
In The Twelfth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013),
St. Paul, MN, May 2013.

Learning Exploration Strategies in Model-Based
Reinforcement Learning

Todd Hester
Dept of Computer Science

University of Texas at Austin
todd@cs.utexas.edu

Manuel Lopes
INRIA Bordeaux Sud-Ouest

Bordeaux, France
manuel.lopes@inria.fr

Peter Stone
Dept of Computer Science

University of Texas at Austin
pstone@cs.utexas.edu

ABSTRACT

Reinforcement learning (RL) is a paradigm for learning se-
quential decision making tasks. However, typically the user
must hand-tune exploration parameters for each different
domain and/or algorithm that they are using. In this work,
we present an algorithm called leo for learning these ex-
ploration strategies on-line. This algorithm makes use of
bandit-type algorithms to adaptively select exploration strate-
gies based on the rewards received when following them. We
show empirically that this method performs well across a
set of five domains. In contrast, for a given algorithm, no
set of parameters is best across all domains. Our results
demonstrate that the leo algorithm successfully learns the
best exploration strategies on-line, increasing the received
reward over static parameterizations of exploration and re-
ducing the need for hand-tuning exploration parameters.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms

Keywords

Reinforcement Learning, Exploration

1. INTRODUCTION
Reinforcement learning (RL) is a paradigm for learning

sequential decision making tasks, where an agent seeks to
maximize long-term rewards through experience in its en-
vironment. During the learning process the agent has to
decide whether to look for new information (explore) or to
use its current model to maximize reward (exploit). In addi-
tion, when choosing to explore, the agent must decide what
and/or where to explore. Many exploration strategies have
been proposed which aim to ensure that: 1) the agent will
have enough information to find the optimal policy; and 2)
the agent will find the optimal policy in as few actions as
possible. Some of these exploration methods provide the-

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May, 6–10, 2013,
Saint Paul, Minnesota, USA.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

oretical bounds on how many steps the agent will take to
learn the optimal policy.

Nevertheless, for any particular problem the theoretical
bounds do not indicate which exploration strategy will per-
form the best [5, 13]. Typically, RL algorithms have a
number of exploration parameters to determine how the
agent explores and how it solves the exploration-exploitation
trade-off. Using such methods requires the user to hand-tune
these exploration parameters.

In this paper, we present a novel algorithm called leo

(Learning Exploration On-line) that is given a set of ex-
ploration strategies and learns which strategy is best while
interacting with the environment. This new algorithm lever-
ages all previous results on exploration by enabling the agent
to choose which one works best for the task at hand. We
treat each strategy as one arm of a multi-armed bandit and
utilize some insights from bandit algorithms [2] to learn
which strategy is providing the best results. We present re-
sults showing that leo performs better than alternative pa-
rameterizations of exploration within the texplore-vanir

RL algorithm [10, 11].

2. BACKGROUND
We adopt the standard Markov Decision Process (MDP)

formalism for this work [21]. An MDP is defined by a set of
states S, a set of actions A, a reward function R(s, a), and a
transition function T (s, a, s′) = P (s′|s, a). In each state s ∈
S, the agent takes an action a ∈ A. Upon taking this action,
the agent receives a reward R(s, a) and reaches a new state
s′, determined from the probability distribution P (s′|s, a).
Many domains utilize a factored state representation, where
the state s is represented by a vector of n state variables:
s = 〈s1, s2, ..., sn〉. A policy π = P (a|s) specifies for each
state a distribution over actions which the agent will take.

The goal of the agent is to find the policy π mapping
states to actions that maximizes the expected discounted
total reward over the agent’s lifetime:

J =
∑

t

γ
t
rt, (1)

where 0 < γ < 1 is the discount factor and rt is the reward
obtained at time step t. The value Qπ(s, a) of a given state-
action pair is an estimate of the expected future reward that
can be obtained from (s, a) when following policy π. The
optimal value function Q∗(s, a) provides maximal values in
all states and is determined by solving the Bellman equation:

Q
∗(s, a) = R(s, a) + γ

∑

s′

P (s′|s, a)max
a′

Q
∗(s′, a′). (2)

The optimal policy π is then as follows:

π(s) = argmaxaQ
∗(s, a). (3)

2.1 On-line Selection of Experts
leo makes use of bandit algorithms to choose which ex-

ploration strategy to follow in a domain. In a bandit prob-
lem [1, 2], a gambler must select which of k slot machine
arms to pull. Each arm provides some payoff, and the gam-
bler’s goal is to pull the correct arms in order to maximize
the total payoff over a number of trials. These methods
see each exploration strategy as a different arm whose value
must be estimated. Algorithms for bandit problems have
been used to select different active learning strategies on-
line [3, 12]. Many of these ideas have been integrated in a
unified perspective under the name of the strategic student
problem [16] that considers choices in an abstract way that
can include active learning methods, exploration methods or
even multi-task problems.

2.2 Model-Based Exploration Strategies
RL methods fall into two general classes: model-based

and model-free methods. Model-based RL methods learn a
model of the domain by approximating R(s, a) and P (s′|s, a)
for each state and action. The agent can then calculate a
policy (i.e. plan) using this model through a method such as
value iteration, effectively updating the Bellman equations
for each state using its model. Model-free methods work
without a model, typically updating the values of actions
only when taking them in the real task. Generally model-
based methods are more sample efficient than model-free
methods. Model-free methods must visit each state many
times for the value function to converge, while the sample
efficiency of model-based methods is only constrained by
how many samples it takes to learn a good model.
An advantage of model-based methods is their ability to

plan multi-step exploration trajectories. One of the best
known examples of model-based reinforcement learning is
r-max, which is guaranteed to learn a near-optimal policy
within polynomial time. For finite MDPs, this algorithm
learns a maximum-likelihood tabular model of the environ-
ment. The algorithm classifies each state-action as known
or unknown according to the number of times it was vis-
ited. When planning on the model, known state-actions
are modeled with the learned reward, while unknown state-
actions are given the maximum one-step reward in the do-
main, rmax. At each step, the agent acts greedily with re-
spect to this modified MDP. Assuming that unknown states
have a reward of rmax drives the agent to explore them. This
intrinsic reward is one example of an exploration strategy.
There are many other methods which utilize different ex-

ploration strategies. For example, there are extensions of
r-max to factored domains where similar rewards are pro-
vided for the agent to explore unvisited state factors [8, 9].
Other methods do not explicitly consider known versus un-
known states and instead add exploration bonuses for states
with higher potential of learning [4], or with higher uncer-
tainty [13, 15] [14,16]. This type of exploration bonus, or
intrinsic reward, was also used in the texplore-vanir al-
gorithm [11], which we use as the starting point for the ex-
periments in this paper.
texplore-vanir learns random forest models of the do-

main and then provides two different intrinsic rewards to
drive exploration. First, it rewards state-actions for which

the different trees within its random forest model differ in
their predictions. Second, it rewards the state-actions that
are most different from what its model has been trained on.

Each of these algorithms drives exploration in a different
way. In fact, the best exploration strategy to use is highly
dependent on the model learning approach taken by the al-
gorithm and the domain the agent is acting in. In this work,
our goal is to learn the best exploration strategies for a given
algorithm and domain on-line.

3. ALGORITHM
In this section, we present our algorithm, Learning Ex-

ploration On-line (leo), for learning the best exploration
strategies on-line. It is a general approach that works with
any model-based RL method. leo is given a set of different
exploration strategies and its goal is to choose the best explo-
ration strategy for each task while interacting with the en-
vironment on-line. Since we are concerned with on-line per-
formance of the algorithm, leo evaluates the performance of
each exploration strategy based on the rewards received by
the agent while following that strategy. Thus, leo chooses
the exploration strategies that find the rewards and goals
the fastest, limiting the costs of exploration by exploring
efficiently.

leo treats each of these exploration strategies like one of
the arms in a multi-armed bandit problem. Pseudo-code
for our approach is shown in Algorithm 1. Briefly, the agent
follows these steps: 1) it selects one of the strategies based on
the past payouts received from following it; 2) it follows the
selected strategy while tracking the similarity of the other
strategies to the one it is following; and 3) at the end of the
episode, it updates the expected payouts for each strategy
(even the ones not followed). Each step of this process is
explained in detail below.

The algorithm is given a set of strategies, E. Each strat-
egy has a weight, we, which is an estimate of the expected
normalized return for an episode when following that strat-
egy. At the start of each episode, leo uses these weights to
compute a soft-max distribution over the set of strategies,
similar to the exp4 bandit algorithm [2]:

P (e)←
eβ(we−min(w))

∑
j e

β(wj−min(w))
. (4)

After calculating this distribution, run-episode is called on
line 5. run-episode runs the agent through one episode,
sampling strategies from this distribution every 10 steps. A
large range of values between the extremes of 1 and an en-
tire episode work well, and 10 was chosen through informal
experiments. It is important for leo to follow a given explo-
ration strategy for multiple steps, but following a bad strat-
egy for an entire episode could greatly impact the agent’s
performance. At the end, it returns the normalized dis-
counted reward received on the episode and the similarity
of each strategy to the followed strategy. This similarity
is calculated using importance sampling [17, 21] and is the
likelihood of the followed trajectory under this strategy’s
policy.

After an episode is completed, the estimate of the ex-
pected normalized discounted return for each strategy is up-
dated with the following equation on line 6:

we ← we + η ·
sime∑
f simf

(Ĵ − we). (5)

Algorithm 1 Learning Exploration On-Line (leo)

1: Input: E ⊲ Set of strategies E
2: we ← 1.0, ∀e ∈ E ⊲ Initialize strategy weights
3: loop ⊲ Loop over episodes

4: P (e)← eβ(we−min(w))

∑
j e

β(wj−min(w)) ⊲ Dist. over strategies

5: sim, Ĵ ←run-episode(P (e))

6: we ← we + η · sime∑
f simf

(Ĵ − we), ∀e ∈ E

7: end loop

The weight changes are divided between the strategies based
on each strategy’s proportion of the total similarity, sime∑

f simf
,

so that the sum of the weight changes for all strategies is η,
the learning rate. Thus, strategies that were more similar
to the followed policy in an episode are moved closer to the
return from that episode than strategies that were not as
similar. These updated weights then affect the new distri-
bution over strategies calculated before the next episode.
Algorithm 2 shows what leo does during an episode. Ev-

ery 10 steps, the algorithm selects a new strategy from the
distribution over strategies (line 7). Typically, one of these
strategies is to act greedily with respect to the learned model
of external reward in the task, and the other strategies’
policies maximize other intrinsic rewards for exploration.
Through informal testing, we found that strictly following
any one of these exploration strategies can lead to poor per-
formance in the task, as they are followed even if they contra-
dict knowledge of the external rewards in the task. Thus, the
algorithm plans a separate execution policy, πx, on line 10.
This execution policy combines exploration and exploitation
by maximizing both the intrinsic rewards of the selected
strategy e as well as the model of task rewards in the do-
main. The task reward is added in at this phase rather than
into each exploration strategy itself so that each exploration
strategy remains independent for similarity calculations.
While a particular strategy is being followed, the algo-

rithm tracks the similarity of all the strategies, so that their
weights can be updated even if they were not selected. Up-
dating values of policies that are not being followed is called
off-policy learning, and leo uses a version of importance
sampling to address this problem [17, 21]. To track the sim-
ilarity of the other strategies, at every step, a separate soft-
max policy is planned for each exploration strategy with the
call to plan-policy on line 9. When an action is taken in the
domain, each strategy’s similarity is updated by the proba-
bility that it would have taken the selected action, π(s, a):

sime ← sime ∗ πe(s, a). (6)

Thus, at the end of the episode, the algorithm has a similar-
ity of each strategy’s policy to the policy that was actually
followed by the agent.
Throughout the episode, leo tracks the discounted re-

ward, J , that the agent has received. At the end of the
episode, it calculates a normalized return Ĵ , where the min-
imum possible discounted return in the domain is 0 and the
maximum possible discounted return in the domain is 1:

Ĵ ←
J − rmin

1−γ

rmax

1−γ
− rmin

1−γ

. (7)

This normalized return is calculated so that the return has
some meaning for how well the agent performed across tasks.

Algorithm 2 run-episode(P (e))

1: Input: S,A,E ⊲ S: state space, A: action space, E:
set of strategies

2: i← 0.0
3: sime ← 1.0, ∀e ∈ E ⊲ Reset strategy weights
4: J ← 0.0 ⊲ Discounted return
5: while Episode Not Over do
6: if i mod 10 = 0 then
7: Sample strategy b from P (e ∈ E)
8: end if
9: πe ← plan-policy(e), ∀e ∈ E

10: πx ← plan-policy(b+ task) ⊲ Plan exec. pol.
11: Sample action a from πx(s, a ∈ A)
12: Take action a, observe r, s′

13: M ← update-model(M 〈s, a, s′, r〉)
14: sime ← sime ∗ πe(s, a), ∀e ∈ E ⊲ Update sim.
15: s← s′

16: J ← J + γi ∗ r
17: i← i+ 1
18: end while

19: Ĵ ←
J−

rmin
1−γ

rmax
1−γ

−
rmin
1−γ

⊲ Calculate normalized return

20: return sim, Ĵ

It is then returned to Algorithm 1 and used to update the
weights of the strategies.

4. EMPIRICAL EVALUATION
In this section, we evaluate leo in comparison with pre-

defined exploration strategies across a set of domains. While
a hand-picked exploration strategy can perform well on one
domain, the domains were selected so that it would be diffi-
cult to find one exploration strategy that was the best across
all domains. In addition, finding the best strategy even for
a single domain can require a lot of hand-tuning, whereas
leo self-tunes on-line automatically.

4.1 Exploration Strategies
We analyze our approach within the framework of the

texplore-vanir algorithm [11]. texplore-vanir works in
factored domains, learning a model of the domain by learn-
ing a separate prediction for each of the n state features.
In order to learn the model quickly, it incorporates general-
ization into the model learning, using random forests [7] of
decision trees to predict the next state and reward given the
current state and action. We chose to examine leo on this
approach because it is not clear in this case what the best
exploration strategy is.

texplore-vanir tracks multiple hypotheses of the true
dynamics of the domain in the form of a random forest. A
random forest is a collection of m decision trees, each of
which differs because it is trained on a random subset of
experiences and has some randomness when choosing splits
at the decision nodes [7]. The agent then plans over the
average of the predictions made by each tree in the forest.
texplore-vanir (or texplore with variance and novelty
intrinsic rewards) incorporates two intrinsic rewards for ex-
ploration. The first is the variance reward, which provides
rewards for where there is variance between the predictions
of each tree in the random forest. The variance in the pre-
dictions for a given state-action is multiplied by a coefficient

v and used as intrinsic reward. This reward drives the agent
to state-actions where its models have not converged and it
may need more experiences. The second intrinsic reward is
the novelty reward, which rewards the agent for visiting
state-actions which are most different in feature space from
the ones that it has visited previously. The L1 distance in
feature space from a state-action to the nearest previously
visited state-action is calculated and multiplied by a coef-
ficient n and used as intrinsic reward. This reward drives
the agent to explore the state-actions that are most differ-
ent from what it has been trained on, which are where its
trees are most likely to have generalized incorrectly. When
running texplore-vanir, the user must provide the v and
n coefficients to define how much each of these two explo-
ration strategies is weighted relative to each other and to
exploiting the model of external task rewards.
For our experiments, leo is given the following strategies:

1. Maximize model of task reward

2. Use variance intrinsic reward

3. Use novelty intrinsic reward

4. Reward exploring unvisited state-actions

5. Reward maximizing/minimizing individual state fea-
tures

These strategies were chosen as representative strategies that
might be relevant in the evaluation domains.
The first strategy is to maximize the model of the task re-

ward, which is a purely exploitative policy. This enables the
agent to learn the exploration-exploitation trade-off on-line,
as it can choose to take an exploitative strategy. The second
and third strategies are the two from the texplore-vanir

algorithm. The fourth strategy is similar to the exploration
performed by r-max [5]. This strategy provides intrinsic
rewards for any state-actions that the agent has not visited
yet. A parameter, u, defines how much reward is given to
unvisited state-actions. Finally, we give the agent strategies
that reward or punish particular state features. For exam-
ple, the agent’s reward may be the value of the first state
feature, encouraging the agent to maximize this feature, or
it could be the negative value of the first feature, encourag-
ing the agent to minimize this feature. For the number of
state features in the domain, n, there will be 2n+ 4 strate-
gies: n strategies that maximize the value of each feature, n
strategies that minimize the value of each feature, and the
first 4 strategies presented above.
We compared against texplore-vanir using 6 static pa-

rameterizations of the variance, novelty, and unvisited

exploration strategies:

1. Greedy (v = 0, n = 0, u = 0)

2. variance only (v = 5, n = 0, u = 0)

3. novelty only (v = 0, n = 5, u = 0)

4. unvisited only (v = 0, n = 0, u = 5)

5. low v-n (v = 5, n = 5, u = 0)

6. high v-n (v = 80, n = 80, u = 0)

These 6 options give us a variety of exploration strategies
which have been shown to work well in previous research [10,
11]. There are three versions which are only using a single
exploration strategy (Num. 2-4), one using no exploration
(Num 1), and two which combine the variance and nov-

elty strategies with different weights compared to the task
reward (Num. 5 and 6).

4.2 Domains
We evaluated our algorithm over a set of five domains. We

chose a set of domains where no single exploration strategy
should perform well across all domains. Rather than hand-
tuning the best exploration strategy for each domain, our
algorithm can learn the best strategy in each domain on-
line without any parameter tuning. We expect that while
using the best strategy for one domain will perform better
than leo on that domain, none of the individual strategies
will perform well across all five domains.

The first task we tested the algorithms on is called Fuel
World [10], shown in Figure 1. In it, the agent starts in the
middle left of the domain and is trying to reach a terminal
state in the middle right of the domain which has a reward
of 0. The agent has a fuel level that ranges from 0 to 60. The
agent’s state vector, s, is made up of three features: its row,
col, and fuel. Each step the agent takes reduces its fuel
level by 1. If the fuel level reaches 0, the episode terminates
with reward −400. There are fuel stations along the top and
bottom row of the domain which increase the agent’s fuel
level by 20. The agent can move in eight directions: north,
east, south, west, northeast, southeast, southwest,
and northwest. The first four actions each move the agent
one cell in that direction and have a reward of −1. The
last four actions move the agent to the cell in that diagonal
direction and have reward −1.4. The agent starts with a
random amount of fuel between 14 and 18, which is not
enough to reach the goal, and must learn to go to one of
the fuel stations on the top or bottom row before heading
towards the goal state.

Actions from a fuel station have an additional cost, which
is defined by:

R(x) = base− (x mod 5)a, (8)

where R(x) is the reward of a fuel station in column x, base
is a baseline reward for that row, and a controls how much
the costs vary across columns. The parameters are a = 5.0
and base = −10.0 for the bottom row and −13.0 for the top
row, resulting in rewards from −10.0 to −33.0. As the agent
explores some of the fuel stations, each of its trees may make
different hypotheses about this cost function. Therefore, we
hypothesize that the variance exploration will be the best,
although its unclear how this should be weighted relative to
exploiting the task reward.

The second domain is a version of the Light World do-
main [14], shown in Figure 2. In this domain, the agent is
trying to leave a room. The room has a door, a lock, and a
key. The agent must go pick up the key and then go press
the lock in order to unlock the door. At this point, it can
leave the room, terminating the episode. Open doors, locks,
and keys each emit a different color light that the agent can
see. The agent has sensors that detect each color light in
each cardinal direction. The sensors have a maximal value
of 1 when the agent is at the light, and their values decrease
linearly to 0 when the light is 20 steps away. The agent’s
state is made up of 17 different features: its x and y loca-
tion in the room, whether it has the key, whether the door
is locked, and the values of the 12 light sensors, which de-
tect each of the three lights in the four cardinal directions.
The agent can take six possible actions: it can move in each
of the four cardinal directions, press the lock, or pickup

the key. The press and pickup actions are only effective
when the agent is on top of the lock and the key. The agent

��
��
��
��

��
��
��

��
��
��

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

Figure 1: The Fuel World domain. Starting states
are blue, fuel stations are green, and the goal state
is shown in red. The agent’s possible actions are
shown in the middle. The fuel stations are the most
interesting states to explore, as they vary in cost,
while the center white states are easily predictable.

Figure 2: The Light World domain. In each room,
the agent must navigate to the key, pickup the key,
navigate to the lock, press it, and then navigate to
and exit through the door to the next room.

receives a reward of −1 each step until it leaves the room,
when it receives a reward of +10. The agent starts in a
random state in the room. Since each of the objects has a
related sensor feature, we hypothesize that a few different
exploration strategies will work well on this task. Strategies
that reward higher sensor features may help drive the agent
to the correct objects, and strategies that utilize the nov-

elty reward have been shown to promote useful exploration
as the objects have unique sensor values [11].
The third domain is called the Increasing Rewards do-

main, shown in Figure 3. In this task, the agent starts on
the left side of the grid in one of the blue states. It can navi-
gate through the grid with the usual actions: north, south,
east, and west, each of which move the agent in the de-
sired direction with probability 0.8 and in either perpendic-
ular direction with probability 0.1. There are 5 goals in the
domain, and with escalating rewards for the farther goals.
The agent receives −1 reward each step until it reaches a
goal, when its episode terminates with the specified reward
(either 1, 2, 4, 8, or 16). The idea behind this domain is that
the agent must set its exploration rewards high enough to
drive it to explore past the closer lower-rewarding goals that
are easier to find.
The last two domains are similar in nature, but the best

exploration for each of them varies. In both domains, the
agent is in a 11 by 12 gridworld with the same four navi-
gation actions and action dynamics as the Increasing Re-

0

16
8

4
2

1

Figure 3: The Increasing Rewards domain. The
agent starts in one of the blue states on the left side
of the task. There are five goals in the domain, in-
dicated by the red numbers. Goals that are farther
away provide exponentially more rewards.

-90000

-80000

-70000

-60000

-50000

-40000

-30000

-20000

-10000

 0

 0 50 100 150 200

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Episode Number

Fuel World

LEO
Greedy
Variance Only
Novelty Only
Unvisited Only
Low V-N
High V-N

Figure 4: Cumulative rewards for the 7 methods on
the Fuel World domain, averaged over 30 trials.

wards domain. However, in this task, there is a goal state
that is in a different random location each episode. Essen-
tially, each new episode is a new exploration problem for
the agent. It can use what it has learned from past episodes
about which exploration strategies are the best, but none of
its knowledge about the locations of the goal in the previous
episodes translate to the current episode. The agent receives
a reward of −1 each step until reaching the goal state, when
its episode terminates with a reward of +2. In the first ver-
sion of the task, called the Sensor Goal task, the agent’s
state is made up of 6 state features: the agent’s x and y lo-
cation in the domain, and four sensor features telling it the
distance to the goal in each of the four cardinal directions.
In this version of the task, both the strategies that reward
minimizing these sensor features and the strategy rewarding
novel states should be successful. In the second version of
the domain, called Arbitrary Goal, the agent has no sen-
sors of the goal’s location, but instead has a state feature
indicating the version of the domain it is in without provid-
ing any information about the goal location. In this version
of the domain, the best exploration strategy is to visit every
state in the domain until it finds the randomly located goal.

4.3 Results
In this section, we show the results for the algorithms

across the five domains. All significance results were cal-
culated using a Student’s t-test. Figure 4 shows the cumu-
lative rewards accrued by the algorithms over 200 episodes
on the Fuel World domain. As expected for this task, the
best method is the variance only method, which drives the
agent to explore its various hypotheses about the costs of the
fuel stations. The next best methods are leo and Greedy.
All three of these methods accrue significantly more rewards
than the others (p < 0.001).

Figure 5 shows the weights leo learned for the different

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

W
e

ig
h

t

Episode Number

Fuel World - LEO Weights

Received Reward
Task Reward

Variance
Novelty

Unvisited
Row +
Col +

Fuel +
Row -
Col -

Fuel -

Figure 5: Weights learned by the LEO algorithm on
the Fuel World domain, averaged over 30 trials.

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 50 100 150 200

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Episode Number

Light World

LEO
Greedy
Variance Only
Novelty Only
Unvisited Only
Low V-N
High V-N

Figure 6: Cumulative rewards for the 7 methods
on the Light World domain, averaged over 30 trials.
LEO performs reasonably well on this task, while
the best algorithms on Fuel World fail completely
on this task.

strategies over the first 50 episodes. leo learns the highest
weight for the model of task reward. This is followed by
the variance strategy, which makes sense as it performed
the best on the domain. The third highest weight is on
maximizing the fuel feature, as leo has learned to keep
the fuel level high to accrue rewards. It also puts positive
weight on the strategy of maximizing the col feature, which
will lead it closer to the goal from its start state.
The cumulative rewards of the algorithms on the second

domain, Light World, are shown in Figure 6. On this task,
the high v-n parameters of texplore-vanir performed the
best, followed by novelty only and leo. While leo does
not perform the best on this task or Fuel World, comparing
Figures 4 and 6 show that it is the only method to perform
well on both domains. The two methods that performed sim-
ilar to or better than leo on Fuel World (variance only
and Greedy) fail completely here, never learning to accom-
plish the task. Conversely, the two methods that perform
similar to or better than leo on Light World (novelty
only and high v-n) perform the worst on Fuel World. The
two domains require completely different exploration strate-
gies, and only leo is able to perform well on both tasks.
The cumulative rewards of the algorithms on the Increas-

ing Rewards domain are shown in Figure 7. On this
task, all of the algorithms perform well and accrue a simi-
lar amount of rewards. leo does not accrue a significantly
different amount of rewards than the other algorithms. Fig-

-700

-600

-500

-400

-300

-200

-100

 0

 0 50 100 150 200

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Episode Number

Increasing Rewards

LEO
Greedy
Variance Only
Novelty Only
Unvisited Only
Low V-N
High V-N

Figure 7: Cumulative rewards for the 7 methods on
the Increasing Rewards domain, averaged over 30
trials.

ure 8 shows the weights learned by leo on this task. leo

puts high weight on four strategies: 1) the task reward; 2)
maximizing the col feature; 3) novelty; and 4) variance.
Maximizing the col feature in this domain makes sense as
the higher valued rewards are to the far right in the domain.

Figure 9 shows the cumulative rewards on the Sensor
Goal domain. On this task, leo performs the best, ac-
cruing significantly more rewards than the other algorithms
(p < 0.005). Finally, cumulative rewards for the Arbitrary
Goal domain are shown in Figure 10. As expected, on this
task, the best strategy was to explore unvisited states to
find the goal (the unvisited only strategy). Following this,
the novelty only and low v-n strategies did well, followed
by leo. While leo is out-performed by these algorithms on
this task, none of them did significantly better than leo on
the other four tasks.

In addition to cumulative rewards, a successful algorithm
should learn good final policies. Table 1 shows the average
rewards each method received on its final five episodes in
each task, as well as how that average reward ranked com-
pared with the other six methods for that task. leo has
the best average reward across the five domains, as it was
the best on the Sensor Goal and Increasing Rewards
tasks. leo was only significantly out-performed by other al-
gorithms on one domain, Light World, where the methods
with novelty rewards performed the best. These results
demonstrate that leo performs well across a set of domains
requiring various exploration strategies. None of the other
methods perform well across all five domains. Instead, per-
forming well on these domains would require a user to hand-
tune the exploration parameters for each domain. In con-
trast, leo is more robust, not requiring hand-tuning and
capable of learning the best exploration strategy for each
domain. In addition, it can adapt its strategy parameters
on-line as its model changes.

5. RELATEDWORK
leo’s selection of each strategy according to its weight

is similar to the bandit based approaches described in Sec-
tion 2.1, as all of these methods are based on the exp4 al-
gorithm [2] for solving multi-armed bandit problems when
given a set of experts. The exp4 algorithm estimates the
total return from each expert on the problem and uses a
soft-max distribution over the total returns to select which
expert to follow.

Domain leo Greedy variance only novelty only unvisited only low v-n only high v-n only

Reward Rank Reward Rank Reward Rank Reward Rank Reward Rank Reward Rank Reward Rank

Fuel World −127.4 3 −121.7 2 −86.1 1 −405.6∗ 6 −308.1∗ 4 −392.3∗ 5 −481.8∗ 7

Light World −10.2 4 −1735.6∗ 6 −1794.1∗ 7 −8.9+ 3 −22.9∗ 5 −8.1+ 2 −7.0+ 1
Increasing Rewards −2.5 1 −2.7 3 −2.7 4 −3.0 7 −2.8 5 −2.9 6 −2.6 2
Sensor Goal −53.1 1 −53.8 2 −98.2∗ 3 −406.5∗ 6 −140.3∗ 4 −408.0∗ 7 −159.2∗ 5
Arbitrary Goal −313.5 2 −538.4 5 −548.1 6 −401.7 4 −308.5 1 −323.7 3 −975.7∗ 7

Average −101.3 1 −490.4 6 −505.8 7 −245.1 4 −156.5 2 −227.0 3 −325.3 5

Table 1: This table shows the final performance achieved by each algorithm by presenting the reward each
algorithm achieved on the final five episodes of each task, averaged over the 5 episodes and 30 trials. ∗

indicates that LEO received significantly more rewards than this method (p < 0.01) and + indicates methods
that received significantly more rewards than LEO (p < 0.01). The table also shows the rank of each average
reward compared to the other methods for each task.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200

W
e

ig
h

t

Episode Number

Increasing Rewards - LEO Weights

Received Reward
Task Reward

Variance
Novelty

Unvisited
Row +
Col +
Row -
Col -

Figure 8: Weights learned by the LEO algorithm on
the Increasing Rewards domain, averaged over 30
trials.

-25000

-20000

-15000

-10000

-5000

 0

 0 50 100 150 200

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Episode Number

Sensor Goal

LEO
Greedy
Variance Only
Novelty Only
Unvisited Only
Low V-N
High V-N

Figure 9: Cumulative rewards for the 7 methods on
the Sensor Goal domain, averaged over 30 trials.

leo is different from these previous works in several re-
spects. After selecting a strategy, leo takes a sequence of
actions rather than a single arm pull, since it must complete
an entire episode to receive a payoff. In addition, during an
episode, leo selects different strategies. Thus, contrary to
other bandit methods, leo updates the weights of all of the
strategies using an importance sampling approach, rather
than only updating the weight of a single strategy.
The work with the most similar goal to ours is the policy

gradient reward design algorithm (pgrd). This method also
learns the best intrinsic rewards on-line, however only for
cases where the true reward function is given and the agent
is limited in some way [6, 20]. pgrd uses its knowledge of the
true reward function to calculate the gradient of intrinsic re-
wards to agent return. Using this gradient, intrinsic rewards

-120000

-100000

-80000

-60000

-40000

-20000

 0

 0 50 100 150 200

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Episode Number

Arbitrary Goal

LEO
Greedy
Variance Only
Novelty Only
Unvisited Only
Low V-N
High V-N

Figure 10: Cumulative rewards for the 7 methods on
the Arbitrary Goal domain, averaged over 30 trials.

are found that enable the best agent performance given its
limitations. For example, if the agent has a limited planning
depth, then even with the true reward function, it cannot
perform well. However, the right intrinsic rewards can make
up for this deficiency. pgrd does not apply to agents with-
out limitations, as then the given reward function means the
problem is effectively solved. Similarly, in tasks where the
reward function is not given, then the gradient cannot be
calculated and this method does not work.

There are also other methods that are focused on explo-
ration. For example, r-iac [4] maintains an error curve for
different regions of the domain and uses the slope of this
curve as the intrinsic reward for the agent, driving the agent
to explore the areas where its model is improving the most.
An alternative is to learn a separate predictor of the change
in model error and use its predicted values as the intrin-
sic reward to drive exploration [19]. Similarly, zeta-r-max
extends r-max to classify states as known based on the em-
pirical measure of progress in model learning and provides
convergence guarantees [15].

There is related work for doing off-policy value updates
(i.e. calculating the value of policies other than the one being
followed). Our method for calculating the value of the other
exploration policies for each episode is similar to other off-
policy approaches [21]. There are also methods that update
the off-policy values every step by estimating their values for
each state-action [17]. However, these methods would not
apply to some of our experiments. For example, in the two
domains with the goal in a random location each episode,
none of the states visited in one episode will be seen again
in the next episode. Therefore, learning off-policy values for
those states will not be useful, but it is still possible to learn

the values of a policy on a per-episode basis.
All of these methods for doing off-policy updates utilize

importance sampling, which is a method for estimating one
distribution while sampling from another distribution [18].
The importance sampling estimator is used to estimate the
value of a target policy while following a different behavior
policy. To do so, the received rewards are multiplied by the
likelihood of the action under the target policy and divided
by the likelihood under the followed policy. In our work, we
compare between different exploration policies, and thus the
likelihood under the followed policy is the same across all of
these policies and cancels out.

6. DISCUSSION AND CONCLUSION
RL has the potential to solve many relevant sequential de-

cision making processes. One difficulty with applying RL to
these problems is the need to hand-tune exploration param-
eters. This tuning is required both to get the right type of
exploration for the given domain and algorithm and to de-
termine the proper exploration-exploitation trade-off for the
task. In this paper, we have presented the novel leo algo-
rithm for learning from among several possible exploration
strategies on-line. We demonstrated that this approach re-
ceives high rewards across a set of several domains that each
require a different exploration strategy. In contrast, no sin-
gle parameterized exploration approach performs well across
all the domains. By learning exploration strategies on-line,
leo removes the need for users to hand-tune exploration
parameters for each domain.
In this work, our goal is to maximize on-line rewards, and

therefore we evaluate the quality of an exploration strategy
based on the rewards received while following it. The re-
ceived rewards indicate how quickly the exploration led the
agent to find the rewarding transitions in the domain. While
this approach works well in practice, it would be ideal to
evaluate an exploration strategy based on the long-term re-
wards received after following it. One challenging possibility
for future work is to separate exploration and exploitation,
and evaluate exploration strategies by the agent’s perfor-
mance on a later evaluation episode where it exploits the
model it learned while exploring. Another alternative is to
evaluate the exploration strategies by how much they im-
prove the agent’s model accuracy, addressing the pure ex-
ploration problem. However, both of these alternatives have
an off-line phase; we believe that the approach taken by leo

makes the most sense when the goal is to maximize on-line
rewards.

Acknowledgments

This work has taken place in the Learning Agents Research Group

(LARG) at UT Austin and at the FLOWERS group at INRIA

Sud-Ouest. LARG research is supported in part by NSF (IIS-

0917122), ONR (N00014-09-1-0658), and the FHWA (DTFH61-

07-H-00030). Thanks to Pierre-Yves Oudeyer for valuable discus-

sions on this work.

7. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
Learning, 47(2):235–256, May 2002.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. Gambling in a rigged casino: The adversarial

multi-armed bandit problem. Electronic Colloquium
on Computational Complexity (ECCC), 7(68), 2000.

[3] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of
active learning algorithms. JMLR, 5:255–291, 2004.

[4] A. Baranes and P. Y. Oudeyer. R-IAC: Robust
Intrinsically Motivated Exploration and Active
Learning. TAMD, 1(3):155–169, Oct. 2009.

[5] R. Brafman and M. Tennenholtz. R-Max - a general
polynomial time algorithm for near-optimal
reinforcement learning. In IJCAI, 2001.

[6] J. Bratman, S. P. Singh, J. Sorg, and R. L. Lewis.
Strong mitigation: nesting search for good policies
within search for good reward. In AAMAS, 2012.

[7] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[8] D. Chakraborty and P. Stone. Structure learning in
ergodic factored MDPs without knowledge of the
transition function’s in-degree. In ICML, June 2011.

[9] C. Diuk, L. Li, and B. Leffler. The
adaptive-meteorologists problem and its application to
structure learning and feature selection in
reinforcement learning. In ICML, 2009.

[10] T. Hester and P. Stone. Real time targeted
exploration in large domains. In ICDL, August 2010.

[11] T. Hester and P. Stone. Intrinsically motivated model
learning for a developing curious agent. In ICDL,
November 2012.

[12] M. Hoffman, E. Brochu, and N. de Freitas. Portfolio
allocation for bayesian optimization. In UAI, pages
327–336, 2011.

[13] J. Z. Kolter and A. Ng. Near-Bayesian exploration in
polynomial time. In ICML, 2009.

[14] G. Konidaris and A. G. Barto. Building portable
options: Skill transfer in reinforcement learning. In
IJCAI, 2007.

[15] M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer.
Exploration in model-based reinforcement learning by
empirically estimating learning progress. In NIPS,
Tahoe, USA, 2012.

[16] M. Lopes and P.-Y. Oudeyer. The strategic student
approach for life-long exploration and learning. In
ICDL, November 2012.

[17] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility
traces for off-policy policy evaluation. In ICML, 2000.

[18] R. Rubinstein. Simulation and the Monte Carlo
Methods. John Wiley & Sons, Inc., 1981.

[19] J. Schmidhuber. Curious model-building control
systems. In International Joint Conference on Neural
Networks, 1991.

[20] J. Sorg, S. P. Singh, and R. L. Lewis. Optimal rewards
versus leaf-evaluation heuristics in planning agents. In
AAAI Conference on Artificial Intelligence, 2011.

[21] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

