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ABSTRACT
Reinforcement learning promises a generic method for adapt-
ing agents to arbitrary tasks in arbitrary stochastic environ-
ments, but applying it to new real-world problems remains
difficult, a few impressive success stories notwithstanding.
Most interesting agent-environment systems have large state
spaces, so performance depends crucially on efficient gener-
alization from a small amount of experience. Current al-
gorithms rely on model-free function approximation, which
estimates the long-term values of states and actions directly
from data and assumes that actions have similar values in
similar states. This paper proposes model-based function
approximation, which combines two forms of generalization
by assuming that in addition to having similar values in sim-
ilar states, actions also have similar effects. For one family of
generalization schemes known as averagers, computation of
an approximate value function from an approximate model
is shown to be equivalent to the computation of the exact
value function for a finite model derived from data. This
derivation both integrates two independent sources of gen-
eralization and permits the extension of model-based tech-
niques developed for finite problems. Preliminary experi-
ments with a novel algorithm, AMBI (Approximate Models
Based on Instances), demonstrate that this approach yields
faster learning on some standard benchmark problems than
many contemporary algorithms.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
dynamic programming

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Research into reinforcement learning (RL) [16] addresses

an extraordinarily general problem: how to learn good agent
behaviors in unknown stochastic environments. A typical
RL algorithm adapts to an arbitrary agent-environment sys-
tem by learning the optimal value function, which estimates
the cumulative reward possible from each system state for
each initial action. After learning, an agent can behave
optimally simply by always choosing an action that max-
imizes this function at the current state. In practical ap-
plications, the learning algorithm must rely on a relatively
small amount of data to compute an accurate value function
defined over a large (often infinite) state space. Generaliza-

tion thus plays a critical role in determining the effectiveness
of RL in the real world.

A large body of RL research studies the interaction be-
tween RL algorithms and function approximation, which
permits the finite representation of value functions defined
over infinite domains. Current RL function approximators
rely on the inductive bias that actions have similar values in
similar states. This paper proposes a model-based approach
that utilizes the additional inductive bias that actions have
similar effects in similar states. This approach is motivated
by the observation that in many practical applications, the
dynamics of the system affords more opportunities for gen-
eralization than the optimal value function. For example, in
robot navigation, a turn action may have the same immedi-
ate effect on the agent’s pose regardless of its state, but its
value depends on the action’s pose, environment, and goal.

Model-based reasoning has previously been applied to RL
in finite systems but the absence of efficient representations
for learned models of infinite stochastic systems has ham-
pered extensions to this setting. This paper shows how to
avoid reasoning with unwieldy infinite models by composing
certain forms of model approximation and function approx-
imation, using a strategy with three conceptual steps:

1. Define an approximate (infinite) model of the original
system using experience data.

2. Define an approximate value function using a finite
model derived from the infinite model and a finite sam-
ple of states.

3. Compute the optimal value function of the finite model.

This paper contributes techniques for accomplishing Step
1 of the above strategy. By leveraging existing work for
Steps 2 and 3, it also contributes a novel algorithm, AMBI,
which implements the strategy to learn online in infinite



systems. Section 2 introduces notation and prior work. Sec-
tion 3 formally presents model-based function approxima-
tion. Section 4 describes the AMBI algorithm. Section 5
evaluates the performance of this algorithm on some bench-
mark systems. Section 6 situates the contribution of this
paper in the literature, and Section 7 concludes.

2. BACKGROUND
This section describes the prior work upon which model-

based function approximation builds. It first describes the
computation of value functions for known finite systems
(Step 3 of the strategy outlined in Section 1), using the
formalism of Markov decision problems. It then describes a
technique, fitted value iteration, for computing value func-
tions in known infinite systems (Step 2).

2.1 Markov Decision Problems
Classical RL algorithms assume that the agent-environment

system constitutes a Markov decision process (MDP) [13].
An MDP M = 〈S, A,P,R〉 comprises a finite set of states
S, a finite set of actions A, a family of transition probability
functions P, and a family of reward functions R. The effect
of executing an action a ∈ A depends only on the current
state s ∈ S. The reward function Ra : S → R specifies
the average immediate reward Ra(s) = Ra

s for executing a
in s. The transition function Pa : S → ∆(S) specifies the
probability mass function Pa(s) = Pa

s over successor states,
so action a transitions s to s′ ∈ S with probability Pa

s (s′).
A policy π : S → A describes the behavior of an agent

and induces a value function V π : S → R that maps each
state s ∈ S to the expected cumulative reward V π(s) =

Rπ(s)
s + γ

P

s′∈S
Pπ(s)

s (s′)V π(s′), where γ ∈ [0, 1] is a dis-
count factor sometimes necessary to ensure the existence of
the value function. The action value function Qπ : S×A→
R maps each state-action pair to the expected cumulative
reward due to executing a in s and then behaving accord-
ing to π, Qπ(s, a) = Ra

s + γ
P

s′∈S
Pa

s (s′)V π(s′). The op-
timal value function V ∗ satisfies the Bellman optimality
equations V ∗(s) = maxa Q∗(s, a) for all s ∈ S and allows
an agent easily to obtain an optimal policy π∗ by choosing
π∗(s) ∈ argmaxaQ∗(s, a).

An offline algorithm known as value iteration can compute
V ∗ relatively efficiently for an arbitrary finite system, given
the MDP [9]. It computes a sequence of value functions V̂i

that converge to V ∗, according to the following recurrence
relations: for all s ∈ S and a ∈ A, V̂0(s) = 0, Q̂i(s, a) =

Ra
s+γ

P

s′∈S
Pa

s (s′)V̂i(s
′), and V̂i+1(s) = maxa Q̂i(s, a). Al-

though this algorithm takes a known MDP as input, it serves
as the basis for many RL algorithms, which take as input
on the state space S and action space A. Model-free RL al-
gorithms, such as Q-learning, converge to Q∗ directly from
experience data, which it uses in a stochastic approximation
of the update rule of value iteration. Model-based RL algo-
rithms, such as Prioritized Sweeping, incrementally estimate
P and R given experience data and then perform an incre-
mental form of value iteration on this learned model [11].
Reasoning about model uncertainty provided the first algo-
rithms with finite-time PAC convergence guarantees [3, 7].

Extending the MDP formalism to continuous state spaces
simply requires first, the redefinition of each Pa

s as a prob-
ability density function instead of a mass function, and sec-
ond, the substitution of integration for summation in the

definitions of the value functions V and Q. Model-free al-
gorithms extend naturally to this setting, since they do not
compute the summation or integration explicitly. Replac-
ing the representation of the value function with a function
approximator removes the convergence guarantees of algo-
rithms such as Q-learning, but this approach has led to im-
portant RL success stories [18]. In contrast, model-based
RL algorithms rely on offline algorithms, such as value iter-
ation, that do not extend to continuous state spaces due to
the impossibility of explicitly evaluating the value function
at every state.

2.2 Fitted Value Iteration
One approach to adapting value iteration to continuous

state spaces is known as fitted value iteration. This algo-
rithm only explicitly estimates the value function at a finite
sample of states X ⊂ S. It can then modify value iteration
as given in Section 2.1 as follows. V̂0 is initialized arbitrar-
ily. To obtain V̂i+1, an arbitrary function approximation
generalizes training data of the form 〈x, maxa Q̂i(x, a)〉 for

all x ∈ X. Since Q̂i(s, a) = Ra
s + γ

R

Pa
s (s′)V̂i(s

′) ds′ still
requires integrating over successor states, fitted value itera-
tion is most easily applied to deterministic systems, or other
systems where the number of possible successor states is fi-
nite. Even in such cases, popular function approximators
such as neural networks can cause fitted value iteration to
diverge [2].

Gordon proved convergence for one class of function ap-
proximators called averagers [6]. An averager φX : S →
∆(X) maps each state s in the infinite state space to a
probability mass function φX

s over sample states. It approx-
imates V̂ (s) =

P

x∈X
φX

s (x)V̂ (x), where the parameters of

the approximation scheme are the values V̂ (x) of the sam-
ple X. For example, a k-nearest-neighbors approximation
scheme would define φX

s as a uniform distribution over the
k elements of X closest to s. The equation for the action
value function then becomes

Q̂i(s, a)

= Ra
s + γ

Z

Pa
s (s′)

 

X

x′∈X

φX
s′ (x

′)V̂i(x
′)

!

ds′

= Ra
s + γ

X

x′∈X

„Z

Pa
s (s′)φX

s′ (x
′) ds′

«

V̂i(x
′). (1)

Equation 1 is equivalent to the equation for the exact action
value function for a derived finite MDP M̃ = 〈X, A, P̃,R〉,
where P̃a

x (x′) =
R

Pa
x (s′)φX

s′ (x
′) ds′. Fitted value iteration

with an averaging approximation scheme thus converges, if
γ < 1 or if M̃ is well-behaved. Essentially, it first uses
the approximation scheme φX and the original MDP M to
construct a finite model M̃ (Figure 1), then computes the

exact value function Ṽ : X → R of M̃ , and finally generalizes
Ṽ to an action value function Q̂ : S×A→ R for the original
MDP by substituting Ṽ for V̂i in Equation 1.

3. MODEL-BASED APPROXIMATION
Fitted value iteration with averagers converges despite the

application of function approximation, but it still requires
knowledge of the original MDP to construct the finite model
over the sampled states. Thus, it does not apply directly
to the RL problem. Nevertheless, some recently successful
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Figure 1: (a) An MDP M specifies a deterministic
transition from state s to state s′, whose value an
averager approximates as the weighted average of
nearby sample states. (b) The derived MDP M̃ spec-
ifies a stochastic transition from the same state to
the sample states, with probabilities equal to their
weights in the averager’s approximation of s′.

model-free RL algorithms iterate over a given sample of data
to achieve a degree of stability while using function approxi-
mation [8, 14]. The fixed sample contains implicit knowledge
of the MDP that generated the data. This section describes
an approach that explicitly defines an approximate model
from a sample, permitting the application of fitted value it-
eration to RL (Step 1 of the strategy outlined in Section 1).

The goal is to approximate each transition probability dis-
tribution Pa

s and expected reward Ra
s using a sample of ex-

perience data D. Each instance d ∈ D represents a unit
of experience d = 〈sd, ad, rd, s′d〉 consisting of a state sd the
agent visited, the action ad that it executed, the reward rd

it received, and the transition to state s′d it observed.
In the absence of generalization, the estimated effect of a

given action a at a given state s depends only on the subset
Da

s = {d ∈ D | sd = s ∧ ad = a} of instances with the same
state and action. Consider drawing an instance d ∈ Da

s uni-
formly at random. Then the maximum likelihood estimate
R̂a

s of the expected immediate reward is the mean of the ran-
dom variable rd, R̂a

s = E[rd] = 1
|Da

s |

P

d∈Da
s

rd. Similarly,

the maximum-likelihood transition probability function as-
signs to successor state s′ the probability 1

|Da
s |

for each in-

stance d such that s′d = s′, so P̂a
s (s′) =

P

d∈Da
s | s′

d
=s′

1
|Da

s |
=

|Da
ss′

|

|Da
s |

, where Da
ss′ = {d ∈ Da

s | s′d = s′}. Substituting this

discrete approximation for Pa
s yields a Monte Carlo approx-

imation of the integral in Equation 1.
The primary difficulty with simple maximum-likelihood

estimation is that most states will never be visited, and
the visited states will typically only have data for one ac-
tion. The estimatesRa

s and Pa
s must instead generalize from

Da = {d ∈ D | ad = a}, the set of instances at which a was
executed. Generalizing from experience at a sample of states
to an approximate model at an arbitrary state is analogous
to value-function approximation generalizing from the val-
ues of a sample of states to the value of an arbitrary state.

Averagers can be applied equally well to the problem of
generalizing a value function and generalizing a model. Let
Sa = {sd | d ∈ Da} be the set of states at which action
a has been applied. Suppose the existence of an averager
φSa

: S → ∆(Sa) that maps each s ∈ S to a probability
distribution over these states Sa, weighting the similarity of
states in Sa to s (Figure 2a). The approximate estimate for

the expected immediate reward then becomes

R̂a
s =

X

d∈Da

φSa

s (sd) · rd. (2)

The approximation of the transition probabilities may be
defined similarly:

P̂a
s (s′) =

X

d∈Da | s′
d
=s′

φSa

s (sd). (3)

Note that Equation 3 includes a summation only to prop-
erly treat the case when two instances in Da transition to the
same successor state s′. If the same state is never reached
twice in the data, then this equation may be expressed sim-
ply as P̂a

s (s′d) = φSa

s (sd) for s′d associated with some instance

d and P̂a
s (s′) = 0 otherwise.

Preliminary experiments showed that in some cases the
approximate model defined above generalizes poorly over
relatively large distances. Equation 3 assumes that if action
a has the same effect in states s and sd, then a will transition
s to s′d (Figure 2b). This assumption holds for “absolute”
actions that transition an entire set of similar system states
to the same successor state. In practice, most AI systems
have “relative” actions that apply some local modification
to each state in a set of similar states. For example, STRIPS
operators used in planning add or delete propositions to any
problem state that satisfies their preconditions. The action
models used in mobile robotics generalize across any pose in
free space but specify effects in terms of incremental changes
to position or heading. The following definition generalizes
the change in state resulting from an action instead of gen-
eralizing the identity of the state resulting from an action,
assuming a vector state space (Figure 2c):

P̂a
s (s′) =

X

d∈Da | s+s′
d
−sd=s′

φSa

s (sd). (4)

As above, this equation may alternatively be expressed as
P̂a

s (s′) = φSa

s (sd) if there exists exactly one d ∈ Da such
that s + s′d − sd = s′.

Equation 4 defines an approximate transition model in
terms of sample data and an averager. Substituting P̂a

s in
Equation 1 yields the equation for the exact action value
function for a derived MDP M̃ = 〈X, A, P̃, R̃〉 with the
transition functions (Figures 2d and 2e) given by

P̃a
x (x′) =

X

s′

0

@

X

d∈Da | x+s′
d
−sd=s′

φSa

x (sd)

1

AφX
s′ (x

′) (5)

and reward functions given by R̃ = R̂ (Equation 2). Note
that the outer summation in Equation 5 formally sums over
infinitely many s′ ∈ S, but at most |Da| of the terms are
nonzero for each x and a. These equations outline an RL
algorithm that uses its experience D and averagers φSa

and
φX to derive a model M̃ over a finite state set X, computes
the optimal value function Ṽ for M̃ , and then generalizes Ṽ
to an approximate value function Q̂ for the original system.

4. THE AMBI ALGORITHM
This section describes Approximate Models Based on In-

stances (AMBI), a RL algorithm that instantiates the out-
line from the previous section and the strategy in Section 1.
Given any state s ∈ S, AMBI always chooses an action
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Figure 2: (a) The averager φSa

approximates the effect of some action a at state s using nearby sample
transitions d ∈ Da. (b) The absolute-transition model predicts a stochastic transition to one of the s′d.
(c) The relative-transition model, which this paper adopts, predicts a stochastic transition with the same
change in state as one of the sample transitions. (d) The averager φX approximates the value of each predicted
successor state using nearby sample states x ∈ X. (e) The combination of the two averagers predicts stochastic
transitions to sample states x ∈ X.

a ∈ A that maximizes Q̂(s, a), its current estimate of the
long-term value of each action. Conceptually, this estimate
is the sum of an immediate reward and expected future re-
wards. AMBI estimates the immediate reward for each ac-
tion directly using Equation 2. For the future rewards, it
uses Equation 5 to approximate the distribution over suc-
cessor states as a finite distribution over X = {s′d | d ∈ D},
the set of all observed successor states. Since X is closed
under all the actions, exact value iteration can compute the
long-term value of each of these states.

During learning, the approximation described above can
fail in one of two ways. First, the data Da may not have
enough data near s to approximate the effect of action a.
Second, the sample X may not have enough states to ap-
proximate the successor states for some action. To achieve
intelligent exploration, AMBI employs optimism to resolve
both forms of uncertainty. It assumes the existence of two
artificial states in X. The first artificial state, sopt is an op-
timal state, from which every action deterministically earns
reward V max, an upper bound on the value function, and
transitions to sterm. The second artificial state, sterm rep-
resents all terminal states in the system. It is an absorbing
state, so all actions from sterm earn zero reward and tran-
sition back to sterm. The known values of these artificial
states are thus Ṽ (sterm) = 0 and Ṽ (sopt) = V max.

The two artificial states are used to implement optimism
in the face of uncertainty in the averagers φSa

and φX .
AMBI defines these averagers to use Gaussian weighting,
as follows. Without loss of generality, consider the averager

φX∪{sopt}, where sopt /∈ X. Given a state s ∈ S, define for
each x ∈ X the weight

wX
s,x = e

−
“

|x−s|

bX

”2

, (6)

where bX is a parameter that controls the breadth of gen-
eralization over X and that corresponds to the standard
deviation of the Gaussian kernel. The normalizer ZX

s =
P

x∈X
wX

s,x corresponds to the weighted number of states in
X used to approximate s and thus is a measure of the cer-
tainty of this approximation. If ZX

s does not exceed a con-
stant threshold cX , then the averager approximates s with
sopt; otherwise, it approximates s with the weights wX

s,x:

φX∪{sopt}
s (x) =

(

wX
s,x

ZX
s

, if wX
s,x ≥ cX

0, if wX
s,x < cX

(7)

φX∪{sopt}
s (sopt) =



0, if wX
s,x ≥ cX

1, if wX
s,x < cX (8)

The model-approximation averagers φSa

are defined in the
same way. AMBI need not approximate the model at sterm,
since actions are irrelevant at terminal states, but the aver-
ager for the value function should not approximate terminal
states predicted by the model. The averager φX thus ad-
ditionally specifies φX

sterm(sterm) = 1 and φX
sterm(x) = 0 for

x 6= sterm.

Algorithm 1 Approximate Models Based on Instances

1: X ← {sopt, sterm} {Initialize state sample}
2: for all a ∈ A do {Initialize experience sample}
3: Da ← {〈sopt, a, V max, sterm〉}
4: end for
5: s← initial state {Begin a trajectory}
6: a← argmaxa

h

R̃a(s) +
P

x′∈X
P̃ a

s (x′)Ṽ (x′)
i

7: while s 6= sterm do
8: Execute a
9: r ← observed reward

10: s′ ← observed successor state
11: if s′ is terminal then
12: s′ ← sterm

13: else
14: a′ ← argmaxa

h

R̃a(s) +
P

x′∈X
P̃ a

s (x′)Ṽ (x′)
i

15: X ← X ∪ {s′} {Update state sample}
16: end if
17: Da ← Da ∪{〈s, a, r, s′〉} {Update experience sample}
18: Update φX and φSa

according to Equations 7 and 8
19: Update R̃ and P̃ according to Equations 2 and 5
20: Compute Ṽ using value iteration
21: s← s′

22: a← a′

23: end while
24: if task is episodic then
25: Goto Line 5
26: end if

Algorithm 1 specifies the AMBI algorithm. It bears a
high-level resemblance to Prioritized Sweeping [11], an algo-
rithm that performs incremental updates to the estimated
system model and value function after each unit of expe-
rience. The primary contribution of Prioritized Sweeping
is an efficient method for propagating changes to the value



function due to changes to the model, since the model up-
dates for finite systems are trivial. AMBI adopts the priori-
tized value-function sweeps, but the primary computational
burden stems from the updates to the derived model, due
to generalization across states. Section 5.1 discusses imple-
mentation details that address computational efficiency.

AMBI also borrows the exploration mechanism of Priori-
tized Sweeping, which assumes transitions to an optimistic
state until experience provides sufficient evidence to the con-
trary. The averager φSa

approximates the transition proba-
bilty distribution function Pa

s at state s as Pa
sopt if Sa does

not contain enough states near s. AMBI also employs op-
timistic exploration in the approximation of the value func-
tion. After the approximate model predicts a possible tran-
sition to a state s′, the averager φX approximates the value
V (s′) of s′ as V (sopt) if X does not contain enough states
near s′.

5. EXPERIMENTAL RESULTS
AMBI learns with good data efficiency by using a combi-

nation of model-based exploration, instance-based state rep-
resentation, and averager-based approximation. This sec-
tion describes experiments demonstrating that AMBI con-
verges more rapidly to near-optimal policies than several
other recent RL algorithms evaluated on some benchmark
problems with continuous state spaces.

5.1 Implementation Details
A primary practical concern for an instance-based algo-

rithm such as AMBI is computational complexity. After
deriving the finite model M̃ , fast tabular methods can ref-
erence it to update the value function Ṽ efficiently using
prioritized sweeps [11]. The computationally intensive steps
of Algorithm 1 are Lines 7 and 8, which update the aver-
agers φSa

and φX and the finite model M̃ . In general, these
steps require running time linear in the size of D, which is
equal to the number of times the agent has acted.

The experimental implementation achieves a substantial
reduction in the constant factor of this O(D) running time
by observing that the each newly sampled transition only
changes the model appreciably in a local region of the state
space. It sets the minimum nonzero value of wX

s,x to 0.01 in
Equation 6 for both the model and value-function averagers.
Thus the addition of a new transition from s only affects each
averager φ at those states within distance b

√
− log 0.01 =

2.146b from s. The implementation also prunes each av-
erager φ so that the smallest nonzero value of φs is 0.01
(and renormalizes the remaining values), bounding to 100
the number of instances used to approximate s. Note that
this pruning does not bias the approximation, which essen-
tially becomes k-nearest neighbors with k = 100 and Gaus-
sian weighting whenever sufficient data exists to override
optimism. The precise thresholds used to prune did not
significantly affect the performance of the algorithm.

With these two pruning mechanisms, O(log |D|) updates
are possible by using a data structure such as a k-d tree to
find the 100 nearest neighbors of each approximated state.
For simplicity of implementation, the following sections de-
scribe results obtained with a simple linear-time binning ap-
proach that searched for neighbors in adjacent bins of width
2.146b for each averager. Due to memory and time con-
straints, this linear-time implementation stops adding new
data after sampling 10000 transitions.

(a) (b)

Figure 3: Two of the domains from the NIPS bench-
marking workshop: (a) Mountain Car and (b) Pud-
dle World.

5.2 Benchmark Performance
This section compares the performance of AMBI to algo-

rithms submitted to the RL benchmarking workshop held
at NIPS 2005 [4]. This event invited researchers to im-
plement algorithms in a common interface for online RL.
Participants computed their results locally, but direct com-
parisons are possible due to the standardized environment
code, which presents the same sequence of initial states to
each algorithm. Sections 5.2.1 and 5.2.2 examine two of the
benchmark domains and give the AMBI parameters used
to solve them. Section 5.2.3 evaluates the performance of
AMBI against selected algorithms.

5.2.1 Mountain Car
In the Mountain Car simulation [16], an underpowered

car must escape a valley (Figure 3a) by backing up the left
slope to build sufficient energy to reach the top of the right
slope. The agent has two state variables, horizontal po-
sition x and horizontal velocity v. The three available ac-
tions are reverse, neutral, and forward, which add−0.001,
0, and 0.001 to v, respectively. In addition, gravity adds
−0.0025 cos(3x) to v at each time step. The agent receives
a reward of −1 for each time step before reaching the goal
state. Episodes begin in a uniformly random initial position
x and with v = 0, and they last for at most 300 time steps.
The only domain knowledge available is the upper bound
V max = 0 on the value function and the minimum and max-
imum values of each state variable: −1.2 and 0.5 for x and
−0.07 and 0.07 for v.

AMBI scaled both state variables to [0, 1]. The generaliza-

tion breadths were bSa

= 0.03 to generalize the model and
bX = 0.01 to generalize the value function. Since Moun-
tain Car is deterministic, the exploration thresholds were
cSa

= 1 and cX = 1. To compute the value function, AMBI
applied at most 1000 updates with minimum priority 0.01
after each transition.

5.2.2 Puddle World
The Puddle World [15] is a continuous grid world with

the goal in the upper-right corner and two oval puddles (Fig-
ure 3b). The two state variables are the x and y coordinates,
and the four actions correspond to the four cardinal direc-
tions. Each action moves the agent 0.05 in the indicated di-
rection, with Gaussian noise added to each dimension with
σ = 0.01. The agent receives a −1 reward for each action
outside of the two puddles, with have radius 0.1 from two
line segments, one from (0.1, 0.75) to (0.45, 0.75) and the
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Figure 4: Learning curves for Mountain Car

other from (0.45, 0.4) to (0.45, 0.8). Being in a puddle in-
curs a negative reward equal to 400 times the distance inside
the puddle. The goal region satisfies x + y ≥ 0.95 + 0.95.

For this domain, AMBI used generalization breadths bSa

=
0.05 and bX = 0.02. Although Puddle World is stochastic,
thresholds cSa

= 1 and cX = 1 continued to suffice. AMBI
used at most 1000 updates after each transition, with mini-
mum priority 0.01.

5.2.3 Benchmark Results
Figures 4 and 5 compare the performance of AMBI to

three selected algorithms. (Each point is the average of
fifty sequential episodes, as reported to the NIPS workshop.)
These three algorithms, implemented and parameterized by
other researchers, were among the most competitive submit-
ted. One is a model-based approach applied to a fixed dis-
cretization of the state space. This algorithm employed the
same exploration mechanism as Prioritized Sweeping, but
it lacked the instance-based representation and averager-
based generalization of AMBI. Least Squares Policy Iter-
ation [8] is similar to AMBI in that it uses a given sam-
ple of transitions to compute the parameters of a function
approximator that best approximates the true value func-
tion. However, LSPI relies on random exploration and a
fixed set of kernels to represent the state space. XAI (eX-
plore and Allocate, Incrementally) is a method that rep-
resents the value function with a network of radial basis
functions, allocated online as the agent reaches unexplored
regions of the state space [4]. It thus resembles AMBI in
its instance-based use of Gaussian weighting for approxima-
tion, but XAI is a model-free method that uses gradient
descent and Sarsa(λ) to update the value function. None of
these algorithms achieves the same level of performance as
AMBI, which combines instance-based state representation,
averager-based generalization, and model-based exploration.

5.3 Ablation Study
This section illustrates the benefit of AMBI’s approach to

model-based RL in infinite systems. It compares three al-
gorithms. The first is Prioritized Sweeping [11], a canonical
model-based algorithm that reasons exactly in a fixed finite
discretization of a given system. The second is a version of
AMBI that uses the absolute model of sample transitions
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Figure 6: Learning curves for Mountain Car. Each
curve is the average of 50 independent trials.

given in Equation 3, which in a sense is a more straight-
forward generalization of MDP transitions. The absolute
model has the additional benefit that no value-function av-
erager φX is necessary, since each successor state that the
approximate transition functions P̂ a propose exists in X.
This version of AMBI can also be construed as an online im-
plementation of Kernel-Based Reinforcement Learning [12]
(KBRL), discussed in Section 6, combined with the explo-
ration mechanism of Prioritized Sweeping. The third algo-
rithm is AMBI, which employs the relative model of sam-
ple transitions given in Equation 4 and necessarily a value-
function averager.

Figure 6 shows the performance of each algorithm, aver-
aged over 50 independent trials in the Mountain Car domain.
This implementation of Prioritized Sweeping uses the same
parameters as the finite model-based algorithm submitted
to the NIPS workshop: it discretizes each state dimension
into 100 intervals and uses nknown = 1. AMBI used the same
parameters described in Section 5.2.1.

Absolute-transition AMBI converges much more quickly
than discrete Prioritized Sweeping, but at the expense of
converging to suboptimal policies. Further experimentation
has shown that decreasing bSa

improves the average quality



of the final policy but quickly decreases the learning speed
of the algorithm. The standard version of AMBI uses the
more accurate relative transition generalization to preserve
fast convergence while achieving near-optimal policies in this
domain. For comparison, Figure 7 illustrates typical learned
policies for both versions of AMBI. An optimal policy would
execute forward roughly when the velocity is positive, in
the upper half of the state-space diagram, and it would ex-
ecute reverse roughly when the velocity is negative, in the
lower half of the state-space diagram. This run of absolute-
transition AMBI incorrectly selects reverse in a large region
with positive velocity. Inspection of the relevant states re-
vealed that the local neighborhood of the sample Sreverse

happened to contain more high-value states. The absolute
transition model incorrectly concluded that the reverse ac-
tion would transition to this higher-value region; the rela-
tive transition model correctly concluded that this action
decreases the value of any state in the neighborhood.

6. DISCUSSION AND RELATED WORK
The primary contribution of this paper is its integration of

model-based reasoning with stable function approximation.
AMBI extends the data efficiency of model-based methods
to continuous systems, which previously presented the dif-
ficulty of representing continuous models. Atkeson, Moore,
and Schaal addressed this problem in the deterministic case,
also using locally weighted learning from instances [1]. Their
application of locally weighted regression estimated the av-
erage successor state for each state-action pair; AMBI ap-
proximates the distribution over successor states and thus
copes with forms of stochasticity beyond simple noise. Atke-
son et al. also did not address the issue of exploration in
continuous systems. AMBI permits the application of in-
telligent exploration mechanisms originally designed for fi-
nite systems. It employs the same mechanism as Prioritized
Sweeping [11] and R-MAX [3], perhaps opening the door
for generalizing the latter algorithm’s polynomial-time PAC
convergence guarantees to certain continuous systems.

Introducing model-based reasoning to function approxi-
mation also provides novel insight into the problem of gen-
eralizing from finite data to knowledge of an infinite system.
Most approaches to function approximation rely on a static
scheme for generalizing the value function directly, despite
the difficulty in intuiting the structure of value functions.
AMBI explicitly generalizes first in a model of the system,
where intuitions may be easier to represent. For example,
a high degree of generalization is possible in the model for
Mountain Car, since the effect of an action changes smoothly
with the current state. In contrast, the optimal value func-
tion for this system includes large discontinuities in locations
that are impossible to predict without first knowing the op-
timal policy: the discontinuity separates those regions of the
state space where the agent has sufficient energy to escape
the valley and from those regions where it must first build
energy. Approaches that only generalize the value function
must use little enough generalization to represent this dis-
continuity accurately; AMBI uses a learned model to gener-
alize both broadly and accurately.

Mahadevan also uses a learned model to improve value-
function approximation, by analyzing state-space topology
to compute “proto-value functions” that form a linear ba-
sis for the learned value function [10]. This work sepa-
rates learning into two phases, one that gathers data on

the state space and one that learns the weights for the
proto-value functions without any further model-based rea-
soning. Glaubius and Smart also analyze state-space topol-
ogy, to discover overlapping low-dimensional manifolds over
which to learn the value function [5]. Both of these meth-
ods only employ models to determine generalization schemes
for model-free learning algorithms that do not address the
problem of efficient exploration.

Similarly, although other algorithms use instance-based
representations for stable function approximation, they typ-
ically do not benefit from exploration methods that arise
from model-based reasoning. For example, Interpolative
Function Approximator based Q-Learning also builds upon
Gordon’s convergence proofs for averagers, defining a model-
free algorithm that can converge to the optimal value func-
tion in the limit [17]. Like the original Q-learning algorithm,
this algorithm relies on a given exploration policy to visit the
appropriate regions of the state space sufficiently.

Kernel-Based Reinforcement Learning also converges to
the optimal value function in the limit, applying an approx-
imate form of value iteration to a set of instance states [12].
It defines an approximate Bellman equation that implicitly
uses the absolute-transition model defined in Equation 3,
but it does not benefit from any explicit model-based rea-
soning. KBRL is also essentially an offline algorithm that
simply computes a value function from a sample, without
addressing exploration. Section 5.3 discusses experimental
results using an online adaptation of KBRL that incorpo-
rates model-based exploration. Some preliminary experi-
ments also applied KBRL to Mountain Car, recomputing
a value function from cumulative data after each episode.
These experiments showed that random exploration proved
ineffective, almost never even finding the goal state.

One noteworthy limitation of AMBI is its scalability. As
an instance-based algorithm, its time and space complex-
ity grow with the amount of data it collects. The imple-
mentation used in Section 5 simply stops adding data after
reaching a fixed threshold, but a more principled approach
would strive to keep the most useful samples without intro-
ducing significant bias. AMBI could stop adding states to
X if the model grows too large to update the value function
efficiently, and it can independently stop adding transitions
to the Da if the sample grows too large update the model
efficiently.

AMBI is also vulnerable to the curse of dimensionality.
As the dimensionality grows, exponentially more data is re-
quired to explore each neighborhood of the state space. One
solution is to select or to learn more sophisticated kernels
that permit generalization of a stored transition beyond its
local neighborhood. For example, in real-world domains,
many actions are independent of some subset of the state
dimensions, and the approximation of those actions can thus
generalize freely over those dimensions. Using the relative-
transition model may also play an important role here, since
the algorithm must learn that an action leaves an indepen-
dent dimension unchanged, instead of changing it to a pre-
viously observed value.

7. CONCLUSION
Reinforcement learning in infinite systems requires accu-

rate generalization from finite data, but standard approaches
only apply generalization directly to the value function. Many
systems of interest exhibit more intuitive structure in their
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Figure 7: Mountain-Car policies learned using (a) absolute-transition AMBI and (b) standard AMBI. The
solid region of the state space indicates where the policy selects the forward action; the hatched region
indicates where it selects the reverse action.

one-step dynamics than in the optimal value function. This
observation suggests a model-based solution that generalizes
first from data to a model. The AMBI algorithm employs
averagers both to approximate the model and the value func-
tion. It derives a finite representation of the system that
both allows efficient planning and intelligent exploration.
These attributes allow AMBI to learn some standard bench-
mark systems more efficiently than many contemporary RL
algorithms.
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