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ABSTRACT
Flocking is a fascinating collective behavior exhibited by
many different animals including birds and fish. As under-
stood by biologists, the overall flocking behavior emerges
from relatively simple local control rules by which each indi-
vidual adjusts its own trajectory based on those of its closest
neighbors. We consider the possibility of adding a small set
of influencing agents, that are under our control, into a flock.
Specifically, in this paper we consider where in the flock to
place the influencing agents that we add to the flock. Fol-
lowing ad hoc teamwork methodology, we assume that we
are given knowledge of, but no direct control over, the rest of
the flock. We use the influencing agents to alter the flock’s
trajectory, for instance to avoid an obstacle. We define sev-
eral methodologies for placing the influencing agents into the
flock, and compare them via detailed experimental results.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Algorithms, Experimentation

Keywords
Ad Hoc Teamwork, Agent Placement, Flocking

1. INTRODUCTION
Flocking is an emergent swarm behavior found in various

species in nature. Each animal in a flock follows a simple
local behavior rule, but this simple behavior by individual
agents often results in group behavior that appears well or-
ganized and stable. Flocking is often studied under the as-
sumption that all of the agents are identical or represent
a small set of well-defined behavior types. Indeed, various
disciplines such as physics [12], graphics [9], biology [2], and
distributed control theory [6, 7, 11] have studied flocking in
order to characterize its emergent behavior. In our work,
we instead consider how to lead a flock to adopt particular
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behaviors by adding a small amount of controllable agents
to the flock.

As a motivating example, imagine that a flock of migrating
birds is flying directly towards a dangerous area, such as an
airport or wind farm. Our goal is to encourage the birds
to avoid the dangerous area without significantly disturbing
them. Since there is no way to directly control the flight
path of the birds, we must instead alter the environment so
as to encourage the flock to alter their flight path as desired.
In this work, we choose to alter the environment by adding
influencing agents to the flock. These influencing agents
— which could be in the form of robotic birds1, robotic
bees [10], or ultralight aircraft2 — follow our algorithms but
are perceived by the rest of the flock to be one of their own.

Following a well-recognized flocking model [9], we assume
that each bird in the flock dynamically adjusts its heading
based on that of its immediate neighbors. Previous work has
considered how randomly placed influencing agents should
behave so as to influence the flock to face a particular direc-
tion or maneuver along a path so as to avoid an obstacle [4,
5]. In our work, we examine where the influencing agents
should be placed in the flock. Specifically, our current re-
search question is: where should influencing agents be located
within a flock to maximize their influence on the flock?

The remainder of this paper is organized as follows. Sec-
tion 2 situates our research in the literature and Section 3 in-
troduces our problem and necessary terminology. Section 4
reviews past work on how the influencing agents decide how
to behave. Section 5 introduces our graph-based method
for deciding where to place the influencing agents and Sec-
tion 6 introduces our approach for control of the influencing
agents. We discuss our experiments in Section 7 and then
Section 8 concludes.

2. RELATED WORK
Reynolds introduced the flocking model that we use in

this work [9]. Reynolds focused on creating a flocking model
that looked and behaved realistically. His model consisted
of three simple steering behaviors that determine how each
agent behaves based on the agents around it. Vicsek et al.
considered only one aspect of Reynolds’ model in physics
work that studied the self-emergent nature of flocking [12].
However, neither of these lines of research considered how
to influence the flock to adopt a particular behavior by in-
troducing agents into the flock.

1www.mybionicbird.com
2www.operationmigration.org



Jadbabaie et al. considered the impact of adding a con-
trollable agent to a flock [7]. They also used just one aspect
of Reynolds’ model and showed that a flock with a control-
lable agent will always converge to the controllable agent’s
heading. Su et al. also presented work that used a control-
lable agent to make the flock converge [11]. Celikkanat and
Sahin used informed agents to lead the flock by their prefer-
ence for a particular direction [1]. Our work is different from
these lines of research in that they all influence the flock to
converge to a target heading eventually, while we influence
the flock to converge quickly.

Couzin et al. considered how animals in groups make
informed, unanimous decisions [2]. They showed that only
a very small proportion of informed agents is required for
such decisions, and that the larger the group, the smaller
the proportion of informed individuals required. Ferrante
et al. used communication to coordinate a flock to move
towards a common goal [3]. These two lines of research
are different from ours because they do not consider how to
control agents by considering and accounting for how the
other agents will react. Instead, in these lines of research,
each agent behaves in a fixed manner that is pre-decided or
solely based on its type.

Han et al. assume that an influencing agent can be placed
at any position at any time step [6]. Because of this assump-
tion, the authors place the influencing agent at the position
of the ‘worst’ flocking agent, which is the one that devi-
ates from the desired orientation the most. In our work, we
consider the assumption that the influencing agents can be
placed as we want in the first time step. However, we do not
allow teleporting and hence we can not continually place an
influencing agent at the ‘worst’ flocking agent.

To the best of our knowledge, the work presented in this
paper is the first that considers how to place controllable
agents that aim to influence the flock towards a particular
behavior into a flock.

3. PROBLEM DEFINITION
To fully define our problem, we must specify (1) a model

of the flock, (2) the possible options for placing influencing
agents initially, (3) the actions available to the influencing
agents, and (4) the performance objective. This section does
so, and also describes the concrete simulation environment
that we use in our experiments. Our proposed methodolo-
gies for addressing the defined problem are presented in Sec-
tions 5 and 6.

3.1 Flocking Model
To model the flock, we use a simplified version of Reynolds’

Boid algorithm for flocking [9] that is similar to the model
utilized in our previous work [4]. Specifically, we only use
the flock centering aspect of Reynolds’ model, and do not
use the collision avoidance and velocity matching aspects of
his model.

The flock is comprised of two types of agents. Specifically,
the n agents that comprise the flock consist of k influenc-
ing agents and m flocking agents, where k + m = n. The
influencing agents {a0, . . . , ak−1} are agents whose behavior
we can control, while the flocking agents {ak, . . . , aN−1} are
agents that we cannot directly control.

Each agent in the flock has a velocity, a position in the
environment, and an orientation. Each agent ai moves with
velocity vi. At each time step t, each agent ai has a position

pi(t) = (xi(t), yi(t)) in the environment and an orientation
θi(t). Each agent’s position pi(t) at time t is updated after
its orientation is updated, such that xi(t) = xi(t − 1) +
vi cos(θi(t)) and yi(t) = yi(t− 1) − vi sin(θi(t)). Hence, the
current state of agent ai at time t can be represented by its
(xi(t), yi(t),θi(t)) pose.

Agents in a flock update their orientations based on the
orientations of the other agents in their neighborhood. Let
Ni(t) be the set of ni(t) ≤ n agents (not including agent
ai) at time t which are located within a visibility radius
r of agent ai. This visibility radius defines each agent’s
neighborhood. The global orientation of agent ai at time
step t + 1, θi(t + 1), is set to be the average orientation of
all agents in Ni(t) (not including itself) at time t. Formally,

θi(t+ 1) = θi(t) +
1

ni(t)

∑

aj∈Ni(t)

calcDiff(θj(t), θi(t)) (1)

We use Equation 1 instead of taking the average orientation
of all agents because of the special cases handled by Algo-
rithm 1. For example, the mathematical average of 350◦ and
10◦ is 180◦, but by Algorithm 1 it is 0◦. Throughout this
paper, we restrict θi(t) to be within [0, 2π).

Algorithm 1 calcDiff(θi(t), θj(t))

1: if ((θi(t) − θj(t) ≥ −π) ∧ (θi(t) − θj(t) ≤ π)) then

2: return θi(t) − θj(t)
3: else if θi(t) − θj(t) < −π then

4: return 2π + (θi(t) − θj(t))
5: else

6: return (θi(t) − θj(t)) − 2π

3.2 Influencing Agent Initial Placement
The influencing agents join the flock in order to influ-

ence the flock to behave in a particular way. Our previous
work only considered random placement of the influencing
agents [5]. However, in this work we consider cases in which
{p0(0), . . . , pk−1(0)} is under our control (Section 7.2) and
cases in which it is not (Section 7.3).

In the cases where {p0(0), . . . , pk−1(0)} is under our con-
trol we may place the agents {a0, . . . , ak−1} wherever we
wish. In the cases where it is not, we assume the agents
{a0, . . . , ak−1} begin in designated starting spots and must
then actively move to locate themselves within the flock, per-
haps as the flock passes by their designated starting spots.

3.3 Influencing Agent Control
Influencing agents {a0, . . . , ak−1} are agents whose behav-

ior we can control. Specifically, we control what type of
behavior these agents display at each given time step: (1)
control to adjust position or (2) control to influence neigh-
bors. Our previous work only focused on control to influence
neighbors [5]. In this work, Section 6 presents reasoning
about control to adjust position and introduces a method to
arbitrate between control to adjust position and control to
influence neighbors.

3.4 Performance Representation
We define the Agent Control and Placement Problem as

follows: Given a target orientation θ∗ and a team of n agents
{a0, . . . , an−1}, where the m flocking agents {ak, . . . an−1}
have positions γm(t) = {pk(t), . . . pn−1(t)} at time t and
calculate their orientation based on Equation 1, determine



placement π(0) of influencing agents {a0, . . . ak−1} at time
0 and control Φ = φ(0), . . . , φ(t) at times t >= 0 such that
loss l(π(0),Φ) is minimized.

A k-agent placement specifies the positions that each in-
fluencing agent {a0, . . . ak−1} will take at time 0. The k-
agent placement is denoted by πk(0) = {p0(0), . . . , pk−1(0)}
where {p0(0), . . . , pk−1(0)} is the set of positions for influ-
encing agents {a0, . . . ak−1} at time 0.

We denote t∗ as the earliest time step at which flocking
agents {ak, . . . , aN−1} are oriented such that, for all t ≥ t∗,
{θk(t), . . . , θN−1(t)} are all within ǫ of θ∗. However, in some
cases this will never occur because some of the m flocking
agents may become permanently separated from the flock —
we say these agents are lost. An agent ai is considered lost
if there exists a subset of flocking agents with cardinality
m′ < m and orientations within ǫ of θ∗ for more than 200
time steps and |θi(t

∗) − θ∗| > ǫ, where t∗ is the time step
at which the subset converged to θ∗. Let γm′(t) denote the
set of positions of the non-lost flocking agents at time t.

Additionally, let α =

∑
j∈γ

m′ (t)
‖j−γm′ (t)‖

m′ . In other words,
let α represent the average distance of the non-lost flocking
agents at time t from the center of the flock.

The loss l(π(0),Φ) of a k-agent placement πk(0) and con-
trol Φ is a weighted function of four terms:

• w1 is a weight that emphasizes the importance of min-
imizing the number of lost agents (minimize m−m′)

• w2 is a weight that emphasizes the importance of mini-
mizing the number of simulation experiments in which
any agent is lost (minimize simulation experiments in
which m−m′ > 0)

• w3 is a weight that emphasizes the importance of min-
imizing the number of time steps needed for conver-
gence (minimize t∗)

• w4 is a weight that emphasizes the importance of the
flock being compactly spaced at time t∗ (minimize α)

l(π(0),Φ) =w1m−m′ + w2p(m−m′ > 0)+

w3t∗ + w4α
(2)

An optimal placement π∗(0),Φ∗ is one with minimal loss
l(π∗(0),Φ).

In this work, we set w1 > w2 > w3 > w4. With these
preferences for w1, w2, w3, and w4 we select influencing
agent placements that generally lose the least number of
agents on average but that also attempt to minimize the
chances of losing any agents.

3.5 Simulation Environment
We situate our research within the MASON simulator [8].

This simulator encodes all the flock dynamics as described in
this section and we augment it to compute the performance
metric discussed Section 3.4. Pictures of the Flockers do-
main are shown in Figure 1. Each agent points and moves
in the direction of its current velocity vector. We describe
our experimental setup in detail in Section 7.1.

4. CONTROL OF INFLUENCING AGENTS
Birds in a flock dynamically update their headings based

on the headings of their neighbors. In Section 3 we pre-
sented the models that we assume birds use when determin-
ing which nearby birds are in their neighborhood and when

(a) (b)

Figure 1: Images of (a) the start of a trial and (b) the end of
a trial. The gray agents are influencing agents while the black
agents are other members of the flock.

updating their headings. Our previous work has focused on
how randomly placed influencing agents should behave so
as to influence the flock towards a particular behavior [4, 5].
We shortly review this work below.

Our first paper in this area considered how influencing
agents should behave from a theoretical perspective [4]. This
work presented a formal definition of the flocking model that
served as a base for the model we use in the work presented
in this paper. We presented multiple general flocking the-
orems that apply across all flocking scenarios before con-
sidering theorems specific to cases in which all agents are
stationary (vi = 0 ∀ i) and cases in which only the influ-
encing agents are non-stationary (vi = 0 ∀ i ≥ k). In the
case where all of the agents are stationary, we presented and
then empirically evaluated an algorithm for determining the
necessary orientations for influencing agents at each time
step as well as the number of steps needed for the flocking
agents to orient towards θ∗. In the case of non-stationary
influencing agents attempting to influence stationary flock-
ing agents, we empirically evaluated two heuristics for how
the influencing agents should behave when they are not cur-
rently within the neighborhood of any flocking agents.

In more recent work we considered how to influence a
large, non-stationary flock to (1) quickly orient towards a
target orientation and (2) maneuver through turns quickly
but with minimal agents becoming lost as a result of these
turns [5]. We introduced a 1-step lookahead algorithm for
determining the individual behavior of each influencing agent
ai ∈ {a0, . . . , ak−1}. This 1-step lookahead algorithm con-
sidered all of the influences on the neighbors Ni(t) of the
influencing agent ai and allowed the influencing agent to de-
termine the best orientation to adopt (where best is defined
as the behavior that exerts the most influence on the next
step). We used this algorithm to determine the behavior of
each influencing agent in empirical experiments, and showed
that the 1-step lookahead algorithm did better in terms of
the number of steps required for the flock to converge to θ∗

than the baseline algorithm in both cases.
In the work presented in this paper, we used the 1-step

lookahead algorithm from our previous work [5] as the be-
havior of the influencing agents once they are in their chosen
positions within the flock. In order to maintain consistency
with this previous work, in our experiments we set two con-
trol and task parameters in the same manner as we did pre-
viously. First, we only consider numAngles discrete angle
choices for each influencing agent when performing 1-step
lookahead, where numAngles=50. Thus the unit circle is



equally divided into 50 segments beginning at 0 radians and
each of these orientations is considered as a possible ori-
entation for each influencing agent during 1-step lookahead.
Second, we conclude that the flock has converged to θ∗ when
every agent (that is not an influencing agent or lost) is facing
within 0.1 radians of θ∗.

5. DETERMINING INITIAL POSITIONS OF
INFLUENCING AGENTS

The main contribution of this paper is a consideration of
where to place the influencing agents {a0, . . . , ak−1} into the
flock, assuming that once there, they will follow the 1-step
lookahead behavior described above. We consider two differ-
ent cases when determining how to place ai ∈ {a0, . . . , ak−1}
into the flock. In the Drop case, we are able to drop each
influencing agent ai into the flock at whatever location pi(0)
we desire at time t = 0. In theDispatch case, each influenc-
ing agent begins at one or more stations outside the flock at
time t = 0 and is directed to travel to a particular location
in the flock. Note that in the Dispatch case, each influenc-
ing agent will take time to reach its assigned location and
may influence flocking agents along the way.

In the following subsections we discuss our approaches for
placing influencing agents into the flock. Videos of these
approaches are available on our web page.3

5.1 Random Approach
Our previous research randomly placed k influencing agents

within the dimensions of the flock [5]. Hence, we use ran-
dom placement as the base case for evaluating our placement
approaches. Random placements are calculated for k influ-
encing agents in constant time.

5.2 Grid Approach
Grid placement is another base case in which we place k

influencing agents at predefined, well-spaced, gridded posi-
tions throughout flock. The placement of the influencing
agents is dependent on the space covered by the flocking
agents, and not on the positions of flocking agents. Hence,
the placements of k influencing agents are determined in con-
stant time. Grids are available that can fit at most x influ-
encing agents, where we use the smallest grid in which k ≤ x.
Grids are available in which x ∈ {1, 2, 4, 9, 16, 25, 36, . . .}.
For each grid size, agents are spread out among the pos-
sible positions as much as possible. Examples of the grid
approach for various values of k can be seen in Figure 2.

(a) k = 2 (b) k = 4 (c) k = 6

Figure 2: Images of influencing agent placement using the grid

approach with (a) k = 2 (b) k = 4 and (c) k = 6. n = 50 in
all three cases. The gray agents are influencing agents while the
black agents are other members of the flock.

3http://www.cs.utexas.edu/~larg/index.php/
Placement_Into_a_Flock

5.3 Border Approach
Our border approach works by placing k influencing agents

as evenly as possible around the space covered by the flock-
ing agents. As in the grid approach, the placement of the
influencing agents is not dependent on the positions of flock-
ing agents. Hence, the placements of k influencing agents are
determined in constant time. We place influencing agents on
the left side of the flock, right side of the flock, bottom of
the flock, and top of the flock in order until all k influencing
agents are placed. At most k

4
influencing agents are posi-

tioned on any particular side of the flock. If more than one
influencing agent is placed on a particular side of the flock,
the influencing agents spread out as much as possible on
that side of the flock. Examples of the border approach for
various values of k can be seen in Figure 3.

(a) k = 2 (b) k = 4 (c) k = 6

Figure 3: Images of influencing agent placement using the bor-

der approach with (a) k = 2 (b) k = 4 and (c) k = 6. n = 50 in
all three cases. The gray agents are influencing agents while the
black agents are other members of the flock.

5.4 Graph Approach
Our graph approach considers many possible k-sized sets

of positions in which the k influencing agents could be placed,
and then evaluates how well each of these sets connects the
m flocking agents with the k influencing agents.

5.4.1 Creating the Graph
All {ak, . . . , aN−1} flocking agents are added to an ini-

tially empty graph G as nodes. Then, for each agent ai ∈
{ak, . . . , aN−1}, an undirected edge is added to G between
ai and each of its neighbors ab ∈ ni(t) if such an edge does
not already exist.

5.4.2 Calculating Sets of Influencing Agent Positions
Next we consider the positions at which we will consider

adding influencing agents. For ai, aj ∈ {ak, . . . , aN−1}, we
consider adding an influencing agent at the

mid-point (
xi(t)+xj(t)

2
,
yi(t)+yj(t)

2
) between pi(t) and pj(t)

only if pi(t) and pj(t) are within 2r of each other. We con-
sider this midpoint because placing an influencing agent here
will allow the agent to influence both ai and aj . We also con-
sider adding an influencing agent at (xi(t)+ 0.1, yi(t)+ 0.1)
for ai ∈ {ak, . . . , aN−1} where 0.1 < r. We consider this
point, which is extremely close to ai, since placing an influ-
encing agent as this point will allow the agent to at least
influence ai. In cases where no or few flocking agents are
within 2r of each other, placing influencing agents close to
a flocking agent guaranteed that at least one flocking agent
would be influenced by each influencing agent.

Once we have all of the positions at which we might add
an influencing agents, we form all possible k-sized sets of
these positions.



5.4.3 Evaluating Sets of Influencing Agent Positions
Finally, we take all possible k-sized sets and consider indi-

vidually each set S of k influencing agent positions. In order
to do this, we do the following for each S. Note that agents
are ‘directly’ connected if they are neighbors and ‘indirectly’
connected if they have a neighbor, a neighbor of a neighbor,
or a most distant agent in common.

• Add each influencing agent ai ∈ S to G

• For each agent ai ∈ S, an edge is added to G between
ai and each of its neighbors ab ∈ ni(t)

• Run the Floyd Warshall shortest paths algorithm on
G to obtain the following:

– numNoConn: the number of flocking agents not
connected to an influencing agent (directly or in-
directly)

– numConn: the number of connections between
flocking agents and influencing agents (directly or
indirectly)

– numDirectConn: the number of direct connec-
tions between flocking agents and influencing agents

– numNoDirectConn: the number of flocking agents
not directly connected to an influencing agent

• Remove each influencing agent ai ∈ S from G

Once all possible k-sized sets T have been individually
considered, we select a set based on the information we ob-
tained. Specifically, we compare in order (lexicographically)
criteria at four levels: (1) minimal numNoConn, (2) max-
imal numConn, (3) maximal numDirectConn, and (4)
minimal numNoDirectConn. If only one set matches the
criterion at a level, then we select it. Otherwise, all of the
sets that matched the criterion at that level are considered
at the next level. If multiple sets remain after the final level,
we choose one of the remaining sets randomly.

In practice, we find that a set is usually selected using the
first criterion. We have witnessed a few cases in which the
fourth criterion has been used, but we have never witnessed
a case in which the final criterion of selecting a remaining
set randomly has been utilized.

The entire process of selecting placements for k influencing
agents, given current placements of m flocking agents, has

an algorithmic complexity of O(n3
(

m2+m

k

)

).
As can be seen in Figure 4, our graph approach places

influencing agents in the areas in which their influence will
be most impactful in decreasing loss of flocking agents.

(a) k = 2, n = 10 (b) k = 4, n = 10 (c) k = 2, n = 20

Figure 4: Images of influencing agent placement using the graph
approach with (a) k = 2, n = 10 (b) k = 4, n = 10 and (c) k = 2,
n = 20. The gray agents are influencing agents while the black
agents are other members of the flock.

6. DETERMINING CONTROL OF INFLU-
ENCING AGENTS

In the Drop case, the k influencing agents are at their de-
sired positions at t = 0, so they can start influencing flocking
agents directly via 1-step lookahead. In the Dispatch case,
however, the influencing agents are initially positioned out-
side of the flock. They will only influence a limited number of
flocking agents if they begin 1-step lookahead immediately.
Hence, they must reposition themselves to their desired po-
sitions before they attempt to influence.

In the Dispatch case the influencing agents must ap-
proach and enter the flock in order to reach their desired
positions and eventually influence more flocking agents. If
they travel at the same speed as the flocking agents, they
usually will not be able to catch up to the flocking agents.
Instead, as the orientations of the flocking agents are affected
by the influencing agents’ directions, the flocking agents are
likely to be driven away from the flock in the direction the in-
fluencing agents are traveling. Since the desired positions of
the influencing agents are determined based on the current
positions of the flocking agents, the influencing agents may
never reach their desired positions if they travel at the same
speed as the flocking agents. Hence, in the Dispatch case
we assume the influencing agents are able to travel faster
than the flocking agents. They do so when moving to their
chosen position; when using 1-step lookahead to influence
the flocking agents, they revert to the same speed as the
flocking agents.

Influencing agents must always decide whether to attempt
to move to their desired location or attempt to influence
flocking agents in the Dispatch case. Once an influencing
agent ai reaches its desired position pi(t), it always enters
the phase of influencing flocking agents via 1-step looka-
head. However, behaving according to 1-step lookahead may
cause ai to leave its desired position (it could even leave the
flock). As such, ai should return to the repositioning phase
if it strays too far from its desired position. However, if
ai switches between repositioning to its desired position and
influencing flocking agents too frequently, it will oscillate be-
tween these two behaviors and not efficiently influence the
flocking agents. To prevent excessive oscillation, we employ
a hysteresis method to control the switch between these two
phases. Specifically, when an influencing agent reaches a
distance of h1 away from its desired position, it returns to
within h2 of its desired position, where h1 > h2. In this way,
the influencing agent will not reposition itself when it only
deviates slightly from its desired position.

We examine the various types of desired positions de-
scribed in Section 5 — random approach, grid approach,
border approach, and graph approach. We use such place-
ments as initial positions in the Drop case, and as desired
positions in the Dispatch case. We report the empirical
results in Section 7. However, we only report results for the
graph approach in the Drop case. This is because as the
desired positions need to be recalculated at each time step
as the flocking agents update their positions, the graph ap-
proach was too computationally expensive to be evaluated
in the Dispatch case. Moreover, the desired positions in-
dicated by the graph approach are optimum points at one
time step. They may change dramatically when the flock
moves whereas the positions chosen by the border approach
and grid approach change smoothly.



7. EXPERIMENTS
In this section we describe our experiments testing the

various approaches for placing influencing agents into a flock
in both the Drop case and the Dispatch case. We compare
our novel approaches against baseline methods in both cases.

There are plenty of different metrics that can be used to
access how ‘good’ a particular approach is — steps for the
flock to converge, the number of trials in which any flocking
agents were lost, the average number of flocking agents lost,
and the average distance of the flocking agents from the cen-
ter of flock at convergence are just some possible metrics. As
discussed in Section 3.4, in this work we primarily focus on
minimizing the average number of flocking agents lost. Our
secondary focus is minimizing the number of trials in which
any flocking agents are lost. Hence, for our experiments we
set w1 = 0.45, w2 = 0.4, w3 = 0.1, and w4 = 0.05. However,
our approach will be applicable as long as w1 and w2 are
substantially greater than w3 and w4 — it is not sensitive
to the exact values of these variables.

7.1 Experimental Setup
We utilize the MASON simulator [8] for our experiments

in this paper. We introduced the MASON simulator in Sec-
tion 3.5, but in this section we present the details of our
experimental environment that are vital for completely un-
derstanding and replicating our experimental setup. We
generally only discuss an experimental variable or control
if we changed it from the default setting for the simulator.

The experimental settings for variables are given in Table
1 for both the Drop case and the Dispatch case.

Variable
Drop

Case

Dispatch

Case
toroidal domain no no
domain height 300 300
domain width 300 300
units moved by each flocking agent
per time step (vk = . . . = vN−1)

0.2 0.2

units moved by each influencing agent
per time step (v0 = . . . = vk−1)

0.2 0.2-1

number of agents in flock (n) 10-50 50
number of influencing agents (k) 1-5 5
neighborhood for each agent (radius) 10 10

Table 1: Experimental settings for variables in the Drop and
Dispatch cases. Italicized values are default settings for the sim-
ulator.

Most of our experimental variables in Table 1, such as
toroidal domain, domain height, domain width, and the
units each agent moves per time step, are not set to the
default settings for the MASON simulator. We chose to re-
move the toroidal nature of the domain in order to make the
domain more realistic. Hence, if an agent moves off of one
edge of our domain, it will not reappear. This is particularly
important for lost agents remaining lost. We also increased
the domain height and width, and decreased the units each
agent moves per time step, in order to give agents a chance
to converge with the flock before leaving the visible area.
However, we have no reason to believe the exact values we
chose for the experiments are of particular importance.

Flocking agents are randomly placed initially within a
square in the top left of the domain, where this square occu-
pies 4% of the domain. Agents are initially assigned random
headings that are within 90 degrees of θ∗. If no influencing
agents are added to the flock, some agents will likely be lost

from the flock, the flock may separate into multiple smaller
flocks, and the flock(s) will almost certainly not travel in the
desired direction.

In all of our experiments, we run 100 trials for each exper-
imental setting. We use the same set of 100 random seeds
for each set of experiments for the purpose of variance re-
duction. The random seeds are used to determine the exact
placement and orientation of all of the flocking agents at the
start of a simulation experiment. In all of the graphs in the
following sections, the error bars depict the sample standard
deviation.

7.2 Drop Experimental Results
In the Drop case, we are able to drop each influencing

agent ai into the flock at whatever location pi(0) we desire.
The left-hand side of Figure 5 shows graphs that depict

the average number of flocking agents lost when n = 10,
n = 20 and n = 50. We report results for n = 50 in order
to allow comparison with results in Sections 7.2.1 and 7.3.
However, results for flocks of n = 10 and n = 20 highlight
the strength of the graph approach in the Drop case.

Note that the graph approach loses fewer flocking agents
in comparison to the other approaches when the flock size
is small (n = 10 and n = 20) because in these cases agents
are more sparse in the environment and hence tend to have
fewer neighbors. This is important because agents with
fewer neighbors are less likely to be inadvertently influenced
by distant influencing agents. Additionally, the graph ap-
proach also performs better than the other approaches when
n is small and the percentage of influencing agents in the
flock is high. This is because the graph approach focuses
on minimizing the number of unconnected flocking agents,
so as a higher percentage of the flock is composed of in-
fluencing agents, the number of unconnected — and hence
uninfluenced — flocking agents will decrease quicker under
the graph approach than under other the approaches. Fi-
nally, note that in Figure 5(a) no flocking agents are lost
by the graph approach when 50% of the flock is composed
of influencing agents. This is intuitively because the influ-
encing agents will be placed such that each flocking agent is
influenced by at least one influencing agent.

The right-hand side of Figure 5 shows how many trials out
of 100 resulted in any flocking agents becoming lost. All of
the methods begin to have more trials in which no flocking
agents are lost as k increases. However, it is notable how
stark the difference is between the number of trials in which
no flocking agents are lost when using the graph approach
versus any other approach. This supports our assertion that
the graph approach places influencing agents in initial po-
sitions that minimize the number of disconnected — and
hence uninfluenced — flocking agents.

7.2.1 Drop + Reposition Experimental Results
In theDrop case, the influencing agents are initially dropped

at their desired positions. However, in this section we con-
sider an extension to the Drop case which we call the Drop

+ Reposition case. In this case, we initially drop the influ-
encing agents at their desired positions but also allow them
to reposition as needed in order to stay near their desired
positions. In order to reposition, the influencing agents em-
ploy the hysteresis method described in Section 6. To be
consistent with Section 7.3, we set h1 = 5 units and h2 = 3
units for the border approach placements and h1 = 10 units



(a) Avg Lost, n = 10 (b) Trials Lost, n = 10

(c) Avg Lost, n = 20 (d) Trials Lost, n = 20

(e) Avg Lost, n = 50 (f) Trials Lost, n = 50

Figure 5: The average number of flocking agents lost (Avg Lost)
when (a) n = 10 (c) n = 20 and (e) n = 50 and the number of
trials in which any flocking agent was lost (Trials Lost) when (b)
n = 10 (d) n = 20 and (f) n = 50. These results are obtained
over 100 simulation experiments in the Drop case.

and h2 = 3 for the grid approach placements
We present results using both the border approach and the

grid approach for influencing agent placement in Figure 6(a).
The influencing agents are initialized at their desired posi-
tions, and will return to these positions if they stray too far
while attempting to influence the flock. Note that the dif-
ference in performance between different influencing agent
speeds is small for both types of placement. This is because
the influencing agents do not reposition very often, and since
the speeds are only different while repositioning, the greater
speeds do not have much affect on the results.

We can compare the results at speed 0.2 to the results for
the border approach and the grid approach in Figure 5(e).
These results look very similar, so we can conclude that,
at least for these experimental settings, that the Drop +

Reposition case does not provide any significant benefit
over the Drop case. This is likely because there is not a
significant need in this experimental setting for the influ-
encing agents to reposition as they do not stray far from
their desired positions. In the grid approach, the flock often
converges before the influencing agents deviate from their
desired positions by h1 units. Hence, repositioning is rarely

(a) Drop + Reposition
case

(b) Dispatch case

Figure 6: The average number of lost agents when m = 45
and k = 5. In (b), the influencing agents are initialized at two
opposite corners.

triggered. In the border approach, however, the influencing
agents sometimes travel away from their border positions,
so repositioning is activated more frequently.

7.3 Dispatch Experimental Results
In the Dispatch case we initialize all of the influencing

agents at one corner of the flock. The influencing agents
first travel to their desired positions and then they focus on
influencing the surrounding flocking agents in the Dispatch

case. We use the hysteresis method described in Section 6
to control the switching of the influencing agents between
repositioning to their desired position and attempting to in-
fluence nearby flocking agents. Based on a small amount of
informal experimentation, we set h1 = 5 units and h2 = 3
units for the border approach and h1 = 10 units and h2 = 3
for the grid approach. In the border approach, the influenc-
ing agents are on the border and are more likely to leave the
flock, so h1 is smaller. In the grid approach, we are more
tolerant on the distance that the influencing agents are away
from their desired positions. In fact, a smaller h1 in this case
makes the influencing agents unnecessarily reposition inside
the flock, which worsens performance. We do not use hys-
teresis for the random approach as there is no need to stay
close to randomly chosen positions.

(a) Avg Lost, n = 50 (b) Avg Dist to Center

Figure 7: The average number of lost agents (Avg Lost) and the
average distance to the center of the flock (Avg Dist to Center)
when m = 45 and k = 5 in the Dispatch case.

In Figure 7 we show results in which the influencing agents
are dispatched to three different types of positions: (1) ran-
dom, (2) border and (3) grid. These positions are set as
described in Section 5.

With regard to the x-axis labels of Figure 7, recall that
in Section 6 we noted that in the Dispatch case, the in-
fluencing agents must move faster than the flocking agents
when repositioning or otherwise the influencing agents may
never reach their positions. In this graph we consider the



effect of different influencing agent speeds on the number of
lost flocking agents. 1S-LH represents performance when,
instead of repositioning, the influencing agents attempt to
influence the flocking agents via performing 1-step looka-
head from their initial positions. The flocking agents move
0.2 units per step, so 0.2 represents performance when the
influencing agents move at the same speed as the flocking
agents. Likewise, 0.4, 0.6, 0.8 and 1.0 represent the cases
in which the influencing agents move two, three, four and
five times as fast as the flocking agents, respectively.

A few trends stand out in the graphs of Figure 7; we
discuss each of these trends in the following paragraphs.

We first consider Figure 7(a). These graphs show the av-
erage number of lost flocking agents in a flock where m = 45
and k = 5. As would be expected, 1S-LH performs the same
in each case since the influencing agents do not attempt to
reposition. When v0 = . . . = vn−1 = 0.2, on average more
flocking agents are lost than in 1S-LH where the influenc-
ing agents do not attempt to reposition. This is because as
the influencing agents enter the flock while traveling at the
same velocity as the flocking agents, they push the flocking
agents away and hence lose the entire flock in most cases.
Across all of the positioning methods, faster speeds of the
influencing agents results in fewer flocking agents becoming
lost since the quicker speeds reduce the influence of the in-
fluencing agents on the flock while they are repositioning.
However, the grid placement approach clearly loses fewer
flocking agents across all of the cases in which the influenc-
ing agents are able to move quicker than the flocking agents.

Next we consider Figure 7(b). These graphs show the av-
erage distance of the flocking agents from the center of the
flock at the point at which the flock converges. Faster influ-
encing agents are able to reach their desired positions and
begin influencing the flock towards θ∗ much faster, which
makes the flock more compact at convergence time.

When we consider both of the graphs from Figure 7 to-
gether, we conclude that the grid placement approach is best
for this experimental setting in the Dispatch case. The
grid approach loses fewer flocking agents than the border
approach because the influencing agents in the border ap-
proach must travel longer distances across the flock in order
to reach their desired positions. They must travel farther
because some of the border positions are inherently located
farther from the influencing agents’ starting spot since they
are located on the borders of the flock. This long distance
traveling across the flock leads to lost flocking agents be-
cause it tends to push the flock to travel in the direction the
influencing agents are traveling. This forces the influencing
agents to work to reverse this effect once they are at their
desired positions.

7.3.1 Multiple Initialization Points
We assume in the beginning of this section that the in-

fluencing agents are initialized at one point outside of the
flock, which is, concretely, at one corner. Naturally, they
can be initialized at multiple points instead of just one. In
Figure 6(b), we examine the case in which the influencing
agents are initialized at two opposite corners of the flock. In
both the grid approach case and the border approach case,
we initialize each influencing agent at the corner that is clos-
est to its desired position. Initializing influencing agents in
multiple corners generally has better performance than just
initializing all agents at one corner. This is because the in-

fluencing agents do not have to travel as far to reach their
desired positions. We leave a more thorough examination of
multiple initialization points for future work.

7.4 Discussion
One impact of this work is to take a step towards the

practical realization of influencing a flock by extending our
previous positive results that showed that flocks could in-
deed be controlled if influencing agents are placed randomly
in the flock [5]. In particular, the work presented in this
paper contributes by determining that performance (1) can
improve if we are able to control the initial positions of the
influencing agents as in the Drop case and (2) is still gen-
erally positive even if influencing agents must be initialized
outside the flock as in the Dispatch case.

The time that the influencing agents consume to travel to
their desired destinations dominates in the Dispatch case.
The border approach and grid approach have similar perfor-
mance in the Drop case, as shown in Section 7.2. Their per-
formance differs in the Dispatch case where the influencing
agents take longer to reach their desired positions in the bor-
der approach. Our experiment in which influencing agents
were dispatched from two initialization points shows that
when less time is consumed traveling to desired positions,
the border approach loses slightly fewer flocking agents on
average than the grid approach when the influencing agents
travel at faster speeds than the flocking agents.

Of course, we cannot completely compare the Drop case
to the Dispatch case without being able to run the graph
approach in the Dispatch case as well. The solid perfor-
mance of the graph approach in the Drop case hints that
it may perform well in the Dispatch case. We leave the
task of implementing a more efficient or approximate graph
approach for future work.

8. CONCLUSION
In this paper we consider where to place influencing agents

that we add to a flock comprised of agents which we have no
direct control over, but that we wish to influence towards a
particular behavior. We present multiple methodologies as
well as experimental results for placing influencing agents
into a flock in two cases: (1) where we initially place the
agents anywhere and (2) where the agents must travel to
their desired positions after being initially placed outside
the flock. Experimental results demonstrate that in (1),
our graph approach performs better than other approaches
in terms of the number of trials in which flocking agents
are lost and the average number of flocking agents lost. In
(2), the grid approach performs best in terms of the average
number of lost flocking agents and flock compactness.

Positioning of influencing agents in a flock is a fertile re-
search area with plenty of opportunities for future work. In
our future work we plan to design a more efficient graph-
based placement approach for use in the Dispatch case.
Additionally, we intend to further consider the effect of uti-
lizing multiple stations from which the influencing agents
could emerge in the Dispatch case.
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