
In The First Conference on Artificial General Intelligence (AGI-08),
Memphis, Tennessee, March 2008.

Transfer Learning and Intelligence:
an Argument and Approach

Matthew E. TAYLOR, Gregory KUHLMANN, and Peter STONE

Department of Computer Sciences

The University of Texas at Austin

{mtaylor, kuhlmann, pstone}@cs.utexas.edu

Abstract. In order to claim fully general intelligence in an autonomous agent, the

ability to learn is one of the most central capabilities. Classical machine learn-

ing techniques have had many significant empirical successes, but large real-world

problems that are of interest to generally intelligent agents require learning much

faster (with much less training experience) than is currently possible. This paper

presents transfer learning, where knowledge from a learned task can be used to

significantly speed up learning in a novel task, as the key to achieving the learning

capabilities necessary for general intelligence. In addition to motivating the need

for transfer learning in an intelligent agent, we introduce a novel method for select-

ing types of tasks to be used for transfer and empirically demonstrate that such a

selection can lead to significant increases in training speed in a two-player game.

Keywords. Transfer Learning, Game Tree Search, Reinforcement Learning

1. Introduction

A generally intelligent agent deployed in any non-trivial environment must be able to

learn: no designer can anticipate every possible encountered situation. Specifically, in-

telligent agents need to learn how to act, which is the purview of Reinforcement learn-

ing [8,15]. Reinforcement learning (RL) problems are defined as those in which learn-

ing agents sequentially execute actions with the goal of maximizing a reward signal,

which may be time-delayed. The RL framework appeals when considering the design of

a generally intelligent agent as it is established, flexible, and powerful.

RL approaches have been gaining in popularity in recent years as methods have ma-

tured that are able to handle complex problems with noisy sensors, noisy actuators, and

continuous state spaces (e.g., helicopter control [12] and Keepaway [14]). One of the

main advantages to RL, unlike many machine learning approaches, is that no labeled

examples are required. Such flexibility allows learning from general environmental feed-

back (a reward signal) but it comes at a price. When RL methods begin learning with-

out any background knowledge, mastering difficult tasks may be slow or infeasible. If

an agent requires months or years worth of experience to master relatively simple tasks,

it will be a stretch to claim that it is generally intelligent. Thus a critical component to

achieving intelligent behavior is not only the ability to successfully learn, but also the

ability to learn quickly, from limited training experience.

In order to utilize RL algorithms to control a generally intelligent agent, we must

overcome three shortcomings, one or more of which are typically present in current ap-

plications. Firstly, RL algorithms have typically been applied to simple tasks, such as the

discrete task of gridworld. Secondly, many algorithms are sample-inefficient and require

millions of training examples in order to perform well [17]. Thirdly, substantial amounts

of human knowledge must often be used in order to define the learning problem and di-

rect the learner towards good solutions [12,14]. How can we hope to allow an agent to

learn complex tasks, without human guidance, and with relatively few examples?

The key difference between traditional RL settings and that of our hypothetical gen-

erally intelligent agent is that our agent would be able to leverage experience gained in

previous related tasks. The idea of lifelong learning has been studied before in traditional

machine learning [19] but it has only recently been applied to reinforcement learning,

which is of specific interest to general intelligence.

Consider, for example, a generally intelligent household transportation assistant.

While current agents are typically special purpose, a generally intelligent agent would

be required to act in multiple related tasks. Such an agent may be expected to: retrieve

food for a meal from the grocery store, drive the children to school, and retrieve the par-

ents from work. All of these tasks utilize skills for operating a vehicle, obeying traffic

laws, scheduling, and navigation. Due to this overlap, one would expect training on sub-

sequent transportation tasks to take substantially less time than on the first such task. If

the agent is tasked with a new request, such as delivering laundry to the cleaner, the users

would expect the agent to quickly master the new task due to similarities with previously

learned tasks. We next describe transfer learning for reinforcement learning, a general

approach that would allow an RL agent to leverage past knowledge when learning novel

tasks, potentially enabling effective lifelong learning for a generally intelligent agent.

In the transfer learning paradigm a learner is presented a novel target task. The agent

may elect to first train on a (set of) simpler source task(s) rather than learning the target

task directly. A typical goal of transfer is to reduce the time needed to learn a target

task after first learning a source task, relative to learning the target task without transfer.

This target task goal can be achieved whenever the learner can effectively transfer useful

information from the source task into the target task. A more difficult goal is to reduce the

total training time so that learning the source task and target task is faster than learning

the target task directly. Such a total time goal is attainable only if the source task is faster

to solve than the target task, and the speedup in target task training time overcomes the

time spent on learning the source task.

Transfer between tasks has long been studied in humans [18] and the ability to trans-

fer knowledge between different tasks is one reasonable criterion for intelligence. School

curricula are designed around the principle of developing students’ abilities and increas-

ing the knowledge gradually over time. For successful autonomous transfer, an agent

must effectively identify analogies between different tasks.1 Hofstadter even argues [6]

that analogical reasoning is the core of intelligence because humans form, over their

lifetime, a mental lexicon of categories and information by using analogies.

In order to enable autonomous transfer, the agent must:

1. select a source task appropriate for a given target task,

2. effectively transfer knowledge from the source task into the target task.

While there has been recent work on step #2 [16,20], relatively little work has concen-

trated on the more difficult step of task selection. Such a selection ability will be neces-

sary if the agent is to to determine which source tasks to train on before before tackling

a more difficult target task, or if the agent has experienced multiple source tasks and it

must select a subset which are most similar to the current target task.

In order to facilitate the selection of source tasks for a particular target task, this

work introduces the concept of a transfer hierarchy. Such a structure defines types of

tasks that require more or less information to solve and can be used to rank tasks by

1Other research [5] suggests that humans are not reliably proficient at discovering analogies between very

dissimilar tasks unless prompted that such an analogy exists.

their relative solution complexity. Such a task ordering can be used to identify source

tasks that will take significantly less time to solve than a particular target task, reducing

the impact of source task training on the total training time. Our hope is that such a

hierarchy will be useful in future work where transfer learners automatically select a

source task for a given target task. In this paper we begin to evaluate the effectiveness of

our proposed hierarchy by manually constructing source tasks for a specified target task

where the selection of source tasks are motivated by the transfer hierarchy.

To empirically demonstrate transfer between source and target tasks taken from our

transfer hierarchy, we utilize the game of Mummy Maze. This game is an appropriate

choice for two reasons. First, it has been released as a sample domain in the General

Game Playing [4] (GGP) contest, an international competition developed independently

at Stanford. Second, the Mummy Maze task is easily modifiable so that it can conform

to each task type in our transfer hierarchy. Our results show that a transferred heuristic

is able to significantly improve the speed of search, even if the generated source tasks

differ from the target tasks along a number of dimensions. We show both that transferred

knowledge can effectively reduce the amount of time required to learn the target task, and

that the total time required to learn the target task may be reduced by first training on a

set of simpler source tasks. This result is a small but important step towards autonomous

transfer in both planning and RL domains, which we believe to be on the critical path for

development of a generally intelligent agent.

2. A Transfer Hierarchy

Mapping problem characteristics to the correct solution type is an important open prob-

lem for AI. Given a control problem, should the solution be solved optimally or approxi-

mately? Is planning or RL more appropriate? If RL, should the solution be model-based

or model-free? This work assumes that such an appropriate mapping exists; given certain

characteristics of a game, we propose an appropriate solution method. The characteristics

we select are based on the amount of information provided to a player about the game’s

environment and opponent.

For instance, if a learner has a full model of the effects of actions and knows how

its opponent will react in any situation, the learner may determine an optimal solution by

“thinking” through the task using dynamic programming [2] (DP). At the other extreme,

a learner may have to make decisions in a task where the opponent’s behavior is initially

unknown and possibly stochastic. In this more difficult scenario, the solution strategy

must work to sample the environment and opponent’s policy repeatedly, which suggests

an RL approach.

Interactions with the environment and an opponent accrue cost: simulators use com-

putational resources, physical robots may take significant amounts of wall-clock time,

and opponents think before making decisions. When using DP, the only cost is cycles

spent determining an optimal policy. When using RL, one must account for both interac-

tions with the environment and opponent. By considering these differences in resource

requirements, we propose a hierarchy to define game characteristics which require more

resources to solve. We then leverage the solution hierarchy to find an appropriate type of

source task to transfer from, given a target task.

Suppose that a learner could make some simplifying assumptions about a target

game so that it could derive a simpler version of the task. For instance, in a 2-player

maze task, the agent could generate a series of randomly constructed mazes, with some

approximate model for the opponent’s behavior. The source tasks could be solved very

quickly using DP. When the “real” target mazes are presented, the learner should be able

to leverage its source task knowledge to solve the target mazes more quickly than if it

had not used transfer.

In this work, we consider two-player games set against a specific, fixed opponent.

A game is defined as a set of states, a set of (possibly state-dependent) actions for each

player, a reward function for each player, and a transition function that maps a state and

the players’ actions to a next state. To define the transfer hierarchy, we consider four

characteristics of the game in question:

1. Is the transition function known? If the effect of actions are known, the learner

may not have to interact with the environment to determine a good policy.

2. Is the opponent’s policy known? Can the player anticipate the opponent’s action

in any state?

3. Is the opponent queriable? Is the opponent willing to answer the question,

“What would you do in this state?” If so, we can assume that there is some cost

to querying the opponent, but we may jump to different locations in a game tree

rather than being forced to play each game from start to end.

4. Is the opponent deterministic? A stochastic policy must be sampled repeatedly

while a deterministic policy need only be experienced once in each state. 2

Best−First SearchActive RL

Transition function known?

Deterministic Opponent?

NO YES

NO YES

NO YES

NO YES

RL

Queryable Opponent?

MiniMax DP

NO YES

Opponent policy known? Opponent policy known?

Transition Learner

Figure 1. Characteristics of a given task define which solu-

tion method is most appropriate. More knowledge leads to so-

lution methods which require fewer interactions with the envi-

ronment and/or opponent.

Given these task

characteristics, we con-

struct a hierarchy of so-

lution methods in Fig-

ure 1. The method Tran-

sition Learner concen-

trates on only learning

the effect of moves in the

given task since the op-

ponent’s policy is com-

pletely known. It is dif-

ficult to imagine such

a scenario where the

opponent’s strategy is

defined but the learner

does not know the tran-

sition model (none of the

games commonly played

by humans fall into this category). Another less familiar solution method is Active

RL [11]. In this scenario the learner uses reinforcement learning, but may focus on sec-

tions of the state space with the most uncertainty.

In addition to mapping task characteristics to possible solution methods, Figure 1

also defines a Transfer Hierarchy. Learners that have more information are able to solve

tasks with fewer environmental or opponent interactions. Given a target task with little

information, the learner may be able to generate similar tasks but give the learner more

information. A central hypothesis for this work is that a learner may train relatively

quickly on a simpler source task and then use its learned information to speed up learning

2We do not consider non-stationary (e.g., learning) opponents and leave this extension to future work.

the target task which must use a more complex solution method (i.e., one to the left of

the source task method which has less information available to the learner). In this paper

we empirically test one such pairing: we first learn a series of constructed source tasks

via DP to speed up learning a target task via best-first search.

3. Case Study: Transfer in a 2-player Game

To test our transfer hypothesis we utilize the Mummy Maze task, one of many games

simulated in General Game Playing. Specifically, we will focus on a target task where the

maze is unknown, the opponent’s policy is unknown, and the opponent is both queriable

and deterministic. To speed up learning this task using best-first search (as described in

Section 3.3.2), we first construct a series of source mazes and a test opponent, which are

solvable with DP.

3.1. General Game Playing

Creating programs that can play games at a high level has long been a challenge and

benchmark for AI. However, traditional game playing systems are limited in that they

play only one particular game. In contrast, the GGP challenge motivates research on cre-

ating agents capable of playing many previously unseen games, given only a description

of the game’s rules. Since 2005, AAAI has held an annual GGP competition in which

agents designed by different researchers compete on a wide variety of games.

In the Game Description Language (GDL) used in the competition, games are mod-

eled as state machines. An agent can derive its legal moves, the next state given the moves

of all players, and whether or not it has won by applying resolution theorem proving on

the rules of the game combined with the asserted facts for the present state. The language

is fairly low-level and is able to describe multiplayer, deterministic, perfect-information

games. Syntactically, GDL is a first-order logical description language based on KIF [3].

The next section introduces the game, described in GDL, used in our experimental work.

3.2. Mummy Maze

1E 1M

E

M

Figure 2. An example solution

to a maze with vertical mummy

behavior. The explorer moves di-

rectly to the 1E space and the

mummy is trapped at 1M, allow-

ing the explorer to double back to

the exit, denoted by an ’X’.

Mummy Maze3 is a game in which the explorer

attempts to escape a maze. The opponent mummy

follows a fixed policy to attempt to stop the ex-

plorer. The explorer has 5 deterministic actions:

moving one step in each of the four cardinal direc-

tions {N, S, E, W} or standing still. The mummy

has the same action set, but takes two serial ac-

tions on each turn. The explorer and mummy al-

ternate moves and neither may transition through

walls. The challenge for the explorer is to exploit

the mummy’s fixed policy so that he may reach the

exit despite the speed disadvantage. The explorer

receives a reward of +100 if he reaches the exit and

a reward of 0 if the mummy catches the explorer or

if the explorer has taken some maximum number

of turns (typically 50) without escaping.

A mummy following the vertical behavior

policy will deterministically move towards the ex-

3The .kif file which fully describes the game in GDL may be found at http://games.stanford.

edu/gamemaster/games-mummy/mummymaze1p-horiz.kif

plorer on every move, preferring vertical moves

over horizontal moves when both types of move would reduce the players’ distance. Fig-

ure 2 shows an example maze, with the solution for the explorer. As the explorer moves

to the grid location 1E, the mummy moves North on each move until it moves West and

becomes trapped at 1M. Once the mummy is trapped in the cul-de-sac, because it never

moves away from the explorer, the explorer may proceed South to the exit. A mummy

that follows the horizontal behavior policy prefers to move East or West towards the

explorer if possible. Figure 3 demonstrates how the explorer’s policy must change to ex-

ploit this mummy policy, given the same wall configuration, start state, and goal state.

Notice that if the explorer attempted the previous solution path, the mummy would catch

the explorer at the cell marked by the red circle.

Mummy Maze is an appropriate choice for this work because we can easily adjust

the game definition so that each of the solutions described in the transfer hierarchy is

appropriate. For instance, if the explorer is not told where the walls are located, the

mummy’s policy is unknown, and the mummy is not queriable, RL would be the most

appropriate solution strategy. The next section discusses Mummy Maze formulations

where DP and best-first search are applicable.

3.3. Mummy Maze Solution Methods

1E

2M

1M

2E

4M

4E

3M 3E

M

E

Figure 3. A solution for horizon-

tal mummy behavior. If the ex-

plorer attempted the previous so-

lution, the mummy would catch

the explorer at the red circle. The

explorer must move to squares

1E-4E, trapping the mummy at

squares 1M-4M, before exiting.

A number of strategies may be employed to solve

Mummy Maze, depending on the amount of infor-

mation the explorer has. In this paper we consider

two cases:

1. The transition function is known (i.e. the

placement of all the walls in the maze

is known) and the opponent’s policy is

known.

2. The transition function and opponent’s pol-

icy are unknown, and the opponent is both

queriable (i.e. the explorer can ask the

mummy, “If I were here and you were

there, how would you act?”) and determin-

istic.

In the following sections we explain how Mummy

Maze tasks can be solved with dynamic program-

ming, with best-first search, and with transfer from

dynamic programming to best-first search.

3.3.1. Dynamic Programming
In its original construction, Mummy Maze is a sin-

gle player puzzle game, in which the mummy is controlled by a known deterministic

policy, specified as part of the environment. Given a task in which the transition function

and opponent behavior are deterministic and known, the optimal agent policy may be

found by simply enumerating all of the game’s states and transitions between them. Such

a problem may be solved with dynamic programming.

The dynamic programming algorithm begins by enumerating all states in the game’s

state set, S. All terminal states are marked as either wins or losses, based on the game’s

description. Then, all non-terminal states that transition to a terminal state are marked.

Any action leading to a win is a win. If all actions lead to a loss, then the originating

state is a loss. The iteration continues, marking states that transition to states marked in

the previous iteration. One can recover the policy for the solution by simply adding some

extra bookkeeping to record the winning transitions between states.

DP is able to find the optimal solution from all possible initial states for a given goal

state. Although the algorithm is very generally applicable, it is only practical on games

with reasonably small state spaces. The running time of the algorithm is O(l∗|A||S|)
where l∗ is the longest solution length, in steps, and A is the set of actions available to

the agent. For Mummy Maze on an 8 × 8 grid, l∗|A||S| = 50 × 5 × 642, which is only

roughly one million evaluations.

3.3.2. Best-First Search
In the second variation of Mummy Maze this paper considers, we utilize a search to

determine a (possibly sub-optimal) solution to a given maze, if one exists. We utilize a

learned heuristic (as specified in the next section) to perform greedy best-first search. If

we do not use a heuristic, best-first search reduces to breadth-first search.

We modified the standard best-first search algorithm in a subtle but important way

to incorporate domain knowledge. In Mummy Maze, a solution can be broken down into

a series of subgoals, each of which trap the mummy and allow the explorer to move

to another location. We capture this knowledge by prioritizing a state not solely by its

heuristic value, but by the sum of the values of its ancestors. States with high heuristic

values are likely subgoals and thus search is guided to explore the children of states that

encounter subgoal states along the way.

In the worst case, best-first search must expand the entire game tree. Thus, its run-

ning time is proportional to the number of states in the game. Although the computa-

tional complexity of the algorithm is less than that of Dynamic Programming, it has a

significantly higher constant factor. In each state it must query the opponent for their

move, which is an expensive operation.

3.4. Transfer Methodology

In this paper we concentrate on learning a search heuristic for best-first search by solving

one or more source tasks with dynamic programming. In this section we discuss how

to construct a search heuristic from source task solutions. In the following section, we

empirically verify that such a heuristic can speed up search in the target task, even if

the source task and target task differ in wall configuration, opponent behavior, size, start

state, or goal state.

The main insight for heuristic learning is that rather than learn a heuristic for a par-

ticular source task, that is one for a particular maze, we learn over a state abstraction. For

this task, we chose an abstract representation centered on the Mummy which considers

the walls adjacent to it and the direction from the mummy to the explorer. The intuition

is as follows. A state where the mummy is in a corner or in a cul-de-sac and the explorer

is on the opposite side of the wall is a relatively good position for the explorer. On the

other hand, a state where the mummy is in an open area with no walls is less desirable

for the explorer because the mummy has a high degree of mobility. In this simple ab-

straction there is no notion of distance between the mummy and explorer, nor between

the explorer and the exit.

We use a function GETABSTRACTSTATE which takes the current board configura-

tion and returns the index for the mummy’s current abstract state. There are 15 possible

wall configurations for the walls directly adjacent to the mummy.4 There are 8 possible

directions from the mummy to the explorer, which yields 128 possible abstract states,

while a standard 8×8 game has 4,096 true states (64 explorer positions × 64 mummy po-

sitions). Although this abstraction is hand coded, we would ideally like to use automated

abstractions (e.g., Jong and Stone [7]) in the future.

After solving a source task, the number of wins and losses for each abstract state is

tallied. The win percentage
(

wins
(# wins)+(# losses)

)

for each abstract state is calculated,

as well as the average win percentage and the standard deviation. When calculating the

heuristic for a state in the target task, we first find the corresponding abstract state. If

winPercentage ≥ aveWinPercentage + stDev then the heuristic returns +1. If winPercent-

age ≤ aveWinPercentage - stDev then the heuristic returns -1. Otherwise the heuristic

returns 0. 5

4. Case Study: Transfer Results

To test our transfer methodology we perform a number of experiments in which the

source and target tasks have different characteristics. In every experiment we construct

a set of target tasks and record how many steps the best-first search takes to solve the

task with and without transfer. In this setup, the “steps taken” is equivalent to how many

times the Explorer must ask the Mummy, “What action would you take in this state?”

This is equivalent to the number of connections the Explorer agent must make to the

GGP server to query for the opponent’s move. Each target maze is solved 10 times as the

best-first search breaks ties randomly. Roughly 25% of the mazes constructed have no

solution because of the start state and/or wall configuration. Impossible tasks are ignored

in the evaluation as no search method could possibly find a solution.

When using transfer, the source task mazes are randomly generated using the same

wall-generation algorithm that the target tasks are generated with and thus the mazes in

the source and task are drawn from the same distribution of possible mazes. However,

because the opponent behavior is different in the two sets of tasks, the distributions of

source and target tasks are qualitatively different. 6 All source task mazes have the same

start state and goal state, as depicted in Figure 2. Additionally, all source tasks utilize a

horizontal mummy behavior.

4.1. Different Opponent Behavior

All transfer experiments in this paper utilize different mummy behaviors in the source

and target tasks. As stated above, the source tasks all use a horizontal behavior Mummy.

In the target task the Mummy uses a deterministic mixture of the horizontal and vertical

behaviors, denoted HV-behavior. HV-behavior specifies that the mummy utilize horizon-

tal behavior if its x and y cell coordinates have the same parity (both are even or both

are odd) and act like a vertical mummy if the parity of its x and y cell coordinates are

4We do not allow a cell to be surrounded by four walls as it would be unreachable.
5Rather than using the winPercentage directly as heuristic values, which would tend to explore the states

with the highest individual values first, we instead cluster states into three categories: good, neutral, and bad.

By doing so, the priority of a state during best-first search is dominated by the number of good states in its

history rather than by how good those states are independent of their history. We intend to explore using the

continuous version of this heuristic in future work.
6If the learner had access to the target task mazes and trained on them, rather than using random mazes for

the source task, transfer could be trivially accomplished by memorizing the solution to each maze.

different. Thus the mummy’s behavior is deterministic but is qualitatively different from

the source task’s mummy behavior.

To evaluate experiments in this domain, we define transfer percentage to be the ratio

between the total number of steps to solve all mazes with and without transfer:

100 ×

∑

TargetMazes(Steps to solve maze with transfer)
∑

TargetMazes(Steps to solve maze without transfer)
.

To test transfer between source tasks with a horizontal behavior mummy and target tasks

with an HV-behavior mummy, we first generate 200 HV-behavior target task mazes. Each

is solved 10 times without transfer. Next, 20 horizontal-behavior source tasks are ana-

lyzed and the learned heuristic is used to solve each target task 10 times with transfer.

We find that the transfer percentage is 73, which means that, on average, using transfer

results in a 27% reduction in the number of queries the explorer must make of the GGP

server. As may be expected, we found that more difficult target tasks (those requiring

relatively more steps to solve) benefited more from transfer on average.

4.2. Different Numbers of Source Tasks

To test the effect of the number of source tasks on transfer, we ran experiments with

different numbers of source tasks. The results are reported in Table 1, which shows that

even with a very small number of source tasks, transfer can significantly reduce the

number of steps needed to solve target tasks.

4.3. Comparison to a Simple Hand-coded Heuristic

Source Tasks Transfer Percentage
1 97
2 79
3 74
5 73

10 75
20 73
50 71

100 70
200 71
400 73

Table 1. Results show significant transfer

benefit, even with few source tasks.

In order to better evaluate our learned

heuristic, we compared our results to

those generated from a simple hand-coded

heuristic. If the mummy was able to move

in every direction we labeled the state as

bad and if the mummy was unable to move

towards the explorer the state was good.

Using this metric we observed a transfer

percentage of 75, which our learned heuris-

tics either tied or beat (unless fewer than 3

source tasks are used). This suggests that

our algorithm is not only able to learn a

heuristic autonomously, but that the learned heuristic captures more useful information

than a simple hand-coded heuristic.

4.4. Different Target Task Sizes

The 10× 10 maze has 10,000 unique states and we expected that our transfer percentage

would improve when solving larger target mazes. To test this theory, we again generated

20 8×8 source task mazes, but the target task mazes were 10×10. We found the resulting

transfer percentage to be 66, a slight improvement over 73.

4.5. Different Start State

Up to this point all source and target tasks have been generated such that the mummy and

explorer always began at the same coordinates and the exit was in the same location. To

evaluate how dependent our method was on the start state, we kept the source task start

state fixed but allowed the target task start state to be chosen randomly. We found that

the transfer percentage was effectively unchanged, as it now averaged 69 (as compared

to 73 when the target tasks’ start states were fixed).

4.6. Different Start State and Goal State

We next allowed both the start state and the exit to vary in the target tasks. Our setup

allowed the exit to be anywhere on the board, which resulted an average transfer percent-

age 92. We hypothesized this was because our abstract states did not account for relative

placement of the exit. Thus our heuristic learned a bias that favored the explorer’s mo-

bility towards the Southwest corner of the board in source tasks and when the exit was in

a different location, this bias was less helpful (although it was still better than searching

without a heuristic). To test this, we then allowed random start states and exit positions

in the target tasks, but constrained the exit to be in the Southwest quadrant of the board

(thus reducing the number of possible exit locations by a factor of four). With the bias

now restored, the resulting transfer percentage was 70. This and other experiments are

summarized in Table 2.

Target Task Hand-coded Target Task Target Task Transfer
Size Heuristic? Random Start State? Random Goal State? Percentage

8× 8 Yes No No 75
8× 8 No No No 73

10 × 10 No No No 66
8× 8 No Yes No 69
8× 8 No Yes Yes (anywhere) 92
8× 8 No Yes Yes (SW quadrant) 70

Table 2. These results summarize a comparison of searching without transfer to searching after
analyzing 20 source tasks. All source tasks are 8×8 with H mummy behavior, with fixed start and
goal states. Results are averaged over 200 target tasks with HV-behavior mummy behavior.

4.7. Total Time Metric

In order to demonstrate a reduction in the total time we must measure both the time used

to solve the source tasks with dynamic programming as well as the time used to solve

target tasks solved with best-first search. When using dynamic programming, the solution

time is determined by the time to simulate taking an action in the environment and then

simulating the opponent’s action: num next states simulated × internal next state time.

When solving a task with best-first search, the learner must query the central GGP server

for each next state because the learner does not have the transition function. Furthermore,

the GGP server must query the opponent to determine its action for a given state. Solving

a target task is dominated by the communication delays and opponent’s response time:

num search steps × (4 × communication time + opponent response time).

When connecting to the Stanford Game Manager, the time to compute the next state

is about 0.1 seconds, the average communication time with the remote server. Using our

own python inference engine, we can simulate an average of 5.51 × 104 next states per

second on a 3.4 GHz machine. We assume that the opponent responds in one second

(which is much faster than is typical in GGP competitions).

Table 3 shows that the transfer percentage increases for larger target tasks. Addition-

ally, we compare the average number of seconds it takes to solve a target task without

transfer (breadth-first search) with the total time needed to solve the source tasks and a

target task (best-first search). Such an analysis demonstrates that it is likely when using

larger target tasks, or if the opponent takes some time to choose its move, total time can

be reduced by using the transfer hierarchy to select source tasks. Transfer requires solv-

ing extra source tasks, but the speed-up achieved in the target task may outweigh this

initial overhead; the last experiment in Table 3 shows a total time reduction of 19%.

Target Task Ave. Target Task # Source Transfer Ave. Total Source Ave. Total Time
Size Time (no Transfer) Tasks Percentage Task Time (with Transfer)

8× 8 178 20 73 372 502
10× 10 400 20 66 372 636
12× 12 563 20 47 372 657
12× 12 563 10 53 186 461

Table 3. Summary of results comparing searching without transfer to searching after 20 source
tasks (times are in seconds). All source tasks are 8× 8 with an H-behavior mummy, fixed start and
goal states. Results are averaged over 200 target tasks with an HV-behavior mummy.

5. Future and Related Work
In this work the opponents in the source and target tasks have slightly different poli-

cies. In preliminary experiments there were not qualitatively different results when using

identical policies (horizontal behavior to horizontal behavior) or more dissimilar policies

(horizontal behavior to vertical behavior). We speculate that this is because all of these

policies are similar enough that transfer can provide a useful heuristic.

One direction for future work would be to consider more dissimilar opponent poli-

cies, such as a Mummy that could escape from a cul-de-sac with a certain probability. The

abstract state representation could also be enhanced in future work, and ideally would

be learned automatically. Likewise, rather than using the transfer hierarchy to selecting a

type of source tasks for a given target task, it should be possible to have a TL learner use

the hierarchy to automatically construct a source task, given a target task. Testing more

source and target task pairings would further validate the proposed transfer hierarchy.

While this work has focused on determining how to select a type of source task

for a particular target task, we have not addressed what properties a source task should

have to best assist learning a target task. For instance, if the transfer hierarchy directs the

agent to learn a source task with DP, how can the agent ensure with high probability that

the sample tasks it constructs are not misleading? If a generally intelligent agent is to

transfer successfully in a fully autonomous setting, it should be able to reliably construct,

or select, source tasks that do not cause negative transfer so that it avoids the situation

where transfer hurts performance, rather than helps.

The main novelty of the experiments in this paper is to present a method for heuristic

learning via transfer learning. There is a growing body of work using transfer learning to

learn tasks sequentially. For instance, our previous work [16] showed that it was possible

to transfer a value function between related reinforcement learning tasks. Other work

showed that it is possible to speed up learning between related tasks via advice [20].

GGP tasks have also been used successfully for previous transfer work [1,10].

Prior planning research has demonstrated the possibility of generating state-space

abstractions automatically from domain descriptions. These methods may be divided into

two forms. In relaxed models [13], abstractions are obtained by dropping conditions of

actions to make them applicable in more states. A different approach is to generate a re-

duced model [9], in which certain terms are dropped entirely from the problem descrip-

tion. Although neither of these methods could produce our particular abstraction, it is

possible that, if applied to Mummy Maze, they may yield different useful abstractions.

6. Conclusion

In this paper we have argued that transfer learning is a critical component of any intelli-

gent system. Transfer learning, particularly in a RL context, has recently been growing

in popularity due to empirical successes demonstrating significant speed improvements.

We have introduced a transfer hierarchy which assists in selecting a type of source task

for transfer, given a specified target task. Additionally, we have demonstrated that trans-

fer between two such tasks types is able to both reduce the target task training time and

the total training time in a game drawn from the GGP domain. We view this work as

one small, but important, step towards the lofty goal of enabling human-level knowledge

transfer, a critical component of any generally intelligent agent.

Acknowledgments
We would like to thank the anonymous reviewers for helpful suggestions. This research was sup-
ported in part by DARPA grant HR0011-04-1-0035, NSF CAREER award IIS-0237699, and NSF
award EIA-0303609.

References
[1] B. Banerjee and P. Stone. General game learning using knowledge transfer. In The 20th

International Joint Conference on Artificial Intelligence, pages 672–677, January 2007.

[2] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] M. Genesereth. Knowledge interchange format. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Second Intl. Conference (KR’91), 1991.

[4] M. Genesereth and N. Love. General game playing: Overview of the AAAI competition. AI
Magazine, 26(2), 2005.

[5] M. L. Gick and K. J. Holyoak. Analogical problem-solving. Cognitive Psychology, 12:306–
355, 1980.

[6] D. Hofstadter. Analogy as the core of cognition. In D. Gentner, K. J. Holyoak, and B. Koki-
nov, editors, The Analogical Mind: Perspectives from Cognitive Science, pages 499–533.
MIT Press, 2001.

[7] N. K. Jong and P. Stone. State abstraction discovery from irrelevant state variables. In Pro-
ceedings of the Nineteenth International Joint Conference on Artificial Intelligence, pages
752–757, August 2005.

[8] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4:237–285, May 1996.

[9] C. A. Knoblock. Automatically generating abstractions for planning. Artificial Intelligence,
68(2):243–302, 1994.

[10] G. Kuhlmann and P. Stone. Graph-based domain mapping for transfer learning in gen-
eral games. In Proceedings of The Eighteenth European Conference on Machine Learning,
September 2007.

[11] L. Mihalkova and R. Mooney. Using active relocation to aid reinforcement learning. In
Proceedings of the 19th International FLAIRS Conference, pages 580–585, 2006.

[12] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and E. Liang. In-
verted autonomous helicopter flight via reinforcement learning. In International Symposium
on Experimental Robotics, 2004.

[13] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5:115–
135, 1974.

[14] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for RoboCup-soccer
keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[15] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

[16] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via inter-task mappings for temporal
difference learning. Journal of Machine Learning Research, 8(1):2125–2167, 2007.

[17] G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215–219, 1994.

[18] E. Thorndike and R. Woodworth. The influence of improvement in one mental function
upon the efficiency of other functions. Psychological Review, 8:247–261, 1901.

[19] S. Thrun. Is learning the n-th thing any easier than learning the first? In Advances in Neural

Information Processing Systems, pages 640–646, 1996.

[20] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin. Using advice to transfer knowledge
acquired in one reinforcement learning task to another. In The 16th European Conf. on
Machine Learning, 2005.

