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ABSTRACT
The growing use of autonomous agents in practice may re-
quire agents to cooperate as a team in situations where they
have limited prior knowledge about one another, cannot
communicate directly, or do not share the same world mod-
els. These situations raise the need to design ad hoc team
members, i.e., agents that will be able to cooperate without
coordination in order to reach an optimal team behavior.
This paper considers the problem of leading N-agent teams
by an agent toward their optimal joint utility, where the
agents compute their next actions based only on their most
recent observations of their teammates’ actions. We show
that compared to previous results in two-agent teams, in
larger teams the agent might not be able to lead the team
to the action with maximal joint utility, thus its optimal
strategy is to lead the team to the best possible reachable
cycle of joint actions. We describe a graphical model of
the problem and a polynomial time algorithm for solving it.
We then consider other variations of the problem, including
leading teams of agents where they base their actions on
longer history of past observations, leading a team by more
than one ad hoc agent, and leading a teammate while the
ad hoc agent is uncertain of its behavior.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms

Keywords
Agent Cooperation::Teamwork, coalition formation, coor-
dination ; Economic paradigms::Game theory (cooperative
and non-cooperative)

1. INTRODUCTION
Teams of agents have been studied for more than two

decades, where the general assumption is that the agents
coordinate their actions to increase the team’s performance.
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The growing popularity of agents in domains such as e-
commerce, has raised the need for cooperation between agents
that are not necessarily programmed similarly, and might
not have the same communication protocols or world mod-
els. Nevertheless, these agents might be required to perform
as a coordinated team. When designing such systems, one
cannot assume the team members engage in a known team
strategy, but each agent must adjust to the current circum-
stances while adopting a strategy that aims to optimize the
team’s utility. Such systems are called Ad-Hoc Teams.

In many cases, such as robotic teamwork, it might be im-
possible to change the design of agents in a team. This work
attempts to provide theoretical results (model and solution,
and bound on existence of a solution) for the possible influ-
ence of a new added agent (one or more) on the team perfor-
mance. Consider the case where several robots are deployed
on Mars; you designed them (thus know their behavior), but
once they are there - you cannot re-code them. Suppose that
as time passes, you have more knowledge about the world.
Will it be worthwhile to send a new robot to change the
team behavior to a new, improved, one? If so - how should
it do so? These questions motivate our research, and this
paper makes progress towards answering them.

Specifically, we consider the problem of leading a team to
the optimal joint action. In this problem, the team members
do not communicate explicitly, but are assumed to choose
their actions based on their observations of their teammates’
previous actions (one or more), i.e., the agents behave as best
response agents.1 The problem is represented as a simulta-
neous repeated game. The ultimate goal is to have all team
members act in a way that will maximize the joint utility of
the team. Assume we design a team member that joins the
team, the ad hoc team member. Our goal is, therefore, to
determine the optimal strategy for the ad hoc team member
such that it will lead the team to their optimal joint action
while minimizing the system’s cost while doing so.

This problem was introduced by Stone et al. [11] for sys-
tems of two agents: one ad hoc agent, and one best response
agent. They describe an algorithm for determining the op-
timal strategy for the ad hoc agent that leads, in minimal
cost, the best response agent to perform the action yielding
optimal joint utility. In this paper we consider the more
general problem of leading N-agent teams, N ≥ 2, toward
their optimal joint utility. In such systems, the possible

1We consider best response agents for simplicity, however
our results can equally be applied to the more general case
of agents that base their decisions on a fixed history window
of the ad hoc agents’ past actions, rather than on their own
previous actions.



influence of one agent on the team is relatively limited com-
pared to the two-agent teams. As a result, we show that in
N-agent teams, the optimal joint utility might not be reach-
able, regardless of the actions of our agent. In such cases,
our agent’s optimal strategy is to lead the team to the best
possible reachable joint utility, with minimal cost.

In order to find the optimal strategy for the ad hoc team
player, we describe a graphical model of the possible joint set
of actions integrating the possible transitions between the
system’s states (agents’ joint action), and the resulting costs
of those transitions. Using this model, we first determine the
set of joint actions resulting in maximal joint utility, and
find the lowest cost path from the initial joint action of the
agents to this optimal set of joint actions. We then consider
other variations of the problem, and evaluate them using the
suggested graphical model. These variations include leading
best-response agents with memory size greater than one,
leading a team by a team of coordinated ad hoc agents,
and leading a two-agent team by an ad hoc agent where
uncertainty exists on the behavior of its teammate.

2. PROBLEM DESCRIPTION
We consider the problem of leading a team of best re-

sponse players by one ad hoc team member towards the
optimal joint utility of the team. In this section we describe
the general problem, as well as notations that will be used
throughout the paper.

The problem of finding a policy for leading team mem-
bers to the optimal joint utility was introduced in [11] for
a team of two agents, A and B, where agent A is the ad
hoc agent and agent B is the best response agent. Agent
A was designed to lead agent B to perform an action that
will result in the optimal joint utility, denoted by m∗. This
is done without using explicit communication or prior coor-
dination, where agent B chooses an action that maximizes
the joint utility based on its observation of agent A’s previ-
ous action (but with both players having knowledge of the
game). This is designed as a simultaneous repeated game,
i.e., the players choose their actions simultaneously, where
current actions influence the future decisions of the players.

The assumption is that agent B’s behavior is known to
agent A, but is fixed and unchangeable. This represents
one of the simplest cases of ad hoc teamwork, where there
is no uncertainty about behaviors. Nevertheless, it poses
some interesting challenges, as shown previously in [11], and
reinforced in this paper. Relaxation of this assumption is
discussed in Section 6.

Agent A has x possible actions {a0, . . . , ax−1}, and agent
B has y possible actions {b0, . . . , by−1}. The team’s utility
is represented by an x× y payoff matrix M , where an entry
M(i, j) ∈ M is the joint utility when A performs action ai

and B performs bj . The cost of a joint action (ai, bj), 0 ≤
i ≤ x− 1, 0 ≤ j ≤ y − 1, denoted by C(ai, bj), is defined as
m∗−M(i, j), i.e., the distance from the optimal joint utility.
The system is initialized in the joint action (a0, b0).

It can be assumed, without loss of generality, that m∗

is the joint utility obtained when A performs action ax−1

and B performs by−1. Therefore m∗ is necessarily reach-
able from (a0, b0) in at most two stages: A picks ax−1 and
B will adjust in the next stage and choose action by−1,
thus a possible sequence to the optimal joint action m∗ is
〈(a0, b0), (ax−1, b0), (ax−1, by−1)〉, after which A and B will
continue performing actions ax−1 and by−1 (respectively).
However, this might not be the only possible sequence, and

moreover - there could be a sequence of joint actions leading
to m∗ that has lower cost. The question answered by Stone
et al. [11] was, therefore, how to reachm∗ with minimal cost.
They describe a dynamic programming algorithm for find-
ing the optimal solution in polynomial time. Their solution
is based on the knowledge of the longest possible optimal
sequence, bounding the depth of the recursive algorithm.

In this paper we consider the more general case of leading
N-agent teams, N ≥ 2, by one ad hoc team player. We do so
by first examining the problem of leading three-agent teams,
and then describe the generalization to N agent teams.

The three-agent team consists of agentA - the ad hoc team
member, and the best response agents B and C. The set of
actions available for the agents is {a0, . . . , ax−1}, {b0, . . . , by−1}
and {c0, . . . , cz−1} for agents A, B, and C, respectively.
The payoff matrix of the team is a 3-D matrix M , that
can be conveniently written as x matrices of size y × z,
M0, . . . ,Mx−1 (see Figure 1), where entry (bi, cj) in matrix
Mk, denoted by Mk(i, j), (0 ≤ k ≤ x − 1, 0 ≤ i ≤ y − 1,
0 ≤ j ≤ z − 1), is the payoff of the system when agent
A performs action ak, B performs bi and C performs cj .
Denote the maximal joint payoff in the system by m∗, and
assume, without loss of generality, that the agents initially
perform actions (a0, b0, c0). Similarly to the two-agent case,
the agents do not coordinate explicitly, but agents B and
C are assumed to choose their next move according to their
current observation of their teammates’ actions. Therefore
the next action of agent B (denoted by BRB) is based on
its current observation of the actions of agents A and C,
and similarly the next action of C (denoted by BRC) is
based on the actions of A and B. Formally, BRB(ai, ck) =
argmax0≤j≤y−1{Mi(j, k)} (similarly for BRC). Therefore if
the current actions of the agents are (ai, bj , ck), then the
next joint action would be (ai′ , BRB(ai, ck), BRC(ai, bj))
for 0 ≤ i, i′ ≤ x− 1, 0 ≤ j ≤ y − 1 and 0 ≤ k ≤ z − 1.
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Figure 1: An exam-

ple for unreachable m∗ =

(a1, b1, c1)

Compared to the two-agent
team, in a three-agent team the
control of agent A on the world
is relatively limited. Specifi-
cally, there are cases in which
m∗ remains unreachable, re-
gardless of the actions of agent
A. An example for such a case
is given in Figure 1. In this ex-

ample, x = y = z = 2. According to these payoff matrices,
BRB(ai, c0) = b0 BRC(ai, b0) = c0, i ∈ {0, 1}, thus agents
B and C will continue to choose actions (b0, c0) in both ma-
trices, and A will not be able to lead them to joint utility of
m∗ = M1(1, 1) = 20. Therefore the goal of agent A is to lead
the team to the best possible reachable joint action or cycle of
joint actions. In this example, A will choose action a1, lead-
ing to the maximal possible payoff of 8, and all agent will
continue choosing the same action yielding maximal possible
joint utility.

Definition A Steady Cycle is a sequence of t joint actions
s0, s1, . . . , st−1 such that if sl = (ai, bj , ck), then sl+1 =
(ai′ , BRB(ai, ck), BRC(ai, bj)), (0 ≤ l ≤ t − 1, 0 ≤ i; i′ ≤
x − 1, 0 ≤ j ≤ y − 1, 0 ≤ k ≤ z − 1), and st = s0, i.e.,
the sequence is cyclic. The Optimal Steady Cycle, denoted
by OSC, is a steady cycle with minimal average cost, i.e,
1/t ×

∑t

i=1 C(si) is minimal.

Note that if m∗ is reachable, the optimal steady cycle con-
sists of only the joint action yielding payoff m∗.



3. LEADING A TEAM BY A SINGLE AGENT
In this section we examine the problem of leading a team

by a single agent, initially concentrating on three-agent teams.
We describe a graphical model for representing the system,
and a polynomial time algorithm for determining the opti-
mal possible set of joint actions and how to reach it with
minimal cost to the team. We later (Subsection 3.4) gener-
alize the representation and solution to an N−agent teams.

3.1 Problem Definition
The three-player team consists of three agents: agent A,

our designed ad-hoc team player, and agents B and C, which
are the original team players.
We define the 3-Player Lead to Best Response Problem

(3LBR) as follows.
Given a three-agent team, A,B,C, where agent A is an ad-
hoc team player and agents B and C are best response play-
ers, and a 3-D payoff matrix representing the team payoff for
every joint action of the agents, determine the set of actions
of agent A that will lead the team to the optimal steady
cycle reachable from (a0, b0, c0) in minimal cost.

3.2 Graphical Representation
In this section we describe a graphical model of the state

space, used to find an optimal solution to the 3LBR problem.
We create a graph G = (V,E), where V includes of all pos-
sible joint actions, i.e., each vertex vijk ∈ V corresponds to
a set of joint actions (ai, bj , ck) (0 ≤ i ≤ x−1, 0 ≤ j ≤ y−1,
0 ≤ i ≤ z − 1). The directed edges in E are defined as fol-
lows: an edge e = (vijk, vi′j′k′) ∈ E ∀i′, 0 ≤ i′ ≤ x − 1, if
j′ = BRB(ai, ck) and k′ = BRC(ai, bj). In words, an edge
is added where it is possible to move from one set of joint
actions to the other—either by A repeating the same action
(ai = ai′) or by it switching to another action ai 6= ai′ . The
cost of an edge e = (vijk, vi′j′k′) is set to m∗ −Mi′(b

′
j , c

′
k).

The total number of vertices in G is xyz, and the number
of edges is x× |V | = x2yz.

Figure 2 illustrates two sets of payoff matrices and their
corresponding graphical representations. On the right, m∗

is reachable, hence the optimal steady cycle is of size t =
1 and includes only v111. The optimal path to the op-
timal steady cycle is the shortest path (corresponding to
the path with lowest cost) between v000 to v111, which is
v000, v101, v111, meaning that the minimal cost sequence is
〈(a0, b0, c0), (a1, b0, c1), (a1, b1, c1)〉 with a total minimal cost
of 21 (there is a “startup cost” of 15 for the first play, that is
added to all paths from vertex 000, as indicated by the in-
coming edge to that vertex). The dashed lines represent the
transitions which are determined by A’s choices if it changes
its action, leading to a change in Mi. The solid lines repre-
sent the outcome if A did not change its action.

3.3 Algorithm for Solving the 3LBR Problem
The solution to the 3LBR problem, described in Algorithm

1, is divided into two stages:

1. Find the optimal reachable steady cycle.

2. Find the sequence of actions for agent A that leads the
team to the optimal steady cycle with minimal cost.

In order to find the optimal reachable steady cycle, we first
remove all vertices that do not belong to the connected com-
ponent that includes v000. This can be done by a simple BFS
tour starting at v000 (linear in the graph size). Finding the
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Figure 2: An example for the graphical representation of the

state transition. On the left - the representation of the the payoff

matrix from Figure 1 where m∗ is unreachable, and on the right a

case in which m∗ is reachable.

optimal steady cycle corresponds to finding the Minimum
Cycle Mean (introduced by [8]), that can be computed using
dynamic programming in time O(|V | × |E|) = O(x3y2z2).

Finding the sequence of actions taken by agent A that
will lead the team to the optimal steady cycle with minimal
cost is equivalent to finding the shortest path from v000 to
any vertex in the cycle yielding the minimum cycle mean of
G. Recall that the number of vertices in the cycle yielding
the minimum cycle mean of G is denoted by t. Therefore
finding the shortest path from v000 to one of the vertices
of that cycle can be done by Dijkstra’s algorithm, resulting
in time complexity of O(t|E| log |V |) = O(tx2yz log(xyz)).
The total time complexity of the algorithm is, therefore,
O(tx2yz log(xyz) + x3y2z2).

Comparing the time complexity of our algorithm to the al-
gorithm presented by Stone et al. [11] for two-player games,
we note that finding the optimal sequence of joint actions
for a two-player game is a special case of the three-player
game in which z = 1, and the optimal reachable steady cy-
cle is known to be v110. Thus the time complexity of finding
the optimal sequence using our algorithm is O(x2y log(xy)),
compared to O(x2y) of the algorithm described in Stone et
al. [11]. However, as they have shown, there is no point
in returning to a set of joint actions in this scenario, thus
while constructing the graph, edges closing a cycle will not
be added, yielding a directed acyclic graph (DAG). In DAGs,
the shortest path can be found in O(|E|+ |V |) (using topo-
logical ordering), therefore the time complexity is similar to
the one described in [11], i.e., O(x2y).

Algorithm 1 Algorithm Lead3Team(M)

1: Create graph G = (V,E) as follows
2: for 0 ≤ i ≤ x− 1 ; 0 ≤ j ≤ y − 1 ; 0 ≤ k ≤ z − 1 do

3: Add vi,j,k to V
4: end for

5: for 0 ≤ i ≤ x− 1 ; 0 ≤ j ≤ y − 1 ; 0 ≤ k ≤ z − 1 do

6: for 0 ≤ i′ ≤ x− 1 do

7: Add e = (vi,j,k, vi′,BRB(i,k),BRC (i,j)) to E

8: Set w(e) = m∗ −M(i′, BRB(i, k), BRC(i, j))
9: end for

10: end for

11: Compute G′ ⊆ G by a BFS tour on G starting from v0,0,0
12: Compute the optimal steady cycle OSC ⊆ G′ = {v0, . . . , vk−1}

(Minimum Cycle Mean)

13: P ← argmin0≤i<k {Shortest path from v0,0,0 to vi ∈ OSC}

3.4 LeadingN-agent teams
Generalizing 3LBR, we define the N-Player Lead to Best

Response Problem (NLBR) as follows.
Let {a0, . . . , aN−1} be a team of N agents, where agent a0



is an ad-hoc team player. The set of actions for each team
member ai (0 ≤ i ≤ N − 1) is {ai

0, a
i
1, . . . , a

i
ri
}, and we are

given an N-D payoff matrix M representing the team payoff
for every combination of actions of the agents. Determine
the set of actions of agent a0 that will lead the team to
the optimal steady cycle reachable from (a0

0, a
1
0, . . . , a

N−1
0 )

in minimal cost.
In order to generalize the solution to the 3LBR problem

to the NLBR problem, it is necessary to define its graphi-
cal representation. Once the graphical model is set, finding
the optimal solution to the problem becomes similar to the
three-agent case, i.e., we find the optimal steady cycle, then
we find the shortest path to that cycle. The main difference
from the three-agent case lies, therefore, in the creation of
the graph, which in turn affects the time complexity.

The graph G = (V,E) is built similarly to the 3-player
game, where vi0i1...iN−1 ∈ V for each set of joint actions

(a0
i0
, a1

i1
, . . . , aN−1

iN−1
) corresponding to an entry in the payoff

matrix Mi0 , and e = (vi0i1...iN−1 , vi′0i′1...i′N−1
) ∈ E if ∀1 ≤

j ≤ N −1, aj

i′
j
= BRj(a

0
ii
, . . . , aj−1

ij−1
, aj+1

ij+1
, . . . , aN−1

iN−1
), ∀0 ≤

i′ ≤ r0 − 1 .
The number of vertices in G is

∏N−1
i=0 ri, and the num-

ber of edges is r0
∏N−1

i=0 ri, leading to a time complexity of

O(tr20
∏N−1

i=1 ri log(
∏N−1

i=0 ri) + r0
∏N−1

i=0 r2i ) for solving the
NLBR problem (t is the length of the optimal steady cycle).

4. LEADING A TEAM WITH MEMORY > 1

Until this point, we have assumed that the teammates op-
timize their choices based on their most recent observation
(best response). We now consider the case in which team
members have memory greater than one, i.e., each agent
computes its best response to the maximum likelihood dis-
tribution corresponding to the last mem joint actions it ob-
served. We describe the analysis for three-agent teams; the
solution for the general N-agent team follows directly.

Denote the number of times agent A, B and C performed
action ai, bj and ck during the previous set of mem joint
actions by Na

i , N
b
j and Nc

k , correspondingly. Formally, for a
three-agent team, the best response of agents B and C are
defined (BRB and BRC , correspondingly) as follows:

BRB = argmax{0≤l≤y−1}{
∑x−1

i=0

Na
i

mem

∑z−1
k=0

Nc
k

mem
Mi(l, k)}

(BRC is defined similarly). Let BRB(s1, . . . , smem)
(BRC(s1, . . . , smem)) be the best response of agent B (C)
based on the last mem observed joint actions s1, . . . , smem.

The graph representation G = (v, e) in case mem > 1 is
as follows. A vertex v ∈ V represents a global state which
includes a sequence of mem consecutively executed joint ac-
tions, {s0, . . . , smem}. An edge e = (v, u) ∈ E exists from
a vertex v = {s0, . . . , smem} to vertex u = {s′0, . . . , s

′
mem}

if ∀0 ≤ l ≤ mem − 2;∀0 ≤ i ≤ x − 1, s′l = sl+1, s
′
mem =

{ai, BRB(s0, . . . , smem), BRC(s0, . . . , smem)}.
As shown by Stone et al. [11], even if m∗ was played

once, it does not necessarily mean that the system will stay
there. Specifically, it could be the case that the team was
lead to m∗, however the next best response of some agent
(one or more) would be to switch actions. This was denoted
as unstable states. Assume the joint action yielding m∗ is
(a∗, b∗, c∗). As a result, we define the terminal vertex of
the system to be 〈(a∗, b∗, c∗), . . . , (a∗, b∗, c∗)〉 (mem times).
Clearly, this vertex is stable.

4.1 On the time complexity of handling high
memory

Finding the optimal steady cycle and the optimal path
to that cycle in case the team members have memory size
greater than one can be computed similarly to the solution to
the 3LBR and the NLBR problems (Algorithm Lead3Team).
In order to determine the time complexity of reaching an
optimal solution, it is necessary to calculate the size of the
graph representation, i.e., |V | and |E|. The number of com-
binations of mem sets of joint actions is |V |mem. However,
not all combinations of sets of joint actions are feasible (the
system cannot reach every vertex from every vertex, but only
x vertices from each vertex), hence the upper bound on the
number of vertices is xyz×xmem−1, i.e., xmemyz (exponen-
tial in mem). The number of edges from each vertex remains
x, hence the total number of edges is xmem+1yz.

This provides an upper bound on the time complexity of
reaching a solution with mem ≥ 2. However, we would like
to examine whether this bound is tight or not, i.e., can
we guarantee that the time complexity will practically be
lower than that? We do so by pursuing two different di-
rections. First, we check whether there is a connection be-
tween the relevant graph size (connected component that
includes the initial vertex) with teammates having mem-
ory of size mem − 1 and the relevant graph size when their
memory is mem. For example, if the connected component
only got smaller as memory increased, then we could bound
the graph size by the size of the connected component when
mem=1. Second, we check whether we can efficiently bound
the possible length of the optimal path from the initial joint
action to the optimal (cycle of) joint action(s). If so, that
would allow us to restrict the construction of our state space
to states within that maximal length from the initial state.
Unfortunately, the investigations in both directions are not
promising. We show that there is no connection between
the size of the relevant connected component as the mem-
ory size grows (it could increase or decrease). We also show
that even in the simplest case of N = 2 and mem = 2 de-
termining the maximal size of an optimal path from v0,0 to
m∗ is NP-Hard.

4.1.1 Graph size as memory size changes
We investigated the influence of the number of vertices in

the connected component in case mem = 1 to the number
of components when mem = 2 in order to determine a tight
bound on the number of vertices we need to explore as the
memory grows. Unfortunately, we have shown that there is
no relation between the number of vertices in the connected
components between different memory sizes. In this section,
we describe two opposite cases: one in which the connected
component grows, and one in which it becomes smaller.

We show, by the following example, that the connected
component originating at v = (0, 0, 0) with mem = 1 can
grow as mem grows to include vertices corresponding to joint
actions that were unreachable with smaller memory size.
Moreover, Figure 3 shows a case in which with mem = 1
m∗ is unreachable, yet with mem = 2 it becomes reachable.
On the other hand, as shown in Figure 4, the number of
reachable joint actions may decrease, possibly causing m∗

to become unreachable.
These two examples demonstrate that a tight bound on

the number of vertices that need to be explored as memory
grows does not exist, i.e., it is not sufficient to explore only
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Figure 3: An example for a case where m∗ was unreachable for

mem = 1 (left), and became reachable with mem = 2 (right).

the main connected component of mem = 1, but it is neces-
sary to explore the entire main connected component in the
current memory model.
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mem = 1 (left), and became unreachable with mem = 2 (right).

4.1.2 NP-Hardness of maximal optimal length deter-
mination

In order to evaluate whether the graph size can be re-
duced to guarantee a more realistic upper bound on the
time complexity that is not exponential in the graph size,
we examined the possibility of limiting the construction of
the graph based on the maximal possible length of an opti-
mal path from the initial vertex to the optimal steady cycle.
In [11] it was shown that in two agent teams, consisting of
one ad hoc team member (agent A) and one best-response
team member (agent B), if mem = 1 then the maximal size
of an optimal path is at most min{x, y}. However, we prove
here that even in this simple case where m∗ is known to
be reachable (i.e., the optimal steady cycle is known in ad-
vance), determining the maximal size of an optimal path is
NP-Hard when agent B has mem ≥ 2 (note that this was
assumed in [11], yet was not proven there).2

Denote the maximal length of an optimal path starting
at (a0, b0) to m∗ by S∗ (note that since it is the two agent
game, such a path always exists).

Theorem 1. In the two-agent case, finding S∗ when mem ≥
2 is NP-Hard.

Proof. The problem is proven to be NP-hard by a reduc-
tion from the Hamiltonian Path problem:Given an n-node
unweighted, undirected graph G, an initial node and a desti-
nation node, is there a simple path from initial to destination
of length n? That is, can we visit each node exactly once?
This decision problem is known to be NP-Complete [4].

2We thank ML for his help in formalizing the proof

We will show that if it were possible to find S∗ for a given
matrix M with agent B’s mem > 1 in polynomial time,
then it would also be possible to find a Hamiltonian path in
polynomial time. To do so, we assume that we are given a
graph G = (V,E) such that |V | = n. We construct a matrix
M in a particular way such that if there is a path through
the matrix of cost no more than a target value of n∗(n4−1),
then there is a Hamiltonian Path in graph G. Note that, as
required, the construction of the matrix can be done in time
polynomial in all the relevant variables.

Let agent B’s mem = n. We construct the joint payoff
matrix M as follows.

• Agent A has (n− 1) ∗n+2 actions. The first action is
“start”, and agent B’s memory is initialized to n copies
of that action. Each of the next (n − 1) ∗ n actions
represents a combination (i, t) of a vertex vi ∈ V (G)
and a time step t ≥ 2. M ’s payoffs will be constructed
so that if the sequence satisfying the maximum cost
requirement in M (if any) includes action (i, t), then
the corresponding Hamiltonian path passes through vi
on time step t. Finally, there is a “done” action to be
taken at the end of the path.

• Agent B has n2 + n + 1 actions. The first n2 actions
are similar to agent A’s: one for each combination
of vj ∈ V (G) and t ≥ 1. If the satisfying sequence
through M includes agent B taking action (j, t), then
the Hamiltonian path visits vj at time t. The next
n actions are designed as “trap” actions which agent
B will be induced to play if agent A ever plays two
actions corresponding to the same node in the graph:
actions (i, s) and (i, t). There is one trap action for
each vertex, called action j. Finally, the last action
is the “done” action to be played at the end of the
sequence.

• M ’s payoffs are constructed as follows, with the actions
named as indicated in the bullets above. The initial
vertex in the Hamiltonian path (the one visited on time
step 1) is called “initial.”

a) M [(i, t + 1), (j, t)] = 1 if (vi, vj) ∈ E(G)
b) M [(i, t + 1), (j, t)] = −n5 if (vi, vj) /∈ E(G)
c) M [(i, t), (i, t)] = tn
d) M [(i, t), (j, s)] = −n5 if t ≥ s
e) M [(i, t), (j, s)] = 0 if t < s
f) M [(i, t), i] = tn − 1

3n
g) M [(i, t), j] = 0
h) M [(i, t), done] = 0
i) M [start, (initial, 1)] = 1
j) M [start, initial] = 1

2

k) M [start, done] = −n4

l) M [start, j] = 0 ∀ action j /∈{initial,done}
k) M [done, (j, n)] = 1
l) M [done, (j, t)] = −n5 if t < n
m) M [done, done] = n4

Following a path through the matrix that corresponds to a
Hamiltonian path (if one existed) would give payoffs of 1 at
every step until reaching m∗ (n4) and staying there forever.
Thus the cost of the n-step path would be n ∗ (n4 − 1).

As there is no positive payoff in the matrix greater than
n2, any path longer than n steps must have cost of at least
(n+ 1)(n4 − n2) = n5 + n4 − n3 − n2 > n5 − n = n ∗ (n4 −
1). In other words, if there is a path through the matrix
corresponding to a Hamiltonian path in the graph, then any
longer path through M must have higher cost.

Furthermore, the matrix is carefully constructed such that
any diversion from the path corresponding to a Hamiltonian



path either will get a payoff of −n5 on at least one step
(which by itself makes the target cost impossible to reach),
will prevent us from getting one of the 1’s, or else will make
it so that the path to (done,done) will require more than n
total steps. In particular, if agent A ever takes two actions
that lead agent B to select a trap action, then agent B will
not take a different action until the n+1st step after the first
action that led to the trap, causing the path to (done,done)
to be at least n+2 steps long. Therefore, if we could find the
optimal sequence through any matrix in polynomial time,
then we could use this ability to also solve the Hamiltonian
path problem, concluding our proof.

5. LEADING A TEAM BY A TEAM
Until now, we have considered the case of one ad-hoc agent

leading a team of best response agents towards the optimal
set of joint actions. However, it could be possible to deploy a
team of coordinated ad-hoc agents to lead the best response
agents. The two interesting questions that arise here are:
(a.) What is the time complexity of determining the opti-
mal path? (b.) What is the influence of the addition of a
new team member to the group with respect to the optimal
steady cycle and the cost of the path towards it?

Also in this case we adopt the graphical model in order to
find the optimal steady cycle, and the shortest path towards
it. Let {a0, . . . , aN−1} be a team of N agents, where agents
a0, . . . ak−1 are the ad-hoc team players, and ak, . . . , aN−1

are the best response team members. Each agent ai has a
set of possible actions {ai

0, . . . , a
i
ri
}. Therefore the number

of possible joint actions (hence the number of vertices in
the representing graph), similar to the N−agent teams dis-

cussed in Section 3.4, is
∏N−1

i=0 ri. The difference between the
N−agent teams led by one agent and the N−agent teams
led by k agents lies in the edges in the graph. Formally,
the graph G = (V,E) representing the system is built as
follows. A vertex vi0i1...iN−1 ∈ V exists for each joint action

(a0
i0
, . . . , aN−1

iN−1
) . An edge e = (vi0...iN−1 , vi′0...i′N−1

) ∈ E if

∀k ≤ j ≤ N−1, aj

i′
j
= BRj(a

0
ii
, . . . , aj−1

ij−1
, aj+1

ij+1
, . . . , aN−1

iN−1
),

∀0 ≤ i′l ≤ rl−1; 0 ≤ l ≤ k − 1. Therefore the number of
outgoing edges from each vertex is

∏k−1
i=0 ri, since each ad

hoc team member’s choice of action influences the possible
outcome, hence |E| =

∏k−1
i=0 r2i

∏N−1
j=k

rj . An example for a
graphical representation of leading a team by more than one
agent is shown in Figure 5.

Finding the optimal steady cycle is done on this graph as
described previously. The time complexity of determining
the optimal steady cycle isO(|E|×|V |) = O(

∏k−1
i=0 r3i

∏N−1
j=k

r2i ).
Assuming the number of joint actions in the steady cycle is
t ≥ 1, finding the optimal path from the initial vertex to
the optimal steady cycle is done in time O(t|E| log(|V |)) =

O(t
∏k−1

i=0 r2i
∏N−1

j=k
ri log(

∏N−1
i=0 ri))

Clearly, as more agents are involved in leading the team,
their influence on the outcome (the optimal reachable steady
cycle) is higher relative to the case of a single leading agent.
For example, in Figure 1, if agents B and C were leading the
team, then m∗ becomes reachable. However, in the general
case, having more than one leader still might not have the
power to lead the system towards m∗. Consider, as an exam-
ple, the case in which k = 2 and N = 4, i.e., two agents lead
the other two agents towards the optimal steady cycle. The
payoff matrix can be considered as r0 × r1 matrices of size
r2 × r3. If each of these matrices is, for example, a replica

1101

1a 0
1a 1

1aa1
0a0

0 a0
1a0

10
0a

a0
3 3

1a
2
1a

a1
2

3
0a a1

3

a1
2

2
1aa1

2

2
1a

3
1aa0

33
0a a1

3

a1
2

2
1a

3 10

783

112

2

5

20

14

4

12

111

3

0000 0001 0100 0101

0111011000110010

1000 1001

1010 1011 1110 1111

1100

1

Figure 5: An example for the graphical representation where there

is more than one ad hoc agent. The team has 4 agents: 2 ad hoc

(a0 and a1) and 2 best response (a2 and a3), each having 2 actions.

of the matrix described in Figure 1, then agents a0 and a1

will never be able to lead the team to m∗ (unless starting
at m∗), as regardless of their actions, a2 and a3 will never
jointly choose actions a2

1 and a3
1 (respectively).

This example leads to the following corollary:

Corollary 2. In a team of N agents, for every N ≥ 3,
where at least two team members are best response agents,
m∗ may remain unreachable.

6. LEADING WITH UNCERTAINTY
It is possible, perhaps likely, that our designed agent will

be uncertain about the behaviors of its teammates. We con-
sider in this section a two-agent team, agents A andB, where
agent A is an ad hoc agent, and agent B can be either an
ad hoc agent or a best response agent. Clearly, if B is an ad
hoc agent and the agents are fully coordinated, then their
choice of actions is well defined—both will choose together
the joint action with utility m∗. Similarly, in larger teams
where there is more than one ad hoc agent and they are co-
ordinated, then the solution is similar to the one described in
Section 5. However, uncertainty may arise when, for exam-
ple, communication fails, and agent A has to decide which
action to take in order to lead the team to m∗ (recall that in
the two-agent team case, m∗ is always reachable). In cases
where there exists a probability distribution over the possi-
ble identities of the teammate, the ad hoc agent can choose
actions that result in a minimal cost path towards m∗, and
also possibly choose actions that will reveal the true identity
of the teammate (if necessary).

If B is a best response agent, then like in previous sections
(and in [11]) it assumes that A will continue performing its
previous action, and given that action it will choose an ac-
tion maximizing the joint utility. If B is an ad hoc agent, we
assume that it will act in one of two ways: it will either be-
lieve that A is an ad hoc player, thus will choose action by−1

(assuming A will choose ax−1, reaching m∗ immediately), or
it will assume that A is a best response player, and choose
its actions appropriately. Modeling the identity of the other
agent can be done recursively infinitely (what A believes B
will do, that believes what A will do, and so on), however
we are motivated by RMM [5] in modeling only a recursion
of depth two (note that although RMM does recommend
a recursive depth 2, it is usually shown to be beneficial to



model a bounded depth, and we leave the general discussion
of depth in this setting to future work). Therefore we model
three possible cases: (i) B is a best response agent, denoted
by br ; (ii) B is an ad hoc agent, believing that A is an
ad hoc agent, denoted by ah/ah; (iii) B is an ad hoc agent
believing that A is a best response agent, denoted by ah/br.

In order to determine the best action for our agent A, we
build a graph for each identity of the teammate. Note that
since the vertices of the graphs are identical, we can use one
graph with three different types of edges: Ei for br agent,
Eii for ah/ah agent and Eiii for the ah/br agent.

Generally, when uncertainty arises with respect to the en-
vironment (in our case the identity of the teammate), it is
common to gain more information about the environment
while exploring it. In our case, we need agent A to both
gain information about B, and to allow agent B to reeval-
uate its belief about A. Specifically, if agent B is ah/br, we
want it to realize that A is not a best response agent, thus
allowing the team to reach m∗ more efficiently. This hap-
pens if A diverts from the expected best response behavior.
Note that if agent B is an ah/ah agent, it will choose to per-
form action by−1 even after realizing that A did not perform
ax−1, since diverting from that action will necessarily cause
the path to m∗ to be longer (even in the case where A is best
response, its next action would be ax−1, leading to m∗).

As a first step we construct Ei, Eii and Eiii. Ei is con-
structed as in Section 3. Eii and Eiii can theoretically be
complete graphs, however given the beliefs of B, most of
the edges will not exist. Since B believes A to be an ad
hoc agent, it will choose action by−1, thus Eii includes x
edges from v00 to vi(y−1), ∀0 ≤ i ≤ x − 1, and x − 1 more
edges from vi(y−1) to m∗. Eiii is constructed as follows.
The only outgoing edge out of v00 is to some vij such that
ai = BRA(b0), and bj ∈ SPB(v00,m

∗), where SPB denotes
the shortest path from v00 tom∗, calculated by B (according
to the weights and path that are calculated similarly to the
description in Section 3). In addition, there are x− 1 edges
from v00 to vkj , 0 ≤ k ≤ x−1. From now on, for each vertex
v, if there is no incoming edge from some vertex u such that
v is the best response of u with respect to A’s behavior as
a best response agent, then we add an edge (v,m∗), other-
wise the only edges added are from v to vij , 0 ≤ i ≤ x − 1,
bj ∈ SPB(v00,m

∗) (we omit the formal algorithm due to
space constraints). Choosing the shortest path from v00 to
m∗ will determine whether it is more efficient to choose an
edge that in the short term might not be beneficial, but will
reveal enough information to the teammate that will force
it to realize it is teamed with an ad hoc agent, making it
choose a shorter path towards m∗.

Given the constructed edges, one can compute the shortest
path along each set of edges, starting from v00 towards m∗.
Each of these path has a total cost, and given a probability
distribution over the possible identities of the teammates,
the first action is chosen such that the expected cost is min-
imized. If ax−1 is chosen, then the path towards m∗ is easily
determined (regardless of the true identity of B). If it was
not chosen, then A follows the path it chose, while making
adjustments throughout the execution. Namely, if it chose
an action that will teach B that it’s an ad hoc agent, yet B
acts as a best response (rather than ad hoc), it will find the
shortest path towards m∗ according to Ei (as it is clear that
B is best response). Otherwise, it will follow the shortest
path by Eiii towards m

∗.
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Example for

the advantage

of relying on

expected cost.

Clearly, if A assumes some identity of
B and it is not mistaken, then this yields
the best possible path towards m∗. Con-
sider the example in Figure 6. If A pre-
pares for ah/ah and is teamed with an
ah/ah, the cost of path towards m∗ is
0. If it expects B to be ah/br and B
is indeed ah/br, the cost of the path is
6. Finally, if it expects B to be br and is
indeed teamed with a br agent, then the
cost is 12. Being wrong in the identity
of the teammate is costly. Note that no
matter if A expects a weak opponent and
is teamed with a strong one or the oppo-

site - the consequences (in terms of path cost) are high. In
this example (considering a uniform probability distribution
between the identities) assuming a br teammate has minimal
expected cost of path towards m∗: assuming an ah/ah team-
mate has expected cost of 14.6, assuming an ah/br team-
mate has expected cost of 18.6 and br has expected cost of
14. Therefore, according to the algorithm, B should be as-
sumed to be a br agent. This choice of action yields a worst
case cost of mistaken identity of 17 (if B is actually ah/ah).
On the other hand, if we would not have consulted the algo-
rithm and chosen to believe that B is ah/ah, the worst cost
of mistaken identity would be 22, and similarly ah/br yields
worst cost of 28 upon mistaken identity. Note that generally
even if the maximal cost of mistaken identity is not higher
in the unchosen belief, still the expected cost is lower, thus
in the average case, by using this algorithm, A minimizes its
cost.

When leading a team with more than one agent where one
of them might be an ad hoc agent, the identity of the team-
mate can be crucial, and determines whetherm∗ is reachable
or not. This case is broad and complicated and is thus left
out of the scope of this paper.

7. RELATED WORK
Stone et al. [10] introduced a formalism for Ad-Hoc team-

work, which deals with teamwork behavior without prior
coordination. They raised a challenge “To create an au-
tonomous agent that is able to efficiently and robustly collab-
orate with previously unknown teammates on tasks to which
they are all individually capable of contributing as team mem-
bers”. This paper answers one aspect of the challenge raised
there, namely leading teams of agents, with no a-priori coor-
dination and explicit communication to the optimal possible
joint-utility, in a simultaneous-action setting.

Bowling and McCracken [1] suggested two techniques for
incorporating a single agent into an unknown team of exist-
ing agents: adaptive and predictive. In their work, they are
concerned with the task allocation of the agent (which role
should it choose, and what is its teams’ believed behavior),
where their agent might adapt its behavior to what it ob-
serves by the team. Jones et al. [7] examined the problem
of team formation and coordination without prior knowl-
edge in the domain of treasure hunt. They considered a
team composed of heterogenous robots, each with different
capabilities required for various aspects of searching an un-
known environment and extracting a hidden treasure. Their
architecture was based on role selection using auctions. In
contrast to these approaches, in our work we examine how
our agent can influence the behavior of the team by leading



the team to an optimal behavior.
Stone and Kraus [12] considered the problem of ad hoc

teamwork by two agents, agentA (also known as the teacher),
and agent B in the k-armed bandit problem. The question
they asked was: Assuming that agent B observes the actions
of agent A and its consequences, what actions should agent
A choose to do (which bandit to pull) in order to maximize
the team’s utility. It was shown that in some cases, agent A
should act as a teacher to agent B by pulling a bandit that
will not yield optimal immediate payoff, but will result in
teaching agent B the optimal bandit it should pull. In our
work we also control the actions of agent A, but the payoff
is determined by the joint actions of the team players, not
by individual actions of each teammate.

Han et al. [6] examined a closely related problem of con-
trolling the collective behavior of self-organized multi-agent
system by one agent. They consider self organized teams
of physically interacting agents, concentrating on flocking of
birds, where their goal is to design an agent, denoted as a
shill agent, that will be able to gradually change the head-
ing of the entire team to a desired heading. They evaluate
the system in terms of physical capabilities of the shill agent
and the team (velocity, initial heading) and provide theoret-
ical and simulation results showing that it is possible, under
some conditions, for one agent to change the heading of the
entire team. Different from out approach, they do not con-
sider game theoretic evaluation of the individual actions and
their impact on the team behavior.

Young [13] introduced the notion of adaptive games, where
N agents base their current decisions on a finite (small)
horizon of observations in repeated games, and search for
agents’ actions yielding a stochastically stable equilibrium
using shortest paths on graphs. In our work, we do not
assume the agents play repeatedly (allowing to adjust to a
strategy), but we aim to guarantee that our agent leads the
team to the optimal possible joint action(s) while minimiz-
ing the cost paid by the team along the way.

Numerous research studies exist in the area of normal form
games, where the agents’ payoffs are described in a matrix
(similar to our case) and depend on the chosen joint ac-
tions. In the normal form games framework, a related topic
is the problem of learning the best strategy for a player
in repeated games. Powers and Shoham [9] considered the
problem of normal form games against an adaptive opponent
with bounded memory. Chakraborty and Stone [2] examine
optimal strategies against a memory bounded learning op-
ponent. Cho and Kreps [3] introduced signaling games, a
sequential Bayesian game in which a player chooses its ac-
tions based on messages transferred from a second player
with unknown type. Our work is inherently different from
these approaches, since in our case the agents are collab-
orating as a team, hence they aim to maximize the joint
payoff and not the individual payoff, which raises different
questions and challenges as for the optimality of the joint
action and the way to reach this optimal joint action.

8. CONCLUSIONS AND FUTURE WORK
In this paper we examine the problem of leading a team of

N ≥ 2 agents by one or more ad hoc team members to the
team’s joint actions yielding optimal payoff. We show that
it may not be possible to lead the team to the optimal joint
action, and offer a graphical representation of the system’s
state and a polynomial time algorithm that determines the
optimal reachable set of joint actions, and finds the path with

minimal system cost to that set. We examine the case in
which the teammembers base their next action on more than
one previous joint action, describe an algorithm—using the
same graphical representation—that calculates the optimal
strategy for the ad hoc team member in time exponential
in the teammates’ memory size, and show that it is not
likely that there exists an algorithm that solves the problem
in better time complexity. We further use the graphical
representation to consider the case in which the ad hoc agent
is teamed with more than one ad hoc agent in coordination,
and also the case in which it might be teamed with one agent
with uncertain nature—ad hoc or best response.

There are various directions to be addressed as future
work. First, the question of uncertainty can be examined
not only in the identity of the agent, but also in many other
aspects, such as the knowledge of the payoff matrix, namely,
the ad hoc agent might not have full knowledge of the payoff
matrix, but some incomplete knowledge or a probability dis-
tribution over possible values. Similar uncertainty may exist
in the knowledge of the best response agents on the payoff
matrix, which might result in nondeterministic choice of ac-
tions. Uncertainty may exist also in the type of teammates,
acting not necessarily as best response agents, but adapting
other (known or unknown) behaviors.
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