 experiments per setting, with randomly chosen means
and variances. The results are presented in Figure 7.

As one might observe, the performance of the δ-medoids algorithm
relative to the other methods is qualitatively the same compared to the
nonmetric cases, despite the metric property of the data in this setting.

FIGURE 7 Representative set size percentage from entire set and average representative set distance
for four different multivariate Gaussian distributions from which the samples are drawn, 20 different
experiments each, and four different distribution values. Each column represents data for a different
distribution; δ-medoids yields the most compact representative set overall while still obtaining a smaller
average distance than the k-centers heuristic.
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830 E. Liebman et al.

D. Extended Analysis

In this section, we consider the hardness of the representative selection
problem, and discuss the efficiency of the δ-medoids algorithm.
D.1 NP-Hardness of the Representative Selection Problem

Theorem 2. Satisfying Criterion 1 (minimal representative set) is NP-Hard.

Proof Sketch: We show this via a reduction from the vertex cover problem.
Given a graph G = (V , E) we construct a distance matrix M of size |V | × |V |.
If two different vertices in the graph, vi , vj , i �= j, are connected, we set the
value of entries (i, j) and (j, i) in M to be δ − 1. Otherwise, we set the value
of the entry to δ + 1. Formally:

M(i, j) =
{

δ − 1 if (i, j) ∈ E
0 i = j

δ + 1 otherwise
.

This construction is polynomial in |V | and |E|. Let us assume we know how
to obtain the optimal representative set for δ in this case. Then, the repre-
sentative set Srep can be easily translated back to a vertex cover for graph G ;
simply choose all the vertices that correspond to members of the represen-
tative set. Every sample i in the sample set induced by M has to be within
δ range of some representative j, meaning that there is an equivalent edge
(i, j) ∈ E , which j covers. Because the representative set is minimal, the ver-
tex set is also guaranteed to be the minimal. Therefore, if we could solve
the representative selection problem efficiently, we could also solve the ver-
tex cover problem. Because the vertex cover is known to be NP-hard (Karp
1972), then so is representative selection.

D.2 Bounds on δ-Medoids in Metric Spaces

The δ-medoids algorithm is agnostic to the existence of metric space in
which the samples can be embedded. However, we can show that given that
the distance measure that generates the pairwise distances is in fact a metric,
certain bounds on performance ensue.

Theorem 3. In a metric space, the average distance of a representative set |C | = k
obtained by the δ-medoids algorithm is bound by 2OPT where OPT is the maximal dis-
tance obtained by an optimal assignment of k representatives (with respect to maximal
distance).

To prove this theorem, and the following one, we will first prove the
following helper lemma:

Lemma 1. In a metric space, the maximal distance of a representative set |C | =
k obtained by the one-shot δ-representative algorithm (Algorithm 2) is bound by
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2OPT where OPT is the maximal distance obtained by an optimal assignment of k
representatives (with respect to maximal distance).

Proof Sketch: Let |K | = k be the representatives set returned by Algorithm 2.
Let a∗ be the sample, which is the farthest of any points in the representative
set, and let that distance be δ∗. Consider the set K ∪ {a∗}. All k + 1 points in
this set must be of distance > δ∗ from one another—the algorithm would not
select representatives of distance ≤ δ from one another, and δ ≥ δ∗, whereas
a∗ is defined as being exactly δ∗ away from any point in K . Let us consider
the optimal assignment of k representatives, K ∗, and let OPT be the maximal
distance it achieves. By the pigeonhole principle, at least two samples in the
set K ∪ {a∗} must be associated with the same representative. Wlog, let us
call these samples x1 and x2, and k∗ ∈ K ∗ their associated representative.
Because the distance between x1 and x2 is greater than δ∗, and because this
is a metric space, by the triangle inequality, the distance of k∗ from either
cannot be smaller than δ∗

2 . Therefore δ∗ < 2OPT .

This implies that Algorithm 2 is asymptotically equivalent to the k-centers
farthest-first traversal heuristic with respect to maximal distance.

Now we can prove Theorem 3.

Proof Sketch: First, let us consider Algorithm 2 (one-shot δ-representatives)
on which the δ-medoids algorithm is based. By Lemma 1, the maximal dis-
tance obtained by it for a representative set of size k is < 2OPT , where OPT is
the maximal distance obtained by an optimal solution of size k (with respect
to maximal distance). The average distance obtained by Algorithm 2 cannot
be greater than the maximal distance, so the same bound holds the average
distance as well. Now let us consider the full δ-medoids algorithm—by defi-
nition, it can only reduce the average distance (while maintaining the same
representative set size). So the average distance obtained by the δ-medoids
algorithm must be bound by 2OPT as well.

Theorem 4. The size of the representative set returned by the δ-medoids algorithm, k,
is bound by k ≤ N

(
δ
2

)
where N (x) is the minimal number of representatives required

to satisfy distance criterion x.

Proof Sketch: By Lemma 1, the maximal distance obtained by it for a repre-
sentative set of size k is < 2OPT , where OPT is the maximal distance obtained
by an optimal solution of size k (with respect to maximal distance). Let N (δ)
be the covering number for the sample set and distance criterion δ; that is,
the smallest number of representative required so that no sample is farther
than δ from a representative. The size of the representative set returned by
the δ-medoids algorithm, is bound by k ≤ N

(
δ
2

)
. Because the full δ-medoids

algorithm (Algorithm 3) first runs Algorithm 2 and is guaranteed to never
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832 E. Liebman et al.

increase the size of the representative set size, the same bound holds for it
as well.
In Rd, the covering number N (ε) is bound by O

( 1
εd

)
. Given that N (δ) ≥ K ∗

where K ∗ is the optimal selection of representatives, this implies that the
solution returned by δ-medoids is bound by a factor of O(2d).

It is equivalent to the similar bound known for the k-center heuristic
(Hochbaum and Shmoys 1985, 1986).

D.3 Hardness of Approximation of Representative Selection in Nonmetric
Spaces

In nonmetric spaces, the representative selection problem becomes much
harder. We now show that no c-approximation exists for the representative
selection problem with respect to either the first criterion (representative set
size) or the second criterion (distance—we focus on maximal distance but a
similar outcome for average distance is implied).

Theorem 5. No constant-factor approximation exists for the representative selection
set problem with respect to representative set size.

Proof Sketch: We show this via a reduction from the set cover problem.
Given a set of n sets over |S| = s elements, we construct a graph G = (V , E)
containing |V | = s + n nodes—one node for each subset, and one node for
each element. The graph is fully connected (|E| = |V | × |V |). Let |N | = n
and |M | = s be the sets of nodes for subsets and elements, respectively. We
define the distance matrix between elements in the graph (i.e., weights on
the edges) to be as follows:

M(i, j) =
{

δ − 1 if i ∈ N and j ∈ M
0 if both i ∈ N and j ∈ M .
δ + 1 if i ∈ M

In other words, each node representing a subset is connected to itself and
the other subset nodes with an edge of weight 0, and to the respective node
of each element it comprises with an edge of weight δ − 1. Element nodes
are connected to all nodes with edges of weight δ + 1. This construction
takes polynomial time. Note that the distance of any element in N (rep-
resenting subsets) to itself is 0, and the distance of every element in M
to itself is δ + 1. Let us assume we have a c-approximating algorithm for
the representative selection problem with respect to representative set size.
Any solution obtained by this algorithm with parameter δ would also yield
a c-approximation for the set cover problem. Let us observe any result of
such an algorithm—it would not return any nodes representing elements
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(because they are > δ distant from any node in the graph, including them-
selves). The distance between any nodes representing subsets in the graph
is 0, so a single subset node is sufficient to cover all of N . Therefore,
the representative set will comprise only elements from N , which directly
cover elements in M . An optimal solution for the representative selection
algorithm will also serve as an optimal solution for the original set cover
problem, and vice versa (otherwise a contradiction ensues). Therefore, a
c-approximation (with respect to set size) for the representative selection
problem would also mean a c-approxmiation for the set cover problem.
However, it is known that no approximation better than clogn is possible
(Raz and Safra 1997). Therefore, a c-approximating algorithm for the rep-
resentative selection problem (with respect to set size) cannot be obtained
unless P = NP .

Theorem 6. For representative sets of optimal size k,6 no constant-factor approxima-
tion exists with respect to the maximal distance between the optimal representative set
and the samples.

Proof Sketch: We show this via a reduction from the dominating set problem.
Given a graph G = (V , E), a dominating set is defined as a subset V ∗ ⊂ V so
that every node v ∈ V that’s not in V ∗ is adjacent to at least one member of
V ∗. Finding the minimal dominating set is known to be NP-complete (Garey
and Johnson 1979).

Assume we are given a graph G and are required to find a minimal dominat-
ing set. Let us generate a new graph G ′ = (V , E ′), where V are the original
nodes of G and the graph is fully connected: |E| = |V | × |V |. The weights on
the edges are defined as follows:

M(i, j) =
{

δ − 1 if (i, j) ∈ E (orginal graph)
0 i = j
2 · c · (δ − 1) otherwise

.

This reduction is polynomial. Let us consider an optimal representative set
with parameter δ for G ′. Assume it is of size k. This would imply that there’s
a dominating set of size k, which is the minimal dominating set obtained
in graph G . This dominating set is minimal, otherwise the representative
selection set would not be optimal. Let us assume that we have an algorithm
for representative selection that’s c-approximating with respect to maximal
distance. If there is a dominating set of size k, it would imply a guarantee
of c · (δ − 1) on the maximal distance, implying that the algorithm would
behave the same as an optimal algorithm (because it cannot use edges of
weight 2 · c · (δ − 1)). For this reason, a c-maximum-distance approximation

6In fact, this proof applies for any value of k that cannot be directly manipulated by the algorithm.

D
ow

nl
oa

de
d 

by
 [

75
.1

3.
93

.2
18

] 
at

 1
8:

03
 1

2 
O

ct
ob

er
 2

01
5 



834 E. Liebman et al.

algorithm for the representative selection problem could be used to solve
the dominating set problem. Because this problem is NP-hard, it implies no
such approximation algorithm exists unless P = NP .

D.4 Efficiency of δ-Medoids

The actual runtime of the algorithm is largely dependent on the data and
the choice of δ. An important observation is that at each iteration, each
sample is compared only to the current representative set, and a sample
is introduced to the representative set only if it is > δ away from all other
representatives. After each iteration, the representatives induce a partition
to clusters and only samples within the same cluster are compared to one
another. A poor choice of δ, for instance δ < min{d(xi , xj)|xi , xj ∈ S} would
cause all the samples to be added to the representative set, resulting in a run-
time complexity of O(|S|2). In practice, however, because we compare only
from samples to representatives and within clusters, for reasonable cases, we
can get considerably better runtime performance. For instance, if the num-
ber of representatives is close to

√|S|, the complexity would be reduced to
|S|1.5, which results in a significant speed-up. Again, note that in each itera-
tion of the algorithm, after the partitioning phase (the RepAssign subroutine
in Algorithms 2 and 3) the algorithm maintains a legal representative set,
so in practice, we can halt the algorithm before convergence, depending on
need and resources.

E. Calculating the Distance Measures

In this section we describe in some detail how the distance measures we used
were computed, as well as some of the considerations that were involved in
their formulation.

E.1 Musical Segments Distance

Segment Information

Every segment is transposed to C. Then, the following information is
extracted from each segment:

– Pitch Sequence—the sequential representation of pitch frequency over
time.

– Pitch Bag—a “bag” containing all the pitches in the sequence, with
sensitivity to registration.

– Pitch Class Bag—a “bag” containing all the pitches in the sequence, without
sensitivity to registration.

– Rhythm Bag—a “bag” containing all rhythmic patterns in the sequence.
A rhythmic pattern is defined, for simplicity, as pairs of subsequent note
durations in the sequence.
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– Interval Bag—a “bag” containing all pitch intervals in the sequence.
– Step Bag—a “bag” containing all one-step pitch differences in the

sequence; this is similar to intervals, but it is sensitive to direction.

Segment Distance

We devise a fairly complex distance measure between any two musical
segments, seg1 and seg2. Several factors are taken into account:

– Global Alignment—the global alignment score between the two seg-
ments. This is calculated using the Needleman–Wunsch (Needleman and
Wunsch 1970) algorithm.

– Local Alignment—the local alignment score between the two segments.
This is calculated using the Smith–Waterman (Smith and Waterman 1981)
algorithm.

– Rhythmic Overlap—the extent to which one-step rhythmic patterns in the
two segments overlap.

– Interval Overlap—the extent to which one-step interval patterns in the two
segments overlap.

– Step Overlap—the extent to which melodic steps in the two segments
overlap.

– Pitch Overlap—the extent to which the pitch sets in the two segments
overlap. This measure is sensitive to registration.

– Pitch Class Overlap—the extent to which the pitch sets in the two segments
overlap. This measure is invariant to registration.

The two alignment measures are combined to a single alignment score. The
other measures were also combined to a separate score, which we name the
bag distance. The two scores were combined using the l2 norm as follows:

scorealignment = alignment2
global + 2 × alignment2

local.

scorebag = score2
rhythmic + score2

interval + score2
step + score2

pitch + score2
pitchClass.

distance =
√

10 × scorebag + scorealignment.

Substitution Function

For both the local alignment and the global alignment, we used a simple
exponentially attenuating function based on frequency distance to char-
acterize the likelihood for swaps between any two notes. The function is
defined as follows:
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836 E. Liebman et al.

cost(A, B) =
⎧⎨
⎩

1, |A − B| = 3rd
1, |A − B| = 5rd
1.3

|Pitchmid(A)−Pitchmid(B)|
4 , otherwise

.

The price of introducing gaps was fixed at 1.5.

Bag Distance

To get the bag distance score between two bags we use the calculation
|Bag1 � Bag2|
|Bag1 ∪ Bag2| .

Example

Two example segments are given in Figure 8 in musical notation and in
Figure 9 as midi pitch over time.

FIGURE 8 Two segments for example, in musical notation.

FIGURE 9 Same two segments, plotted as midi pitch over time.
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Representative Selection in Nonmetric Datasets 837

The local alignment distance for these two segments is 0.032. The global
alignment distance for these two segments is 1.5. The bag distance score
for these two segments is 2.03. The overall combined distance for these two
segments after weighting is 20.4.

E.2 Movement Segments Distance

Segment Information

Each segment comprises one agent’s (x, y) coordinates for 10 consecutive
timestamps. Then, each segment is translated to start from coordinates (0,
0), and rotated so that, for all segments, all players are facing the same
goal. In addition to maintaining the coordinate sequence, from each such
segment we extract a bag of movement-turn pairs, where the movement rep-
resents distance turns that are quantized into 6 angle bins: forward (−30
to +30 degrees), upper right (+30 to +90 degrees), lower right (+90 to
+150 degrees), backward (−150 to +150 degrees), lower left (−90 to −150
degrees), and upper left (−30 to −90 degrees). For instance, the coordi-
nate sequence (0, 0), (0, 10), (5, 10), (8, 14) induces two movement-turn
elements: 10+ upper-right turn, 5+ upper-left turn.

Segment Distance

Given two trajectories, one can compare them as contours in two-
dimensional space. We take an alignment-based approach, with edit step
costs being the RMS distance between them. Our distance measure com-
prises three elements:

– Global Alignment—The global alignment distance between the two tra-
jectories once initially aligned together (that is, originating from (0, 0)
coordinates), calculated by the Needleman–Wunsch algorithm.

– Local Alignment—The local alignment distance between the two trajecto-
ries, calculated by the Smith–Waterman Algorithm.

– Movement-Turn bag of words distance—we compare the bag distance of
movement-turn elements. We quantize distances into a resolution of 5
meters to account for variation.

– Overall �-distance and �-angle distance—We also consider the overall simi-
larity of the segments in terms of total distance traveled (and the direction
of the movement).

The scores are combined as follows:

scorealign = alignment2
global + 2.5 ∗ alignment2

local.

scoreOverall� = � − distance2 + (10 × � − angle)2.
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838 E. Liebman et al.

distance =
√

100 × scorebag + scorealign + scoreOverall�.

Substitution Function

To get the substitution cost for the two alignment algorithms, we simply use
the RMS distance between the two coordinates we are comparing. Given
two points P1 = (x1, y1) and P2 = (x2, y2), the distance is simply D(P1, P2) =√

(x1 − x2)2 + (y1 − y2)2. Gaps were greatly penalized with a penalty of 100
because gaps create discontinuous (and therefore physically impossible)
sequences.

Bag Distance

To get the bag distance score between two bags we use the calculation
|Bag1 � Bag2|
|Bag1∪Bag2| .

Example

Two example segments are given in Figure 10.
The local alignment distance for these two segments is 20. The global

alignment distance for these two segments is 192.7. The overall delta dis-
tance and angle score for these two segments is 61.66 The overall combined
distance for these two segments after weighting is 258.72.

FIGURE 10 Two movement segments. Each coordinate in the trajectory is labeled with its timestamp in
the trajectory ∈ [0...9]. Both segments begin with a long sprint toward one direction and then a sequence
of small steps in the opposite direction (scales are × 10).
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