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RoboCup 3D Simulation Domain

Teams of 9 vs 9 autonomous agents play soccer
Realistic physics using Open Dynamics Engine (ODE)
Agents modeled after Aldebaron Nao robot
Agent receives noisy visual information about environment
Agents can communicate with each other over limited bandwidth channel
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Competition Results

RoboCup 2010 2011
Goals For: 11

136

Goals Against: 17

0

Record (W-L-T): 4-5-1

24-0-0

Place: Outside Top-8

1st

BIG IMPROVEMENT!
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Key Components

Omnidirectional Walk and Parameter Optimization

Inverse Kinematics Based Kicking Engine

Dynamic Role Assignment and Positioning System
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Omnidirectional Walk Engine

Double linear inverted pendulum model
Based closely on that of walk engine by Graf et al
Mostly open loop but not entirely
Designed on actual Nao robot
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Initial Walk Parameters

40 different parameters
Designed and hand-tuned to work on the actual Nao robot
Provides a slow and stable walk

Click to start
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init.mp4
Media File (video/mp4)



2011 Omnidirectional Walk Optimization
Parameters (14) optimized through CMA-ES across a cluster

I Population of 150 across 200 generations = 210,000 evaluations in less than a day

Learn three different parameter sets for three different subtasks
I Going to a target
I Sprinting forward
I Positioning around the ball when dribbling

Parameters learned through a layered learning approach
I Parameter sets learned sequentially
I Each parameter set learned in conjuction with each other
I Agent able to seamlessly transition between parameter sets

I = initial, T = goToTarget, S = sprint, P = positioning
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Final Agent Video

Click to start

Red ’T’ = gotoTarget parameters, yellow ’S’ = sprint parameters, cyan ’P’ = positioning
parameters
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learned.mp4
Media File (video/mp4)



Optimized Omnidirectional Walk Performance

Beat agent with initial hand-tuned walk parameters by average of
8.84 goals across 100 games

Beat agent using non-omnidirectional walk used in 2010 by average
of 6.32 goals across 100 games
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Kick Engine Kinematics

Define waypoints relative to ball for foot to reach
Cubic Hermite splines used to compute path for foot to follow
Inverse kinematics system determines if kick can be executed
Optimize parameters of kick: waypoint values, speed, ball offset
Learn kicks for multiple directions and orientations to the ball
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Kicking Video

Click to start

Different directional kicks
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Kick Performance

Kicking agent loses by .15 goals on average to dribble only agent

Strategy for best using kick not yet implemented (no passing yet)

Shows improvement when used with an agent with a less effective
walk (agent with initial walk parameters)

I Kicking agent scored 8 goals while non-kicking agent failed to score when playing 100
games against each other
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Role Assignment Mapping
Every player assigned to a role (position) on the field
Positions based on offsets from ball or endline
onBall role assigned to the player closest to the ball
One-to-one mapping of agents to positions
Can be thought of as a role assignment function
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Role Assignment Function (fv )

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

Mapping cost = vector of distances sorted in decreasing order
Optimal mapping = lexicorgraphically sorted lowest cost mapping
Recursively minimizes longest distance any agent must travel
Avoids collisions
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Dynamic Programming Algorithm for Role Assignment

Any subset of a lowest cost mapping is itself a lowest cost mapping

Begin evaluating mappings of 1 agent and build up to n agents

Only evaluate mappings built from subset mappings returned by fv

Evaluates n2n−1 mappings, for n = 8 is 1024 (brute force = 40,320)
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Positioning Video

Click to start

Each position is shown as a color-coded number corresponding to the agent’s uniform
number assigned to that position. Agents update their role assignments and move to

new positions as the ball or an agent is beamed (moved) to a new location.
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Positioning System Evaluation

Team Goal Difference
Static .32 (.07)
AllBall .43 (.09)

Static Each role is statically assigned to an agent
AllBall Every agent except goalie goes to the ball
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Competition Analysis

Average goal difference across 100 games against other agents in the competition

Rank Team Goal Difference
3 apollo3d 1.45 (.11)

5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)

5-8 fcportugal3d 3.75 (0.11)
9-12 magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)

4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)

13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)

13-18 nexus3d 7.35 (0.13)
13-18 hfutengine3d 7.37 (0.13)
13-18 futk3d 7.90 (0.10)
13-18 naoteamhumboldt 8.13 (0.12)
19-22 nomofc 10.14 (0.09)
13-18 kaveh/rail 10.25 (0.10)
19-22 bahia3d 11.01 (0.11)
19-22 l3msim 11.16 (0.11)
19-22 farzanegan 11.23 (0.12)

Across 2100 games played won all but 21 games which ended in ties (no losses)
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Performance Contributions

Agent with 2010 non-omnidirectional walk would have finished in
tenth place

Number of times goalie touched the ball during the 2011
competition = 0
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Summary

UT Austin Villa is a complete agent that won the 2011 RoboCup 3D
simulation competition

Key components of the agent are it’s omnidirectional walk, kicking
engine, and dynamic positioning system

The omnidirectional walk proved to be the crucial component in
winning the competition

Optimizing parameters though machine learning is the underlying
theme for the team’s success
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Future Work

Attempt to apply learned walks in simulation to actual Nao robots

Improve kicking strategy and add passing

Attempt to learn better formations with machine learning
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2012 Kickoff

Click to start
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kickofflongandslow.mov
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More Information

UT Austin Villa 3D Simulation Team homepage:
www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Email: patmac@cs.utexas.edu

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by
NSF (IIS-0917122), ONR (N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).
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