
To appear in Autonomous Agents and Multiagent Systems (AAMAS),
Taipei, Taiwan, May 2011.

Empirical Evaluation of Ad Hoc Teamwork in the Pursuit
Domain

Samuel Barrett
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
sbarrett@cs.utexas.edu

Peter Stone
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
pstone@cs.utexas.edu

Sarit Kraus
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 52900 Israel

sarit@cs.biu.ac.il

ABSTRACT

The concept of creating autonomous agents capable of exhibiting

ad hoc teamwork was recently introduced as a challenge to the AI,

and specifically to the multiagent systems community. An agent ca-

pable of ad hoc teamwork is one that can effectively cooperate with

multiple potential teammates on a set of collaborative tasks. Pre-

vious research has investigated theoretically optimal ad hoc team-

work strategies in restrictive settings. This paper presents the first

empirical study of ad hoc teamwork in a more open, complex team-

work domain. Specifically, we evaluate a range of effective algo-

rithms for on-line behavior generation on the part of a single ad

hoc team agent that must collaborate with a range of possible team-

mates in the pursuit domain.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]

General Terms

Algorithms, Experimentation

Keywords

Ad Hoc Teams, Agent Cooperation: Teamwork, coalition forma-

tion, coordination, Agent Reasoning: Planning (single and multi-

agent), Agent Cooperation: Implicit Cooperation

1. INTRODUCTION
Autonomous agents, both of the software and robotic varieties,

are becoming increasingly common and accepted as a part of day to

day life. More often than not, these agents are deployed in settings

in which they are aware ahead of time of what other agents they will

encounter. In multiagent team settings, the teammates are usually

deployed at the same time and by the same developers or users.

However, as agents become more robust and therefore more re-

lied upon, they are likely to be deployed for longer periods of time

and in less controlled teamwork settings. When that happens, these

agents will need to be prepared to cooperate with many different

types of teammates. For example, in a software setting, an agent

may need to create travel plans for a client by interacting with other

agents that it has not encountered before.

Cite as: Empirical Evaluation of Ad Hoc Teamwork in the Pursuit Do-
main, Samuel Barrett, Peter Stone, and Sarit Kraus, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. XXX-XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

In a recent AAAI challenge paper, Stone et al. defined an ad hoc

team setting as a problem in which team coordination strategies

cannot be developed a priori [15]. They presented an evaluation

framework for measuring the ad hoc teamwork capabilities of an

agent and summarized previous theoretical results. Although they

emphasized that the ad hoc teamwork challenge is “ultimately an

empirical challenge,” to the best of our knowledge, there have not

yet been any empirical evaluations of strategies for ad hoc team-

work.

This paper fills that gap. Specifically, using the evaluation frame-

work from the aforementioned challenge paper, we evaluate and

compare strategies for ad hoc teamwork in the popular pursuit do-

main from the multiagent systems literature [1]. In this domain,

four predators must collaborate to capture a prey. In the usual set-

ting, strategies for a full team of predators are evaluated together.

In contrast, we study the effectiveness of an individual ad hoc team

agent’s strategy when combined with various sets of teammates.

We begin with the simplest case in which the agent’s teammates

are homogeneous and behave deterministically, and the agent has

a full model of their behavior (though it only learns of this behav-

ior at the last minute: it still needs to determine its own behavior

online). We then consider progressively more difficult scenarios in

which the teammates are stochastic, heterogeneous, unknown but

drawn from a distribution of types, and eventually completely un-

known a priori. In so doing, we compare several different success-

ful methods for generating teamwork behavior online. These meth-

ods range from optimal, but computationally complex, solutions

to efficient, approximate sampling-based methods that incorporate

Bayesian updates over the space of possible teammate behaviors.

The primary contribution of this paper is the initial empirical

evaluation of ad hoc teamwork strategies. We present detailed anal-

yses of extensive controlled empirical tests comparing generally

applicable and effective algorithms for ad hoc teamwork.

The remainder of the paper is organized as follows. Section 2

describes our problem setting, including the testbed domain and

evaluation framework. Section 3 introduces the space of teammates

with which we test our ad hoc team agent, and Section 4 fully spec-

ifies the on-line behavior planning algorithms that we evaluate for

the purposes of ad hoc teamwork. Section 5 presents the main con-

tribution, namely detailed empirical results and analysis. Section 6

situates our contribution in the literature, and Section 7 concludes.

2. PROBLEM DESCRIPTION
The focus of this paper is an empirical evaluation of ad hoc

teams. To this end, we present a well defined testing domain that

requires the cooperation of a team, but still relies on each team

member performing intelligently. Also, we specify a framework for

evaluating and comparing the performance of ad hoc team agents.

(a) Random starting
position

(b) One capture posi-
tion

(c) Another capture
position

Figure 1: Start and capture positions in the pursuit domain. The green
rectangle is the prey, the red ovals are predators, and the red oval with the
star is the ad hoc predator (the one under our control that is being evaluated).

2.1 Pursuit Domain
The pursuit domain was introduced by Benda et al. [1] and has

been used frequently in the multiagent systems literature [18]. This

problem is well suited for ad hoc team research as it requires co-

operation between the agents; no agent can accomplish the task by

itself regardless of its abilities. There are many variations of the

pursuit domain, but they all involve a set of predators whose aim

is to “capture” a prey, though the mechanics of the world and the

definition of “capture” vary. A common formulation that we adopt

is that the world is a toroidal grid and the predators must block all

possible moves of the prey. For this work, we use a single prey and

four predators, with only left, right, up, down, and no-op move-

ments. We use a simple prey behavior that moves randomly.

Note that the world is a torus, so moving off one side of the world

brings the agent back on the opposite side. This means that all four

predators are required to capture the prey; it is not possible to trap

the prey against the side of the board. Each agent can observe the

positions of all other agents, but the agents are not capable of ex-

plicit communication. Agents start in random positions and select

their actions simultaneously at each time step. Collisions are han-

dled by ordering the agents, including the prey, randomly each time

step, and performing moves in this order. If an agent’s desired des-

tination is occupied, the agent stays in its current location. Exclud-

ing collisions, all action effects are deterministic. Examples of the

starting positions and capture positions can be found in Figure 1.

2.2 Ad Hoc Team Agent
For the purpose of comparing potential ad hoc team agents, we

adopt the evaluation framework introduced by Stone et al. [15] and

reproduced in Algorithm 1. According to this framework, the qual-

ity of an ad hoc team player depends on both the domainD and the

set of possible agentsA that the ad hoc agent will interact with. The

algorithm compares agents a0 and a1 as potential ad hoc teammates

of agents drawn from the set A collaborating on tasks drawn from

domain D. Note that s(B, d) is a scalar score resulting from the

team B executing the problem d, where higher scores indicate bet-
ter team performance and smin is a minimum acceptable reward.

Throughout this paper, the domainD is the pursuit domain as de-

scribed in Section 2.1. We consider each task d ∈ D to be defined

by the starting positions of the agents, the sequence of moves to be

made by the prey, and the agent orderings for collisions. Therefore,

if two different ad hoc agents perform the same actions on the same

task, they will end with the same reward. The possible teammates

comprising the set A are described next in Section 3.

3. AGENT DESCRIPTIONS
In order to meaningfully test our proposed ad hoc teamwork al-

gorithms, we implemented four different predator algorithms with

varying and representative properties. The deterministic greedy

predator mostly ignores its teammates’ actions while the determin-

istic teammate-aware predator tries to move out of the way of its

teammates, but it also assumes that they will move out of its way

Algorithm 1 Ad hoc agent evaluation

Evaluate(a0 , a1 , A,D):

• Initialize performance (reward) counters r0 and r1 for agents
a0 and a1 respectively to r0 = r1 = 0.

• Repeat:

– Sample a task d fromD.

– Randomly draw a subset of agents B, |B| = 4, from A
such that E[s(B, d)] ≥ smin.

– Randomly select one agent b ∈ B to remove from the

team to create the team B−.

– Increment r0 by s({a0} ∪B−, d)
– Increment r1 by s({a1} ∪B−, d)

• If r0 > r1 then we conclude that a0 is a better ad hoc team

player than a1 in domain D over the set of possible team-

mates A. Similarly, if r1 > r0 then a1 is better.

when needed. We expect these differences to require the ad hoc

agent to adapt and reason about how its actions will interact with its

teammates’ actions. In addition to these two deterministic agents,

we created two stochastic agents that select an action distribution at

each time step. We expect it to be fairly trivial for the ad hoc agent

to differentiate the deterministic agents, but harder to differentiate

the stochastic agents. Finally, we tested our agent’s ability to coop-

erate with a number of other agents for which it had no model.

(a) Configuration 1 (b) Configuration 2

Figure 2: World configurations that differentiate the predators’ behaviors.

We will now introduce some notation to simplify the predator

descriptions. Assume that a predator is at position (x, y) and is

trying to move to a destination (x′, y′) on a world of size (w, h).

∆x = (x′ − x)modw ∆y = (y′ − y)modh
dimmin = argmin(∆x,∆y) dimmax = argmax(∆x,∆y)

mi = argmin
moves

∆i

Thus, mi is the move that minimizes the difference to the destina-

tion for dimension i, and mi is the move in the opposite direction.

The stochastic agents use the softmax activation function, which

assigns probabilities to a set of values, favoring the higher values.

The temperature, τ , controls the amount of this bias, with values

closer to 0 resulting in higher probabilities of the maximum value.

If v(i) is the value of option i, the probability of option a is

p(a) =
exp(v(a)/τ)

∑n

i=1
exp(v(i)/τ)

To clarify the predators’ behaviors, we will show examples of

their action selection on the cases shown in Figure 2, looking at the

actions taken by the starred agent. The letters in the figure indicate

the destination of the agent after taking one step. Note that none

of the predators we created ever choose to stay still, so we do not

label that action here.

3.1 Greedy Predator
The greedy predator selects the nearest unoccupied cell neigh-

boring the prey, and tries to move towards it while avoiding imme-

diate obstacles. It follows the following rules in order.

• If already neighboring the prey, try to move onto the prey so

that if it moves, the predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as

the destination.

• Let d = dimmax. If md is not blocked, take it.

• Let d = dimmin. If md is not blocked, take it.

• Otherwise, move randomly.
For example, using the configurations shown in Figure 2 and tak-

ing actions as the starred agent, if the starred agent were a Greedy

predator, it chooses the move taking it to cell C in configuration 1,

and B in configuration 2. On average, a team of all Greedy preda-

tors captures the prey in 7.74 steps on a 5x5 world.

3.2 Teammate-aware Predator
The teammate-aware predator considers its teammates’ distances

from the prey when selecting its destination and uses A* path plan-

ning (an optimal heuristic search algorithm) [10] to avoid other

agents, treating them as static obstacles. In contrast to the greedy

predator, a teammate-aware predator that is already neighboring the

prey may move towards another neighboring cell to give its spot to

a farther away teammate. It is implemented as follows.
• Calculate the distance from each predator to each cell neigh-

boring the prey.

• Order the predators based on worst shortest distance to a cell

neighboring the prey.

• In order, the predators are assigned the unchosen destination

that is closest to them (without communication), breaking

ties by a mutually known ordering of the predators.

• If the predator is already at the destination, try to move onto

the prey so that if it moves, the predator will follow.

• Otherwise, use A* path planning to select a path, treating

other agents as static obstacles.
For the configurations shown in Figure 2, a Teammate-aware preda-

tor in the position of the starred predator chooses the move taking it

to cell D in configuration 1, and C in configuration 2 (note that since

the world is a torus, this is a single move). A team of Teammate-

aware predators captures the prey in 7.41 steps on a 5x5 world.

3.3 Greedy Probabilistic Predator
The greedy probabilistic predator moves towards the nearest cell

neighboring the prey, but does not always take a direct path there.

The predator favors minimizing dimmax and prefersmdim overmdim.

• If already neighboring the prey, try to move onto the prey so

that if it moves, the predator will follow.

• Choose the nearest unoccupied cell neighboring the prey as

the destination.

• Given a destination, choose a dimension, d, to minimize us-

ing the softmax function with temperature 0.5 using the dis-

tance as v.
• Choose either md or md using the softmax function with

temperature -0.5, using the distance after the move as v, but
penalizing moves that are currently blocked.

On configuration 1 from Figure 2, the predator is deterministic,

choosing the action taking it to position C. On configuration 2, it

selects a distribution of actions, specifically the moves taking it to

cells A, B, C, and D with probabilities 0.000, 0.879, 0.119, and

0.002. On a 5x5 world, a team of Greedy Probabilistic predators

captures the prey in 12.88 steps.

3.4 Probabilistic Destinations Predator
The probabilistic destinations predator attempts to tighten a cir-

cle around the prey. It favors destinations that are both nearer to the

prey and to itself, but may choose farther destinations to prevent

getting stuck on other predators and dealing with a moving prey.

• If already neighboring the prey, try to move onto the prey so

that if it moves, the predator will follow.

• Select a desired distance from the prey using the softmax

function with temperature -1 using the distance as v.
• Select a destination at the chosen distance using the softmax

function with temperature -1 weighted by the distance of the

destination to the predator’s current position.

• Let d = dimmax, and select md.

• If the destination or the next position is occupied, repeat.

For the configurations in Figure 2, a Probabilistic Destinations preda-

tor would select the move ending in C in configuration 1. On con-

figuration 2, it would select actions taking it to cells A, B, C, and

D with probabilities 0.007, 0.596, 0.388, and 0.009. A team of

predators following the Probabilistic Destinations behavior capture

in 9.19 steps on a 5x5 world.

3.5 Student-created Predator
In some situations, an ad hoc team agent may be aware of the

space of possible behaviors from which its teammates are drawn.

However in other cases, it may not know anything about them. To

fairly test the latter scenario, we incorporated into our testing a

number of agents that we did not create. Specifically, we used a

set of agents created by undergraduate and graduate Computer Sci-

ence students for an assignment in a workshop on agents. These

students were initially provided with a skeleton agent and then it-

eratively improved their agent.

As one might expect from a class, there was a wide variety in

the quality of the agents that were submitted. In order to ensure a

base level of competence, we only considered agents that were able

to capture the prey within 15 steps on average on a 5x5 world (i.e.

smin = 15 in Algorithm 1). Out of the 41 agents submitted, 12 of

the agents met this threshold.

Due to space constraints, we cannot fully describe all of the stu-

dent agents used, but here we highlight some interesting cases. One

student focused on avoiding collisions at cells neighboring the prey.

Therefore, this student assigned the predators an arbitrary ordering

and had each predator only consider blocking a specific direction

chosen based on the assigned ordering. This strategy works if all

the predators have mutually complementary assignments, but can

create inefficiencies when the predators start far from their desired

blocking directions.

The highest performing agent from the class performed better

than any of our agents on the 5x5 world, capturing in only 4.05

steps on average. This agent considers all the cells neighboring the

prey, and then considers all possible assignments of these destina-

tions to the predators. For each possible assignment, it calculates

the distance from each predator to its destination. Then, it chooses

the assignment that minimizes the sum of these distances. Finally,

each predator chooses the move that minimizes its distance to the

selected destination. This agent performs quite well, although it

does not seek to avoid collisions among the predators.

4. PLANNER DESCRIPTIONS
As is clear from the evaluation framework described in Sec-

tion 2.2, the main thing that distinguishes one ad hoc team agent

from another is its strategy for planning and selecting actions as a

function of the current task d and current set of teammates B−. In

this section we describe the ad hoc teamwork planning algorithms

that we test in this paper.

One might think that the most appropriate thing for an ad hoc

team agent to do is to “fit into” the team by following the same be-

havior as its teammates. However, in some cases, it is possible for

the ad hoc team agent to improve on this or even solve for the opti-

mal behavior, if the agent has a full model of its teammates’ behav-

iors. Even without such a model, the ad hoc agent can approximate

the optimal behavior. Indeed, in our tests, we found situations in

which model-based planning even with an imperfect model outper-

forms the ad hoc agent mimicking its teammates’ behaviors.

In some cases, the ad hoc team agent may “recognize” its team-

mates and be able to use its stored knowledge of their behaviors to

plan its own actions. This situation is still an ad hoc team setting

because the agent must generate its strategy on-line: it does not

know in advance whom its teammates will be.

4.1 Value Iteration
When there is a fully known model of the environment and each

agent, the ad hoc team agent can treat the domain as a Markov

Decision Process (MDP) and can solve for the optimal behavior

using Value Iteration (VI) [19]. Value iteration relies on dynamic

programming to solve the optimal state-action values for all state-

action pairs. VI initializes the state-action values arbitrarily, and

then improves these estimates using an update version of the Bell-

man optimality equation:

Q(s, a) =
∑

s′

P a
ss′

[

Ra
ss′ + γmax

a′

Q(s′, a′)

]

where Q(s, a) is the long term expected reward of taking action a
from state s, P a

ss′ is the probability of transitioning from state s to
state s′ after taking action a, Ra

ss′ is the corresponding reward, and

γ is the discount factor. These updates are repeated iteratively until

convergence. The state-action values calculated by VI are guaran-

teed to be correct.

However, the problem space is exponential in the size of the

world, with a power proportional to the number of agents. The use

of symmetries can reduce the size of this space, but in our tests, VI

on a 5x5 world took approximately 12 hours on the [[removed for

blind review]] computing cluster. Due to the exponential blowup

of the state space, there are 1005 states in a 10x10 world (without

using symmetries) as opposed to 255 in a 5x5 world, so running VI
on larger worlds was unfeasible.

4.2 Monte Carlo Tree Search
When the state space is large and only small sections of it are

relevant to the agent, it can be advantageous to use a sample-based

approach to approximating the values of actions, such as Monte

Carlo Tree Search (MCTS). Specifically, we use the MCTS algo-

rithm called Upper Confidence bounds for Trees (UCT) as a start-

ing point for creating our algorithm [13].

MCTS does not require the complete model of the environment;

it only needs a way of sampling the effects of selected actions. Fur-

thermore, rather than treating all of the state-actions as equally

likely, UCT focuses on calculating only the values for relevant

state-actions. UCT does so by performing a number of playouts

at each step, starting at the current state and sampling actions and

the environment until the end of the episode. It then uses these

playouts to estimate the values of the sampled state-action pairs.

Also, it maintains a count of its visits to various state actions, and

estimates the upper confidence bound of the values to balance ex-

ploration and exploitation. UCT has been shown to be effective in

games with a high branching factor, such as Go [7], so it should be

able to handle the branching factor caused by the number of agents.

We modify UCT to use eligibility traces and remove the depth in-

dex to help speed learning in the pursuit domain. The pseudocode

of the algorithm can be seen in Algorithm 2, with s being the cur-

rent state. Similar modifications were made by Silver et al. with

good success in Go [14].

Algorithm 2 The Monte Carlo Tree Search algorithm used by our

ad hoc agent.

function Select(s):
for i = 1 to NumPlayouts do

Search(s)
return a = argmax

a

Q(s, a)

function Search(s):
a = bestAction(s)
while s is not terminal do

(s′, r) = simulateAction(s, a)
a′ = bestAction(s′)
e(s, a) = 1
δ = r + γQ(s′, a′)−Q(s, a)
for all s∗, a∗ do

Q(s∗, a∗) = Q(s∗, a∗) + e(s∗, a∗) ∗ δ/visits(s∗, a∗)
e(s∗, a∗) = λe(s∗, a∗)

s = s′; a = a′;

4.3 Planning for uncertainty
Both of the planners described above assume that some kind of

a model of the environment is known. However, it is likely that the

ad hoc team agent has some uncertainty about the behavior of its

teammates. One possibility is that the agent has a prior probability

distribution over a set of possible behaviors, representing its belief

of the likelihood of its teammates following this behavior. As the

ad hoc agent gets more information about the agents from their

actions, it should update its belief using Bayes theorem:

P (model|actions) =
P (actions|model) ∗ P (model)

P (actions)

If the agent has a complete model of each of the teammate types and

a prior beliefP (model), it can calculateP (actions|model). Finally,
P (actions) can just be treated as a normalizing factor, to make the

probabilities of the various models sum to 1.

Using this method, the MCTS-based agent can keep track of the

probabilities of the different behaviors, and sample the environment

accordingly. For Value Iteration, the exact solution requires recal-

culating the correct Q-values for each new set of probabilities, but

this was not feasible for our tests. Therefore, we approximate the

VI solution using a linear combination of the Q-values learned for

each set of teammates:

Q(s, a) = p1 ∗Q1(s, a) + p2 ∗Q2(s, a) + . . .+ pn ∗Qn(s, a)

where pi = P (modeli|actions) and Qi(s, a) are the Q-values cal-
culated for modeli. Note that this is not guaranteed to be correct,

but it works well in practice and gives us a baseline of how well

an ad hoc agent can do. However, this approach still requires the

ad hoc agent to know that the teammates are using one of several

known behaviors.

4.4 Learning to model teammates
Sometimes the ad hoc agent will encounter teammates that do

not come from its set of known behaviors, so it may need to learn

a model of these teammates. To learn a model of the teammates,

we used an implementation of the C4.5 algorithm for generating

decision trees, provided in WEKA [9]. The decision tree was given

the absolute x and y coordinates of each agent in the world, and

attempted to predict the action that the agent would take in that

world state. However, the ad hoc agent does not directly observe

its teammates’ actions; it only observes the results of the actions.

For the training data, these actions were approximated by observing

the agents’ movements. If the agent did not move, it may have

chosen not to move or it collided, so the decision tree is given both

possibilities, weighted by the probability that each occurred.

In this case, the ad hoc agent starts with no information about

these agents and has only a single episode to learn about its team-

mates, so it must adapt over a short period of time. In this paper, we

assume that all the teammates are running the same algorithm, so

we use a single decision tree to learn about the behaviors of all the

teammates. Thus the decision tree is given three additional obser-

vations of the agents’ actions at each time step. The ad hoc agent

continues to use its set of known models to plan as it builds the

model, tracking the probabilities of these models and the learned

model using the Bayesian updates as in Section 4.3. The idea is

that the agent will use the known models for its initial planning

until it encounters actions that these models would not predict, at

which time it will increase its reliance on the learned model.

Due to the extreme paucity of data available to the learner, it

would be difficult to learn a useful model over the course of a single

episode. Surprisingly, our empirical results in Section 5.6 indicate

that this form of model learning is beneficial.

5. RESULTS
In this section, we evaluate and thoroughly analyze the planning

algorithms in Section 4 in a series of increasingly open-ended ad

hoc team scenarios. These results constitute the main contribution

of this paper.

In all of our experiments, we use the evaluation framework dis-

cussed in Section 2.2. For each test, D is the set of all valid start-

ing positions of the agents. For each episode, the starting position

is randomly selected, but these positions are held constant across

evaluations of the different agents. Similarly, other random factors

such as the prey’s action selection and collision tie-breakers are

fixed with the starting positions. Therefore, if two ad hoc agents

execute the same sequence of actions on the same problem, their

results will be exactly the same. This approach controls for ran-

domness in the environment and makes differences in the ad hoc

agent’s behavior the only cause for differences in the results.

For the first set of experiments, we assume that the behavior of

the teammates is known at the start of the episode (though not be-

fore), and that this behavior is deterministic (Section 5.1). Even

though the ad hoc team agent has a full model of its teammates,

this scenario is still an ad hoc teamwork setting because there is no

opportunity for the team to coordinate prior to starting the task: the

agent must determine its strategy online. In the second set of ex-

periments, we relax the constraint that the teammates’ behavior is

deterministic and investigate stochastic agents (Section 5.2). Next,

we explore the performance of the ad hoc agents when the team-

mates’ behavior is not exactly known, but is instead known to be

drawn from a set of known behaviors (Section 5.3). Then, we mix

the teammate types to see how the ad hoc agent could cope with

unplanned teams and select the correct model from a large set of

possible models (Section 5.4). In Section 5.5, we test against a set

of agents that we did not create and that do not fit the models given

to the ad hoc agent. Finally, we enable the agent to learn models on

the fly to deal with these agents (Section 5.6).

For these tests, we compare against value iteration on the 5x5

worlds as it defines the optimal policy for the ad hoc agent, but we

were unable to practically run VI on larger worlds as discussed in

Section 4. In the graphs, we use VI(Greedy) and MCTS(Greedy)

to indicate that the planning was performed treating the teammates

as Greedy Predators, and we do likewise for VI(Teammate-aware),

etc. Note that all of the predators on a team follow the same behav-

ior for Sections 5.1–5.3, but not necessarily for Sections 5.4–5.6.

In all cases, a lower number on the graphs is better, as it means

that it took fewer steps to capture the prey. All results are aver-

aged for 1,000 runs, but note that the ad hoc agent does not keep

any knowledge between runs. All statistical tests are performed as

paired Student-T tests to control for the randomness caused by the

starting positions of the tests. The error bars shown are given as σ
n
,

where σ is the standard deviation of the lengths of the runs and n
is the number of runs (1,000).

5.1 Deterministic known teammates
For our initial tests, we consider the simple case in which the ad

hoc agent has an exact model of its teammates and its teammates

are deterministic (either Greedy or Teammate-aware). These tests

are designed to determine whether the ad hoc agent can do better

than just mimicking its teammates, and how effective MCTS is at

approximating the optimal behavior found by VI.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 3: Results with known deterministic teammates.

The results in Figure 3 show that the ad hoc agent can do much

better than just copying the behavior of its teammates. Following

the optimal behavior found by VI achieves capture in 5.19 and 5.92

steps respectively when cooperating with Greedy and Teammate-

aware teammates as opposed to 7.74 and 7.41 steps when mim-

icking their behavior. These differences are statistically significant

with p < 0.001. The improvements of planning over mimicking

the teammates increase as the worlds get larger, although we use

MCTS to approximate the optimal behavior for these worlds.

We verify that this use of MCTS is not much of a compromise,

since it performs nearly as well as VI despite using much less com-

putation time. In the 5x5 world, it takes 5.50 and 5.92 steps to

capture with Greedy and Teammate-aware agents, as opposed to

VI’s 5.19 and 5.66 steps. The difference with the Greedy team-

mates is statistically significant (p = 0.0244), but the difference

with the Teammate-aware teammates is not significant. The differ-

ence in performance could be lowered by using more playouts in

the MCTS at the cost of more computation time. Given the close

approximation to optimal that MCTS provides, the most important

difference between the methods is the time it takes to plan. On the

5x5 world, MCTS episodes take on average less than a minute com-

pared to VI’s 12 hour computation (although VI only needs to run

once, rather than for each episode). Furthermore, MCTS is an any-

time algorithm, so it can be used to handle variable time constraints

and can modify its plan online as the models change.

The results also show that having an incorrect model of your

teammates can be costly. Even simply playing the Teammate-aware

behavior when your teammates play Greedy hurts the team by a

large amount. Intuitively, this seems odd as the ad hoc agent play-

ing smarter should help the team, but the Teammate-aware behavior

relies on its teammates also moving out of its way, which will not

happen with Greedy teammates. Planning as if your teammates are

Greedy, when in fact they are Teammate-aware is costly when mim-

icking their behavior or when planning using VI or MCTS. On the

5x5 world, using the wrong model results in taking 13.75, 9.92, and

9.97 steps to capture for the mimic, VI, and MCTS cases, respec-

tively, when the teammates are in fact Teammate-aware as opposed

to 7.41, 5.66, and 5.92 steps when using the correct models.

5.2 Known stochastic teammates
We now consider the case where the ad hoc agent once again

has an exact model of its teammates, but this time its teammates’

behavior is stochastic (either Greedy Probabilistic or Probabilis-

tic Destinations). The goal was to test whether the ad hoc agent

could plan for agents choosing from several possible actions at any

time step. VI uses the entire probability distribution of possible

outcomes to update its values, while MCTS samples from this dis-

tribution to approximate the values.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 4: Results with known stochastic teammates.

Figure 4 shows that theMCTS-based and VI-based agents are ca-

pable of planning with this uncertainty, and still significantly out-

perform mimicking the behavior of its teammates. Similar to the

deterministic results, MCTS performs nearly as well as VI taking

7.84 and 6.07 steps versus 7.63 and 5.82 steps with Greedy Prob-

abilistic and Probabilistic Destinations teammates respectively on

the 5x5 world. These differences are significant, but MCTS still

does a good job of approximating the optimal behavior.

On the larger worlds, the performance of MCTS is much bet-

ter than copying its teammates. For example, on the 20x20 world,

the MCTS-based agent takes 24.00 steps to capture when cooperat-

ing with Greedy Probabilistic teammates compared to 78.48 steps

when mimicking the teammates’ behavior. Similarly, the MCTS-

based agent takes 24.39 steps rather than 173.46 steps when paired

with Probabilistic Destinations teammates.

Unlike the deterministic case, using an incorrect model for the

teammates is not a large penalty with these agents. We believe that

this is due to the overlap in the possible actions taken, and that

the plans must be fairly robust to unexpected actions due to the

stochasticity of the teammates.

5.3 Unknown stochastic teammates
Expanding the problem once again, all four predators used in the

previous tests were used for this test, i.e. the Greedy, Teammate-

aware, Greedy Probabilistic, and Probabilistic Destinations behav-

iors were used. Furthermore, the ad hoc agent did not know which

of the four types of behavior its teammates were using. This setting

gets us closer to the general ad hoc teamwork scenario, because it

shows how well an ad hoc agent can do if it only knows that its

teammates are drawn from a larger set A of possible teammates.

If it has a set of possible models for its teammates, ideally the

ad hoc agent should be able to determine which model is correct

and plan with that model appropriately. The VI and MCTS agents

use the algorithm described in Section 4.3 to calculate the proba-

bilities of each model. For both the MCTS and VI based ad hoc

agents, we used a uniform prior over the teammate types, but as-

sume that its teammates are homogeneous; i.e. there were no teams

with some agents following the Greedy behavior and others follow-

ing the Teammate-aware behavior. It is fairly trivial to differentiate

the deterministic agents because as soon as they take one action that

does not match the deterministic behavior, that incorrect model can

be removed. However, the stochastic teammates are more difficult

to differentiate, as there is significant overlap in the actions that are

possible for them to take.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 5: Results with unknown stochastic teammates. MCTS(All) means
that the MCTS-based agent planned considering all homogeneous teams
of the known predator models according to the current probabilities of the
models.

The results in Figure 5 show that both the VI and MCTS agents

perform well despite this uncertainty and determine which model

its teammates are following when given the set of possible models.

These results are not quite as good as if the agent had the correct

models to start with, but still perform quite well. For example,

on the 20x20 world, if the ad hoc agent knew its teammates were

using the Probabilistic Destinations behavior, it took 26.14 steps to

capture, while if it needed to select the correct model, it took 27.83

steps. On the other hand, if it mimicked its teammates, the team

would have taken 173.46 steps to capture the prey.

5.4 Mixed stochastic teammates
To this point, all of the teammates have used the same behavior, a

fact which was known to the ad hoc team agent. In this section, we

remove that restriction, thus significantly increasing the size of the

possible set of agents A, specifically from 4 to 43 = 64 possible

teams. Doing so again moves us towards the general ad hoc team

problem, where teammates may be following a variety of behaviors

and may not be coordinating with one another.

Note that the teammate types were fixed for each problem, so

this variance does not affect the different ad hoc agents’ evalu-

ation. As shown in Figure 6, following any of the fixed preda-

tor types achieved fairly poor results. However, the MCTS-based

agent with the knowledge that any mix of the teammates was pos-

sible performs quite well. It learns which behaviors its teammates

are likely to be following and adapts appropriately. For example,

on the 20x20 world, the MCTS agent takes 20.19 steps to capture

rather than 96.32 if it randomly chooses a model to mimic (labeled

“Mixed” in the graphs). We were unable to run VI on this case, as it

would have had to learn the optimal behavior for each combination

of agents (43 = 64 possible teammate combinations).

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 6: Results with mixed teams of stochastic teammates. The Mixed re-
sults are from the ad hoc agent randomly choosing a known predator model
to mimic. MCTS(Mixed) refers to a MCTS-based agent that plans con-
sidering all heterogeneous teams of the known predator models, sampled
according to the current probabilities of the models.

5.5 Unmodeled teammates
To this point, the ad hoc team agent has always had the benefit of

a full model of all the teammates in A, even when it has not known

a priori which types its teammates were. We now consider the case

where there are agents in A for which the ad hoc team agent does

not have a prior behavior model. Instead, we give the agent the

same four models from before, and see how well it handles agents

not following those models. To make sure we have not biased the

creation of these agents, and that they truly are unknown, we used

the student agents described in Section 3.5. Note that all the agents

on each team used here are produced by the same student: we did

not mix and match agents from different students. However, on

some of the students’ teams, not all of the agents use the same

behavior. As before, the ad hoc agent does not store information

between trials, so any learning happens during a single episode.

In this section, the ad hoc agent maintains the probabilities of the

four known models as before and samples from this distribution.

It does not actively consider the possibility that the teammates are

unknown. Also, it assumes that all its teammates are using the same

model, so it does not consider heterogeneous teams of the known

models. Note that it is possible for the probability of all models to

drop to 0 after a move if no known model would select that move.

In this case, the agent just maintains the previous probabilities.

The results in Figure 7 show that the ad hoc agents do quite well

despite the incorrect models. For example, on the 20x20 world,

the MCTS agent captures in 26.47 steps rather than in 37.83 steps

if it followed the student’s behavior for the fourth agent. This is

surprising because one would assume that planning using an incor-

rect model would perform worse than playing the behavior of the

student’s agent that the ad hoc agent replaced. Also, if the ad hoc

agent follows any single one of its known models, it performs much

worse than this baseline. So the ability to adapt and select the best

known model at that time helps the ad hoc agent. This experiment

shows that it is possible for an agent to cooperate with unknown

teammates by using a set of known, representative models.

(a) 5x5 World (b) 10x10 World

(c) 20x20 World

Figure 7: Results with student teams.

5.6 Learning to model teammates
In Section 5.5, the ad hoc agent tried to deal with the unknown

agents as if they were one of the known models. Although this

works fairly well in practice, the other agents may differ signif-

icantly from the known models, so it is desirable for the ad hoc

agent to learn to model these agents as in Section 4.4. However,

the ad hoc agent is given a very short time to learn, so we still use

the set of known models and add an extra model that will be learned

on the fly.

The results in Figure 8 show that learning a model of the team-

mates can improve performance over pretending that the teammates

are following a known algorithm. Specifically, the MCTS-based

agent using the learned model captured the prey in an average of

7.98 steps, as opposed to 10.26 when the agent only considered

the known models. Furthermore, this is also an improvement over

using the student’s fourth agent, which captured in 10.40 steps on

average.

This positive result is surprising due to the small number of train-

ing examples given to the agent. The episodes only lasted about

nine steps on average, so the decision tree was being trained on

only 27 training examples by the end of an episode on average.

However, the learned model does not need to represent the entire

action model of the teammates: only the states which occur. The

visited number of states is likely to be small, and teammates are

likely to act similarly in the visited states. Therefore, this model is

much simpler to learn than a complete model. Also, we believe that

a main advantage of learning the model was to prevent situations

in which the agents became stuck due to collisions and incorrect

predictions of the ad hoc agent.

The known models also provide a good starting point for the ad

hoc agent, and it may not need to rely on the learned model too

much. In our tests, for the final step of each episode, the ad hoc

agent put 0.67 weight on the learned model on average, and that

model was correct only 0.26 of the time. So the agent relied on the

model, despite its inaccuracies. We theorize that the good perfor-

mance of the system is due to the fact that it increases the options

that the ad hoc agent considers, preventing it from being restricted

to the actions of the known models. By itself, it is unlikely that this

model would be sufficient for the agent, but when the agent uses

both the learned and known models, it performs quite well.

6. RELATEDWORK
The ad hoc team formulation and evaluation framework was pro-

posed by Stone et al. [15], and there have been a few theoretical

analyses of specific applications of ad hoc teams [16, 17]. Other

(a) 5x5 World

Figure 8: Results of learning models with student teams.

work in this area (though prior to the introduction of the ad hoc

teamwork challenge) includes Brafman and Tennenholtz’s work in

which one agent teaches another while engaging in a repeated joint

activity [2]. Knudson and Tumer have also investigated ad hoc

teams, but in a significantly different framework [12]. Unlike our

work, all of their agents adapt, and each agent is given a clear metric

of its effect on the team’s performance in the form of a difference

objective. Furthermore, they learn over 2,000 episodes rather than

our single episode. On the other hand, most prior work on coordi-

nating teams of agents relies on explicit protocols for coordinating

such as SharedPlans [8], STEAM [20], and GPGP [6]. Our work

does not require these shared protocols, and does not even require

the teammates to know of the ad hoc agent’s existence.

The ad hoc team framework is similar to the existing opponent

modeling problem. The ad hoc agent needs to model and under-

stand its teammates, just from observing their actions, similar to

opponent modeling. However, the ad hoc agent does not need to

assume the worst case scenario; its teammates are not rational ad-

versaries. In the area of opponent modeling, Conitzer and Sand-

holm created AWESOME, an algorithm that achieves convergence

and rationality in repeated games [5]. Furthermore, Chakraborty

and Stone have developed an algorithm for repeated games that

handles arbitrary opponents safely and exploits memory bounded

opponents [4]. This work makes weak assumptions about the ad-

versaries, but it requires long learning times and assumes that all

agents can calculate the same Nash equilibrium. Our work makes

stronger assumptions about our teammates, but learns faster and

makes no requirements about calculating Nash equilibria.

The pursuit domain is a well studied problem in multiagent re-

search [18], but most research has focused on developing a coor-

dinated team. However, some work has been done on learning to

adapt to teammates. Chakraborty and Sen focus on having team-

mates teach novice predators, but they assume that the novices are

trying to learn and share a known training protocol [3]. On the

other hand, we assume that there is no shared protocol for training

agents, and that there is only a single episode in which to adapt.

Other work in the pursuit domain includes MAPS [21], which con-

siders partially observable environments and more sophisticated

prey behaviors, but require shared coordination algorithms. Alter-

natively, some approaches consider partial observability in contin-

uous worlds [11]. However, these approaches focus on creating an

entire team to solve the pursuit problem, rather than considering the

case where some teammates are already following fixed behaviors.

7. CONCLUSIONS AND FUTUREWORK
This work presents the first empirical investigation of ad hoc

teams, and establishes the pursuit domain as a useful domain for

testing ad hoc teams. We show that an ad hoc team agent can do

better than mimicking its teammates, and that efficient planning is

possible using MCTS. Additionally, the ad hoc agent can differen-

tiate its teammates on the fly when given a set of known starting

models. We show that even if these models are incorrect or incom-

plete, as long as they are representative, they can be used to provide

good performance. Finally, we show that it is possible to quickly

learn models for previously unseen teammates, using known mod-

els until an accurate model is learned.

As the initial empirical investigation of ad hoc teams, this pa-

per opens up several possible avenues for future research. In this

work, we only considered teammates following fixed behaviors,

and we assume that there is no explicit communication between

teammates. Our ongoing research agenda includes extending to

teammates that themselves learn, as well as considering the effects

of a capability for partial communication among the agents. For

example, the agents may then be able to communicate their desired

destinations. Finally, all of the results in this paper were reported

in the pursuit domain. Testing whether the same algorithms exhibit

the same properties in a variety of other domains is also an impor-

tant direction for future empirical research.

Acknowledgments
This work has taken place in the Learning Agents Research Group (LARG) at the

Artificial Intelligence Laboratory, The University of Texas at Austin. LARG research

is supported in part by grants from the National Science Foundation (IIS-0917122),

ONR (N00014-09-1-0658), and the Federal Highway Administration (DTFH61-07-

H-00030). Samuel Barrett is supported by a NDSEG fellowship. Sarit Kraus as also

affiliated with UMIACS and her research is supported by NSF grant 0705587 and ISF

Grant #1685.

8. REFERENCES
[1] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal cooperation of

knowledge sources - an empirical investigation. Technical Report

BCS–G2010–28, Boeing Advanced Technology Center, Boeing Computing

Services, Seattle, Washington, July 1986.

[2] R. I. Brafman and M. Tennenholtz. On partially controlled multi-agent systems.

JAIR, 4:477–507, 1996.

[3] D. Chakraborty and S. Sen. Teaching new teammates. In AAMAS ’06, pages

691–693, 2006.

[4] D. Chakraborty and P. Stone. Convergence, targeted optimality and safety in

multiagent learning. In ICML ’10, June 2010.

[5] V. Conitzer and T. Sandholm. AWESOME: A general multiagent learning

algorithm that converges in self-play and learns a best response against

stationary opponents. Mach. Learn., 67, May 2007.

[6] K. S. Decker and V. R. Lesser. Designing a family of coordination algorithms.

In ICMAS ’95, pages 73–80, June 1995.

[7] S. Gelly and Y. Wang. Exploration exploitation in Go: UCT for Monte-Carlo

Go. In NIPS-2006, December 2006.

[8] B. Grosz and S. Kraus. Collaborative plans for complex group actions. Artificial

Intelligence, 86:269–368, 1996.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.

The WEKA data mining software: an update. SIGKDD Explor. Newsl.,

11(1):10–18, 2009.

[10] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100 –107, July 1968.

[11] Y. Ishiwaka, T. Sato, and Y. Kakazu. An approach to the pursuit problem on a

heterogeneous multiagent system using reinforcement learning. Robotics and

Autonomous Systems, 43(4):245 – 256, 2003.

[12] M. Knudson and K. Tumer. Robot coordination with ad-hoc team formation. In

AAMAS ’10, pages 1441–1442, 2010.

[13] L. Kocsis and C. Szepesvari. Bandit based monte-carlo planning. In Machine

Learning: ECML 2006, volume 4212 of Lecture Notes in Computer Science,

pages 282–293. Springer Berlin / Heidelberg, 2006.

[14] D. Silver, R. S. Sutton, and M. Müller. Sample-based learning and search with

permanent and transient memories. In ICML ’08, 2008.

[15] P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosenschein. Ad hoc autonomous

agent teams: Collaboration without pre-coordination. In AAAI ’10, July 2010.

[16] P. Stone, G. A. Kaminka, and J. S. Rosenschein. Leading a best-response

teammate in an ad hoc team. In Agent-Mediated Electronic Commerce:

Designing Trading Strategies and Mechanisms for Electronic Markets.

November 2010.

[17] P. Stone and S. Kraus. To teach or not to teach? Decision making under

uncertainty in ad hoc teams. In AAMAS ’10, May 2010.

[18] P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8(3):345–383, July 2000.

[19] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, USA, 1998.

[20] M. Tambe. Towards flexible teamwork. JAIR, 7:81–124, 1997.

[21] C. Undeger and F. Polat. Multi-agent real-time pursuit. AAMAS ’10, 21:69–107,

July 2010.

