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ABSTRACT

Improving the sample efficiency of reinforcement learning al-
gorithms to scale up to larger and more realistic domains is a
current research challenge in machine learning. Model-based
methods use experiential data more efficiently than model-
free approaches but often require exhaustive exploration to
learn an accurate model of the domain. We present an algo-
rithm, Reinforcement Learning with Decision Trees (rl-dt),
that uses supervised learning techniques to learn the model
by generalizing the relative effect of actions across states.
Specifically, rl-dt uses decision trees to model the relative
effects of actions in the domain. The agent explores the en-
vironment exhaustively in early episodes when its model is
inaccurate. Once it believes it has developed an accurate
model, it exploits its model, taking the optimal action at
each step. The combination of the learning approach with
the targeted exploration policy enables fast learning of the
model. The sample efficiency of the algorithm is evaluated
empirically in comparison to five other algorithms across
three domains. rl-dt consistently accrues high cumulative
rewards in comparison with the other algorithms tested.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial

Intelligence]: Problem Solving, Control Methods, and Search

General Terms

Algorithms, Experimentation

Keywords

Reinforcement Learning, Supervised Learning

1. INTRODUCTION
Reinforcement learning (RL) studies the problem of find-

ing effective solutions to sequential decision making prob-
lems [11]. For many agent-based applications, it is critical
that an RL algorithm be very sample efficient: that it takes
very few actions to learn an effective policy. We focus on
sample efficiency as the key evaluation criterion for RL al-
gorithms because in many agent-based applications, acquir-

Cite as: Generalized Model Learning for Reinforcement Learning in
Factored Domains, Todd Hester and Peter Stone, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–
15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ing experiences can be very expensive and time-consuming.
Two of the main approaches towards this goal are to incorpo-
rate generalization (function approximation) into model-free
methods and to develop model-based algorithms. Model-
based methods achieve high sample efficiency by learning
a model of the domain and simulating experiences in their
model, thus saving precious samples in the real world.

Once a model-based reinforcement learning method has
built an accurate model of the domain, it can quickly find
an optimal policy by performing value iteration within its
model. Thus the key to making model-based methods more
sample efficient is to make their model learning more effi-
cient.

Methods such as r-max [2] attempt to learn the model ef-
ficiently by driving the agent to explore parts of the domain
where the model needs improvement. Still, r-max requires
that the agent exhaustively explore every state m times in
order to fully learn an accurate model of the domain. Partic-
ularly in large domains, this exploration can be impractical.

One way to learn the model of the domain quickly is to
introduce generalization into the learning of the model using
modern machine learning techniques. Learning the model is
essentially a supervised learning problem where the input
is the agent’s current state and action, and the learning al-
gorithm has to predict the agent’s next state and reward.
Many existing supervised learning algorithms are able to
generalize their predictions to new or unseen parts of the
state space. By applying these methods, the algorithm can
learn a model of the domain with far fewer state visits than
an algorithm like r-max.

Unlike many traditional supervised learning problems, in
reinforcement learning, the algorithm has control of which
training examples it receives. Learning the model efficiently
requires a combination of a fast learning algorithm and a
policy that acquires the necessary training examples quickly.
The agent can target states for exploration that it expects
will improve the model. These states could be where the
agent has not visited frequently or where the model has low
confidence in its predictions.

An interesting thought experiment is to consider how a
human might behave if put into a gridworld environment
with unknown actions and unknown goals. One might try
each of the actions a few times to determine what they do,
and then assume they will behave roughly the same across
the remaining states. Then the person may explore all the
states of the domain exhaustively searching for rewarding
states. At some point, the human will decide that she has
done enough exploration and exploit what she has learned.



This type of behavior is exactly what we strive to achieve
with our algorithm.

In this paper, we present a novel reinforcement learning al-
gorithm called Reinforcement Learning with Decision Trees
(rl-dt). This algorithm uses decision trees to learn a model
of the domain efficiently, incorporating generalization into
the learning of the model. The algorithm explores early to
learn an accurate model before switching to an exploitation
mode. In the following sections, we describe the algorithm
and how it relates to other work in this area. We then
demonstrate the effectiveness of this algorithm empirically
in three domains, and compare it to other sample efficient
algorithms. rl-dt attained higher cumulative rewards than
the other algorithms on the majority of the episodes of the
experiments.

2. BACKGROUND
We adopted the standard Markov Decision Process (MDP)

formalism for this work [11]. An MDP consists of a set of
states S, a set of actions A, a reward function R(s, a), and a
transition function P (s′|s, a). In each state s ∈ S, the agent
takes an action a ∈ A. Upon taking this action, the agent
receives a reward R(s, a) and reaches a new state s′. The
new state s′ is determined from the probability distribution
P (s′|s, a). The domain can be modeled by approximating
its transition and reward functions. In many domains, the
discrete state s is represented by a vector of n discrete state
variables s = 〈x1, x2, ..., xn〉. The goal of the agent is to find
the policy π mapping states to actions that maximizes the
expected discounted total reward over the agent’s lifetime.

The value Q∗(s, a) of a given state-action pair (s, a) is
determined by solving the Bellman equation:

Q
∗(s, a) = R(s, a) + γ

X

s′

P (s′|s, a) max
a′

Q
∗(s′, a′) (1)

where 0 < γ < 1 is the discount factor. The optimal value
function Q∗ can be found through value iteration by iterat-
ing over the Bellman equations until convergence [11]. The
optimal policy π is then as follows:

π(s) = argmax
a
Q

∗(s, a) (2)

3. ALGORITHM
The main contribution of this paper is a novel algorithm

called Reinforcement Learning with Decision Trees (rl-dt).
Our algorithm achieves high sample efficiency by learning a
model of the MDP quickly. It takes advantage of the fac-
tored representations present in many domains to generalize
transition effects when learning the model, similar to slf-

rmax [10]. This approach allows it to learn the model much
faster than an approach which models each state-action in-
dividually such as r-max [2]. Our algorithm starts out ex-
plicitly exploring the domain to learn an accurate model,
and then exploits its model once it believes it is correct.

The rl-dt algorithm is a model-based reinforcement learn-
ing algorithm, shown in Algorithm 1. The algorithm main-
tains the set of all the states that it has seen in the set SM

and counts the number of visits to each state-action pair.
From a given state s, it executes the action a as specified by
its action-values and increments the visit count visits(s, a).
It obtains a reward r and a next state s′. It adds the state
to its state set SM if it is not already there. Then the algo-
rithm updates its models with this new experience through

Algorithm 1 rl-dt(RMax, s)

1: A← Set of Actions
2: SM ← {s}
3: ∀a ∈ A : visits(s, a)← 0
4: loop
5: a← argmaxa′Q(s, a′)
6: Execute a, obtain reward r, observe state s′

7: Increment visits(s, a)
8: if s′ /∈ SM then
9: Add s′ to set SM

10: ∀a ∈ A : visits(s′, a)← 0
11: end if
12: (PM , RM ,CH) ← Update-Model(s, a, r, s′, SM , A)
13: // Check if the model is ok
14: exp← Check-Model(PM , RM )
15: if CH then
16: Compute-Values(RMax, PM , RM , SM , A, exp)
17: end if
18: s← s′

19: end loop

the model learning approach described in section 3.1. The
algorithm decides to explore or exploit based on whether it
believes its model is accurate. This check is performed in
the call to check-model, which is explained below. Next,
the algorithm re-computes the action-values using value it-
eration if the model was changed (CH is set to true). It then
continues executing actions until the end of the experiment
or episode.

The algorithm starts out with a poor model of the do-
main and in some cases, it will learn an incorrect model of
the domain. In both these cases, exploration is required to
correct the model. The algorithm uses a heuristic to deter-
mine when it should explore in the call to check-model

on line 14 of Algorithm 1. If the model predicts that the
agent can only reach negative rewards (or only reach posi-
tive rewards) from a state, then the model is assumed to be
incorrect. Many episodic tasks consist of negative rewards
for all states other than the terminal state, where it receives
a non-negative reward. If the algorithm determines that the
model is incorrect, it goes into exploration mode, exploring
the state-actions with the fewest visits. Otherwise, it re-
mains in exploitation mode, where it takes what it believes
is the optimal action at each step. This heuristic causes the
agent to explore exhaustively early, when it has no knowl-
edge of the domain. Once it has discovered a state with a
non-negative reward, it will stop exploring and exploit its
model to find an efficient path to the rewarding state.

3.1 Model Learning
A distinguishing characteristic of rl-dt is the way in

which it learns models of the transition and reward func-
tions. In particular, we would like to learn a model of the
underlying MDP in as few samples as possible. Algorithms
such as r-max [2] can achieve high sample efficiency by
driving the agent to explore states that are unknown in its
model. r-max counts the number of visits to each state and
uses the counts to determine if the states are known. States
with enough visits are considered known, while states with-
out enough visits are unknown and the agent is encouraged
to explore those states to improve its model. We can im-
prove upon this approach by generalizing when learning the
model. The transition and reward functions in many states
may be similar, and if so, the model can be learned much



Algorithm 2 Update-Model(s, a, r, s′, SM , A)

1: n← size of s
2: CH← false

3: // Update the tree for each state feature
4: for i = 1 to n do
5: // Calculate the relative transition
6: xr

i
= s′

i
− si

7: CH←Add-Experience-To-Tree(i, s, a, xr
i
) or CH

8: end for
9: // Update the tree for reward
10: CH←Add-Experience-To-Tree(n + 1, s, a, r) or CH

11: // Combine results for each tree into model
12: for all sM ∈ SM do
13: for all aM ∈ A do
14: PM (sM , aM )←Combine-Results(sM , aM )
15: RM (sM , aM )←Get-Predictions(n + 1, sM , aM )
16: end for
17: end for
18: Return (PM , RM ,CH)

faster by generalizing these functions across similar states.
This algorithm may be able to learn an accurate model of
the MDP without visiting every state.

In many domains, the relative transition effects of actions
are similar across many states, making it easier to gener-
alize actions’ relative effects than their absolute ones. For
example, in many gridworld domains, there is an east action
that usually increases the agent’s x variable by 1. It is easier
to generalize the relative effect of this action (x ← x + 1)
than the absolute effects (x← 7 or x← 8). Leffler et al. [6]
use this fact to learn relocatable action models when pro-
vided with some part of the model. rl-dt differs in that it
attempts to learn the model without any prior knowledge.
This idea is also used by Jong and Stone [5] to build instance-
based models in continuous domains. rl-dt takes advan-
tage of this idea by using supervised learning techniques to
generalize the relative effects of actions across states when
learning its model. This generalization allows it to make
predictions about the effects of actions even in states that it
has not visited often or at all.

The agent learns models of the transition and reward func-
tions using decision trees, shown in Algorithm 2. Decision
trees were used because they generalize well while still mak-
ing accurate predictions. The decision trees are an imple-
mentation of Quinlan’s C4.5 algorithm [8]. The state fea-
tures used as inputs to the decision trees are treated both
as numerical and categorical inputs, meaning both splits of
the type x = 3 and x > 3 are allowed. The C4.5 algo-
rithm chooses the optimal split at each node of the tree
based on information gain. Our implementation includes a
modification to make the algorithm incremental. Each tree
is updated incrementally by checking at each node whether
the new experience changes the optimal split in the tree.
If it does, the tree is re-built from that node down. When
re-building the tree, split points at each node are still deter-
mined based on information gain.

Similar to the approach of Degris et al. [3], a separate de-
cision tree is built to predict the reward and each of the n

state variables. The first n trees each make a prediction of
the probabilities P (xr

i |s, a), while the last tree predicts the
reward R(s, a). The input to each tree is a vector contain-
ing the n state features and action a: 〈a, s1, s2, ..., sn〉. For
the first n decision trees, the desired output is the relative
change in the state variable, which is calculated on line 6
of Algorithm 2. For the last tree, the desired output is the

reward r. The algorithm updates each tree incrementally
with the input vector and desired output in the call to add-

experience-to-tree on lines 7 and 10 of Algorithm 2. This
method also returns whether the model has changed in the
CH variable.

After all the trees are updated, they can be used to predict
the model of the domain. The transition function P (s′|s, a)
and reward function R(s, a) are updated for every state
sM ∈ SM and action aM ∈ A in lines 12-17 of Algorithm 2.
For a queried state vector s and action a, each tree makes
predictions based on the leaf of the tree that matches the
input. The first n trees output probabilities for the relative
change, xr

i , of their particular state features. This output
P (xr

i |s, a) is the number of occurrences of xr

i in the matching
leaf of the tree divided by the total number of experiences in
that leaf. The predictions P (xr

i |s, a) for the n state features
are combined to create a prediction of probabilities of the
relative change of the state sr = 〈xr

1, x
r
2, ..., x

r
n〉. Assuming

that each of the state variables transition independently, the
probability of the change in state P (sr|s, a) is the product
of the probabilities of each of its n state features:

P (sr|s, a) = Πn

i=0P (xr

i |s, a) (3)

The relative change in the state, sr, is added to the current
state sm to get the next state s′. combine-results on line
14 of the algorithm uses these steps to calculate P (s′|s, a).
The last tree predicts reward R(s, a) by outputting the av-
erage reward in the matching leaf of the tree in the call to
get-predictions on line 15 of Algorithm 2. The combi-
nation of the model of the transition function and reward
function make up a complete model of the underlying MDP.

Figure 1 shows an example of a decision tree classifying
the relative change in the x variable in the gridworld shown
in the figure. The tree first splits on the action (if the action
was left) and then splits on the x and y variables. In some
cases, it can ignore large parts of the state space. For ex-
ample, when the action is not left or right, the tree predicts
a change of 0 in the x variable. In other cases, it makes a
prediction that is specific to a single state, such as when it
predicts a change of 0 for the action right when x is not 1
and y equals 1.

3.2 Value Iteration
Once the model has been updated, value iteration is per-

formed on the model to find a policy. Algorithm 3 shows the
Compute-Values function, which computes exact value it-
eration on the approximate model for all states, SM , that the
algorithm determines may be reachable based on its model.
The action-values are updated using the models RM and
PM .

Before performing value iteration, the algorithm decides
whether to go into exploration or exploitation mode. When
the algorithm believes its model is incorrect, it sets exp to
true and goes into exploration mode.. In this mode, the
agent follows a policy similar to r-max, with the algorithm
giving the least visited states a bonus of RMax to drive the
agent to explore them (lines 15-16 of Algorithm 3). When
the algorithm is in exploitation mode, it takes what it be-
lieves to be the optimal action from each state.

In many cases, it may not be possible to know exactly
what states are in the statespace S of the domain. There-
fore, our algorithm is not initially given the state space of
the domain. Since the algorithm does not have any prior in-



FT FT

FT

FT

F
T

X=0

X=1

Y=1

0 0

0

0 +1

−1

A=L

A=R

Figure 1: Example tree predicting the change in the

x variable in a hypothetical gridworld.

formation about the state space, it must predict transition
and reward dynamics for unseen and possibly non-existent
states. It is possible that the model might predict that the
world is infinite (for example, if it predicts that every action
increments one of the state variables). To avoid calculating
action-values for an infinite number of states, the algorithm
records how many steps each state is from the nearest vis-
ited state (K(s)). Any state that is more than maxsteps

away from a visited state is given a value of RMax.

4. RELATEDWORK
In Section 5, we compare rl-dt with several related ap-

proaches. In this section we summarize those approaches
and explain why they are appropriate points of comparison.

In this paper, we focus on model-based reinforcement learn-
ing because of its sample efficiency in comparison to model-
free methods. Nonetheless, research on generalization for
model-free learning is relevant to our approach. There are a
number of model-free reinforcement learning methods such
as q-learning [12] and sarsa [9]. q-learning is a repre-
sentative example of this type of algorithm that maintains
action-values for every state-action pair. In its most basic
form, it has a table with values for each state-action pair.
After each action, the algorithm uses the reward r it receives
to update its action-values with the Bellman equations. q-

learning provably converges to the optimal policy when
visiting every state and action infinitely often [13].

There are many ways to incorporate generalization into
model-free algorithms. The most common way is to use a
function approximator, such as neural networks or cmacs [1],

Algorithm 3 Compute-Values(RMax, PM , RM , SM , A, exp)

1: // Initialize all state’s step counts
2: for all s ∈ SM do
3: if ∃a ∈ A : visits(s, a) > 0 then
4: K(s)← 0
5: else
6: K(s)←∞
7: end if
8: end for
9: minvisits← mins∈SM

visits(s)
10: // Perform value iteration on the model
11: while not converged do
12: for all s ∈ SM do
13: for all a ∈ A do
14: if exp and visits(s) = minvisits then
15: // Unknown states are given exploration bonus
16: Q(s, a)← RMax
17: else if K(s) > maxsteps then
18: // States out of reach
19: Q(s, a)← RMax
20: else
21: // Update remaining state’s action-values
22: Q(s, a)← RM (s, a)
23: for all s′ ∈ PM (s′|s, a) do
24: if s′ /∈ SM then
25: Add s′ to set SM

26: for all a ∈ A do
27: visits(s′, a) = 0
28: end for
29: end if
30: // Update steps to this state
31: if K(s) + 1 < K(s′) then
32: K(s′)← K(s) + 1
33: end if
34: // Update action-values using Eqn 1
35: Q(s, a) += γPM (s′|s, a)maxa′Q(s′, a′)
36: end for
37: end if
38: end for
39: end for
40: end while

to approximate the action-values for each state. The func-
tion approximator allows the algorithm to generalize similar
action-values to similar states. There is no guarantee that
these approaches will converge to the exact optimal policy.
While these approaches are often more efficient than table-
based approaches, the algorithm still only updates its value
function when taking an action, requiring a large number of
actions to learn an accurate value function.

Model-based reinforcement learning algorithms such as
Prioritized Sweeping [7] and r-max [2] learn a model of
the transition and reward functions. Once this model is
learned, the algorithm performs value iteration on the model
to determine an optimal policy. r-max is a representative
model-based method that explicitly explores unknown states
to learn its model quickly. It records the number of visits
to each state-action in the domain. In r-max, the agent is
driven to explore state-actions that have not been visited
enough to be considered “known” by assuming they have
the maximum reward of RMax. Once the model is com-
pletely learned, the algorithm can determine the optimal
policy through value iteration. Unlike our approach, this
method must learn the transition and reward models for
each state-action pair separately. Learning the models sep-
arately requires the agent to visit each state-action pair m

times, which in large domains can be impractical. Our ap-



proach does use an r-max-like exploration policy when it
knows that its model is incorrect.

Several methods attempt to learn a model of the domain
more efficiently by incorporating generalization into the model
learning in factored domains. slf-rmax [10] learns which
state features are relevant for predictions of the transition
and reward functions. The algorithm enumerates all pos-
sible combinations of input features as elements and then
creates counters of visits and outcomes for all pairs of these
elements. It determines if an element is the only relevant
factor for making a prediction by comparing the values of
all the counters which contain that element. If all of these
counters have m visits and their predictions are all within ǫ

of each other, then this element is the relevant factor. The
algorithm makes predictions when a relevant factor is found
for a queried state; if none is found, the state is considered
unknown. Similar to r-max, the algorithm gives a bonus
of RMax to unknown states in value iteration to encourage
the agent to explore them.

slf-rmax is very similar to r-max, in that it keeps counts
of visits and outcomes for sets of states. Since slf-rmax

can ignore some state features for its counters, it requires
fewer total visits than r-max. Our approach uses a more
powerful generalization technique than slf-rmax. While
slf-rmax can only determine whether certain state features
are irrelevant for a particular set of input features, our al-
gorithm can do this for entire ranges of state features at
once. In addition, rl-dt’s model can be more precise than
slf-rmax, only ignoring parts of the state space instead of
deciding that entire state features are irrelevant. slf-rmax

is also computationally expensive; enumerating every possi-
ble combination of input features and maintaining counters
for all pairs of these combinations can take a prohibitively
long amount of time.

Degris et al. [3] use decision trees to learn a model of
the MDP. A separate decision tree is built to predict each
next state feature as well as the reward. Their algorithm
attempts to predict the absolute transition function, while
our approach is to predict the relative effects of transitions,
which may be easier in many domains. Degris et al.’s algo-
rithm calculates an ǫ-greedy policy through value iteration
based on the model provided by the decision trees. Our ap-
proach differs from theirs by explicitly choosing between an
exploration mode and an exploitation mode. In exploration
mode, our agent follows an r-max-like policy, which pro-
vides a more guided exploration approach than an ǫ-greedy
policy.

5. EXPERIMENTS
We evaluated the sample complexity of rl-dt empirically

in comparison to five other algorithms in three domains.
Each experiment was run over a trial period of 500 episodes.
The results are averaged over 30 independent runs. The
experiments will demonstrate that rl-dt learns a reasonable
policy in fewer samples than other related algorithms by
learning its model more efficiently.

rl-dt was designed with the goal of leveraging the sample
complexity advantages of model-based methods combined
with the advantages of generalization. Therefore we selected
comparison algorithms to evaluate the benefits of generaliza-
tion and model-based methods in these domains. We com-
pared rl-dt with the following algorithms:

• Table-based q-learning [12], a baseline comparison
as it is a simple algorithm that is theoretically proven
to converge.

• q-learning using cmacs [1] as a function approxima-
tor, an example of an algorithm with generalization,
although it has generalization in the value function
rather than in the model.

• r-max [2], a typical example of a model-based rein-
forcement learning algorithm.

• slf-rmax [10], another algorithm that uses generaliza-
tion in learning the model of the domain, and should
learn a model faster than r-max.

• An algorithm based on Degris et al.’s algorithm [3].
This algorithm also uses decision trees, with our im-
plementation of it differing from rl-dt only in its mod-
eling of absolute transitions instead of relative effects
and its ǫ-greedy policy instead of explicit exploration
and exploitation modes.

We chose to compare with SLF-Rmax and Degris et al.’s
algorithms instead of other tree-based methods because they
were the most related to our algorithm.

rl-dt was run with the following parameters. RMax was
set to the maximum one-step reward in each domain. The
parameter maxsteps was set to 5. Based on informal exper-
iments, the algorithm is not particularly sensitive to these
parameters.

q-learning was run with a learning rate of 0.3, ǫ-greedy
exploration with ǫ = 0.1, and action-values initialized to 0.
The cmacs were created using 10 tilings with a width of
four tiles across each state variable. r-max and slf-rmax

were run with m = 10. slf-rmax was run with ǫ = 0.2.
Finally, the algorithm of Degris et al. was run using ǫ-greedy
exploration with ǫ = 0.1.

5.1 Domains
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Figure 2: Taxi

The first domain used in the ex-
periments is the classic Taxi domain
introduced by Dietterich [4]. The
domain, shown in Figure 2, is a 5x5
gridworld with four landmarks that
are labeled with one of the following
colors: red, green, blue or yellow.
The agent’s state consists of its lo-
cation in the gridworld in x, y coor-
dinates, the location of the passen-

ger (a landmark or in the taxi), and the passenger’s des-
tination (a landmark). The agent’s goal is to navigate to
the passenger’s location, pick the passenger up, navigate to
the passenger’s destination and drop the passenger off. The
agent has six actions that it can take. The first four (north,
south, west, east) move the agent to the square in that
respective direction with probability 0.8 and in a perpendic-
ular direction with probability 0.1. If the resulting direction
is blocked by a wall, the agent stays where it is. The fifth
action is the pickup action, which picks up the passenger if
she is at the taxi’s location. The sixth action is the putdown

action, which attempts to drop off the passenger. Each of
the actions incurs a reward of −1, except for unsuccessful
pickup or putdown actions, which produce a reward of −10.
The episode is terminated by a successful putdown action,



which provides a reward of +20. Each episode starts with
the passenger’s location and destination selected randomly
from the four landmarks and with the agent at a random
location in the gridworld.
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Figure 3: Energy

Rooms

We created the second do-
main, Energy Rooms, as an
example of a domain where
actions could be easily gen-
eralized. It is a simple
11x11 gridworld split into four
rooms. In addition to the nor-
mal x and y state features,
the agent also has an energy

level, which ranges from 0 to
10. The agent has four ac-
tions, north, south, east, and
west, which behave the same
as in the Taxi domain. On

each step, there is a probability of 0.8 that the agent’s
energy is reduced by 1 (while energy > 0). The agent
starts at a random location in the upper left room and its
goal is to reach the terminal state in the lower right room
while maintaining energy > 0. There are four squares in
the gridworld, marked E in the figure, that reset the agent’s
energy to 10. The agent receives a reward of −1 on each step
if energy > 0, otherwise it receives a reward of −2. Upon
reaching the terminal state, the agent receives a reward of
0.
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Figure 4: Red Her-

ring

Finally, Figure 4 shows the
Red Herring domain, which
we created to explore a pos-
sible limitation of rl-dt due
to the fact that it does not
necessarily explore the whole
state space. This domain is
made up of a 11x11 gridworld
which is split into four rooms.
The agent has four possible
actions: north, south, east,
and west. Each of these ac-
tions works identically to the
other gridworld domains. The

agent starts in a random location in the upper left room and
gets a reward of −1 for every action. The lower right room
has a terminal state which provides a reward of +50. There
are two “red herring” terminal states in the other two rooms
that provide a reward of 0. The optimal policy in this do-
main is to go to the high-valued terminal state in the lower
right room, but without exploring fully, the agent is likely
to find a policy leading to one of the “red herring” terminal
states.

6. RESULTS
Figure 5 shows the average rewards of each algorithm

over the first 50 episodes of the Taxi domain. slf-rmax

was not run on this domain because the number of coun-
ters needed explodes exponentially with the number of state
features in the domain, making it impractical to run the
algorithm on this domain in a reasonable amount of time.
rl-dt performed better than any other algorithm on the
initial episodes on the domain and converged to the opti-
mal policy in fewer steps than the other algorithms. While
Degris et al.’s method converged to a near-optimal policy
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Figure 5: Average Rewards in Taxi

in fewer episodes, it took many more steps in each of the
early episodes to explore the domain. This difference is re-
flected in Figure 6, which shows the cumulative rewards of
each algorithm over all 500 episodes. rl-dt converged to
the optimal policy faster than any other algorithm and had
higher cumulative rewards than the other algorithms after
every episode of the experiment.

The average rewards of each algorithm over the first 50
episodes in the Energy Rooms domain are shown in Fig-
ure 7. Once again, Degris et al.’s algorithm and rl-dt were
the fastest algorithms to converge to a policy, with Degris et
al.’s algorithm converging in fewer episodes but taking more
actions in each episode to do so. Figure 8 shows the cumula-
tive rewards of each algorithm over the 500 episodes. Both
rl-dt and Degris et al.’s algorithm converged to a near opti-
mal policy quickly and had better cumulative rewards than
the other four algorithms.

The cumulative rewards of each algorithm over the 500
episodes of the Red Herring domain are shown in Figure 9.
This domain shows a failure case for rl-dt, which only found
the high-valued goal in six of the 30 trial runs. Even though
the algorithm did not always converge to the optimal policy,
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Figure 7: Average Rewards in Energy Rooms

it did converge to a policy after fewer steps than any other
algorithm, enabling it to obtain more cumulative rewards
than the other algorithms in many of the episodes of the ex-
periment. rl-dt had better cumulative rewards than every
other algorithm until q-learning with function approxima-
tion passed it in episode 194. Degris et al.’s algorithm was
the second fastest to converge to a policy, but took more
than twice as many steps to converge as rl-dt. In addition,
it only converged to a near-optimal policy in two of the 30
trials. Although in this example it would be possible to find
the optimal policy through exhaustive exploration, in many
larger domains it would be infeasible, thus necessitating de-
cisions about which states to explore. In large domains, it is
acceptable (even necessary) to risk missing the high-valued
states to improve convergence time. In addition, in some
domains the high penalties accrued in early episodes by al-
gorithms that search exhaustively may be unacceptable.

In each of the three domains, rl-dt performed well in
comparison to the other algorithms tested. It had greater
accumulated rewards for every episode of the experiments
run in the Taxi domain and for the first 194 episodes of the
Red Herring domain. Both rl-dt and Degris et al.’s algo-
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Figure 8: Cumulative Rewards in Energy Rooms
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rithm had the highest accumulated rewards on the Energy
Rooms domain. rl-dt obtained higher rewards on the early
episodes of most of the domains, enabling it to accumulate
higher total rewards.

7. DISCUSSION AND CONCLUSION
We have developed an algorithm, rl-dt, which efficiently

learns a model of the domain and uses it to compute a rea-
sonable policy. It is able to learn the model quickly by us-
ing decision trees to generalize the relative effects of actions
across similar states in the domain. In addition, it is able to
perform well in early episodes by employing an explicit ex-
ploration mode where it explores the states with the fewest
visits. These two components of the algorithm allow it to be
more sample efficient and accrue more cumulative rewards
than the other algorithms tested in the three domains.

Our algorithm starts by exhaustively exploring the do-
main until it finds a state with non-negative rewards. Then
it switches into exploitation mode, where it takes the actions
it believes to be optimal. This approach gives it an advan-
tage over other methods such as Degris et al.’s algorithm
that explore randomly. Early in the agent’s experiences,
when it has little knowledge of the domain, it is impor-
tant for the algorithm to have a systematic way of exploring
the domain and finding the states with high-valued rewards.
Our algorithm’s switch to exploitation mode after finding a
rewarding state enables it to outperform algorithms that ex-
plore exhaustively such as r-max, by cutting off exploration
earlier to exploit its model.

This approach of exploring exhaustively early and then
switching to an exploitation mode works well in domains
with a single goal state. In other domains with multiple
goal states, such as the Red Herring domain, it does not
perform as well. In these domains, it would be preferable
to continue exploring after finding the first terminal state
instead of cutting off exploration. In general, our algorithm
will not work well in domains where it would be beneficial to
have more extensive exploration. In addition, our heuristic
of differentiating negative and positive rewards only works
in cases where there is a special state with rewards different
from the other states. If the goal state had the same reward
as all the other states, this heuristic would not work.



In future work, we plan to develop an algorithm where the
agent’s decision to explore or exploit is handled more natu-
rally. One idea is to have the decision trees report confidence
in their predictions for individual states and to use this con-
fidence estimate to drive exploration to specific states where
the model needs improvement.

Since rl-dt generalizes when learning a model of the do-
main, there is a chance that it will not learn the optimal
policy. When the agent is in exploitation mode, it is not
required to visit every state in the domain and therefore the
algorithm may not learn a fully accurate model of the do-
main. In most cases, however, the agent’s exploration policy
worked well. It consistently obtained higher rewards than
the other algorithms in the first episode of the experiments,
showing that its early exploration led it to find a good pol-
icy quickly. In some cases, it may be worthwhile to give up
the guarantee of convergence to optimality in exchange for
quickly converging to a reasonable policy and accumulating
more rewards in early episodes.

One of the main advantages of our method is its use of
decision trees to model the MDP. In every domain, the two
algorithms using decision trees to model the domain con-
verged to a policy the fastest. Decision trees perform well
at this task because they have very powerful generalization
capabilities. The splits in the trees nicely represent the splits
in the state space where actions have different effects (i.e.
near walls vs away from walls, or passenger in taxi vs pas-
senger out of taxi). This approach works better than the
approach in slf-rmax because decision trees are also capa-
ble of very precisely refining the state space, even down to
individual states. Our algorithm performed better than the
other tree-based method in most domains mainly because
it used a targeted r-max-like exploration policy during its
exploration mode instead of ǫ-greedy exploration.

rl-dt learns a model by predicting the relative transitions
of states. This type of model makes the algorithm particu-
larly well suited for domains where the actions incrementally
change the state variables. The experiments in this paper
were performed in gridworld domains, which we believe are
a good starting point for improving sample efficiency. In
future work, we hope to extend this algorithm to work in
continuous domains with relative transitions such as robot
locomotion or mountain car.

Our algorithm was compared empirically with five other
algorithms across three domains. In every case, it obtained
more rewards than the other algorithms on the first episode
of the domain, and greater cumulative rewards than most
of the other algorithms in every episode of every domain
except the Red Herring domain. Even in that domain, rl-dt

had greater cumulative rewards than every other algorithm
for the first 194 episodes of the domain. The high sample
efficiency of rl-dt makes it a good algorithm for large or
agent-based domains where samples may be very expensive.
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