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Reinforcement Learning (RL) agents are typically deployed to learn a specific, concrete 
task based on a pre-defined reward function. However, in some cases an agent may 
be able to gain experience in the domain prior to being given a task. In such cases, 
intrinsic motivation can be used to enable the agent to learn a useful model of the 
environment that is likely to help it learn its eventual tasks more efficiently. This 
paradigm fits robots particularly well, as they need to learn about their own dynamics 
and affordances which can be applied to many different tasks. This article presents 
the texplore with Variance-And-Novelty-Intrinsic-Rewards algorithm (texplore-vanir), an 
intrinsically motivated model-based RL algorithm. The algorithm learns models of the 
transition dynamics of a domain using random forests. It calculates two different intrinsic 
motivations from this model: one to explore where the model is uncertain, and one to 
acquire novel experiences that the model has not yet been trained on. This article presents 
experiments demonstrating that the combination of these two intrinsic rewards enables 
the algorithm to learn an accurate model of a domain with no external rewards and that 
the learned model can be used afterward to perform tasks in the domain. While learning 
the model, the agent explores the domain in a developing and curious way, progressively 
learning more complex skills. In addition, the experiments show that combining the agent’s 
intrinsic rewards with external task rewards enables the agent to learn faster than using 
external rewards alone. We also present results demonstrating the applicability of this 
approach to learning on robots.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reinforcement Learning (RL) agents could be useful in society because of their ability to learn and adapt to new envi-
ronments and tasks. Traditionally, RL agents learn to accomplish a specific, concrete task based on a pre-defined reward 
function. However, in some cases an agent may be able to gain experience in the domain prior to being given this task. 
Learning in this way is particularly useful for robots, as they must learn about their own dynamics and their environment 
before learning how to perform specific tasks. For example, a future domestic robot may be placed in a home and only 
later given various tasks to accomplish. In such cases, intrinsic motivation can be used to enable the agent to learn a useful 
model of its dynamics and the environment that can help it learn its eventual tasks more efficiently.

* Corresponding author.
E-mail address: todd.hester@gmail.com (T. Hester).

1 Todd Hester is currently at Nest Labs in Palo Alto, CA.
http://dx.doi.org/10.1016/j.artint.2015.05.002
0004-3702/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.artint.2015.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:todd.hester@gmail.com
http://dx.doi.org/10.1016/j.artint.2015.05.002


JID:ARTINT AID:2845 /FLA [m3G; v1.152; Prn:19/05/2015; 12:09] P.2 (1-17)

2 T. Hester, P. Stone / Artificial Intelligence ••• (••••) •••–•••
Past work on intrinsically motivated agents arises from two different goals [1]. The first goal comes from the active 
learning community, which uses intrinsic motivation to improve the sample efficiency of RL. Their goal is to help the agent 
to maximize its knowledge about the world and its ability to control it. The second goal comes from the developmental 
learning community, and is to enable cumulative, open-ended learning on robots. Our goal is to use intrinsic motivation 
towards both goals: 1) to improve the sample efficiency of learning, particularly in tasks with little or no external rewards; 
and 2) to enable the agent to perform open-ended learning without external rewards.

This article presents an intrinsically motivated model-based RL algorithm, called texplore with Variance-And-Novelty-
Intrinsic-Rewards (texplore-vanir), that uses intrinsic motivation both for improved sample efficiency and to give the agent 
a curiosity drive. The agent is based on a model-based RL framework and is motivated to learn models of domains without 
external rewards as efficiently as possible. texplore-vanir combines model learning through the use of random forests with 
two unique intrinsic rewards calculated from this model. The first reward is based on variance in its models’ predictions 
to drive the agent to explore where its model is uncertain. The second reward drives the agent to novel states which are 
the most different from what its models have been trained on. The combination of these two rewards enables the agent to 
explore in a developing curious way, learn progressively more complex skills, and learn a useful model of the domain very 
efficiently.

This article presents three main contributions:

1. Novel methods for obtaining intrinsic rewards from a random-forest-based model of the world.
2. The texplore-vanir algorithm for intrinsically motivated model learning, which has been released open-source as an

ROS package: http :/ /www.ros .org /wiki /rl-texplore-ros-pkg.
3. Empirical evaluations of the algorithm, both in a simulated domain and on a physical robot.

Section 2 presents background on reinforcement learning and Markov Decision Processes. Section 3 presents work related 
to texplore-vanir in the areas of reinforcement learning and intrinsic motivation. Section 4 presents the texplore-vanir

algorithm, including its approach to model learning and how its intrinsic rewards are calculated. Section 5 presents exper-
iments showing that texplore-vanir: 1) learns a model more efficiently than other methods; 2) explores in a developing, 
curious way; and 3) can use its learned model later to perform tasks specified by a reward function. In addition, it shows 
that the agent can use the intrinsic rewards in conjunction with external rewards to learn a task faster than if using external 
rewards alone. Section 6 presents details on the code release of texplore-vanir. Finally, Section 7 concludes the paper.

2. Background

This section presents background on Reinforcement Learning (RL). We adopt the standard Markov Decision Process (MDP) 
formalism for this work [2]. An MDP is defined by a tuple 〈S, A, R, T 〉, which consists of a set of states S , a set of actions A, 
a reward function R(s, a), and a transition function T (s, a, s′) = P (s′|s, a). In each state s ∈ S , the agent takes an action a ∈ A. 
Upon taking this action, the agent receives a reward R(s, a) and reaches a new state s′ , determined from the probability 
distribution P (s′|s, a). Many domains utilize a factored state representation, where the state s is represented by a vector of 
n state variables: s = 〈x1, x2, . . . , xn〉. A policy π specifies for each state which action the agent will take.

The goal of the agent is to find the policy π mapping states to actions that maximizes the expected discounted total 
reward over the agent’s lifetime. The value Q π (s, a) of a given state-action pair (s, a) is an estimate of the expected future 
reward that can be obtained from (s, a) when following policy π . The optimal value function Q ∗(s, a) provides maximal 
values in all states and is determined by solving the Bellman equation:

Q ∗(s,a) = R(s,a) + γ
∑

s′
P (s′|s,a)max

a′ Q ∗(s′,a′), (1)

where 0 < γ < 1 is the discount factor. The optimal policy π∗ is then:

π∗(s) = argmaxa Q ∗(s,a). (2)

RL methods fall into two general classes: model-based and model-free methods. Model-based RL methods learn a model 
of the domain by approximating R(s, a) and P (s′|s, a) for each state and action. The agent can then calculate a policy (i.e. 
plan) using this model. Model-free methods update the values of actions only when taking them in the real task. One of the 
advantages of model-based methods is their ability to plan multi-step exploration trajectories. The agent can plan a policy 
to reach intrinsic rewards added into its model to drive exploration to interesting state-actions.

This work takes the approach of using a model-based RL algorithm in a domain with no external rewards. This approach 
can be thought of as a pure exploration problem, where the agent’s goal is simply to learn as much about the world as 
possible. texplore-vanir extends a model-based RL algorithm called texplore [3] to use intrinsic motivation to quickly learn 
an accurate model in domains with no external rewards.

http://www.ros.org/wiki/rl-texplore-ros-pkg
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3. Related work

Many model-based RL algorithms use “exploration bonus” intrinsic rewards to drive the agent to explore more efficiently. 
As one example, r-max [4] uses intrinsic rewards to guarantee that it will learn the optimal policy within a bounded 
number of steps. The algorithm learns a maximum-likelihood tabular model of the task and provides intrinsic rewards to 
state-actions that have been visited less than m times. These rewards drive the agent to visit each state-action enough times 
to learn an accurate model.

One of the more well-known intrinsic motivation algorithms is Robust Intelligent Adaptive Curiosity (r-iac) [5]. r-iac

does not adopt the RL framework, but is similar in many respects. r-iac splits the state space into regions and learns a 
model of the transition dynamics in each region. It maintains an error curve for each region and uses the slope of this 
curve as the intrinsic reward for the agent, driving the agent to explore the areas where its model is improving the most 
(rewarding competence progress). This approach is intended for very large multi-dimensional continuous domains where 
learning may take many thousands of steps. An alternative to r-iac is to learn a separate predictor of the change in model 
error and use its predicted values as the intrinsic reward to drive exploration [6]. Another similar algorithm is zeta-r-max, 
which extends r-max [4] to classify states as known based on the empirical measure of progress in model learning and 
provides similar convergence guarantees [7].

Jonsson and Barto [8] take a similar approach to texplore-vanir, in that they also learn trees to model the domain. Their 
method learns conditional trees using Bayesian Information Criterion to perform splits. Since having a uniform distribution 
over input values will provide the best information for making splits in the tree, their method provides intrinsic motivation 
for actions that would increase the uniformity of the inputs to the tree. This reward only drives local exploration, but 
does enable the agent to quickly learn accurate models of certain tasks. This work was extended to perform more global 
exploration by adding options to set each state feature to any possible value [9]. The agent selected options to set features 
to values where it could then take actions to better improve the uniformity of input features to its trees. However, this 
approach assumes that the agent can set each feature of the domain independently and learn options to do so.

Singh, Barto, and Chentanez [10] present an approach to learning a broad set of reusable skills in a playroom domain. 
They learn option models for a variety of skills and show that the agent progresses from learning easier to more difficult 
skills. However, the skills the agent is to learn are pre-defined, rather than being entirely intrinsically motivated.

Şimşek and Barto [11] present an approach for the pure exploration problem, where there is no concern with receiving 
external rewards. They provide a q-learning agent [12] with intrinsic rewards for where its value function is most improv-
ing. This reward speeds up the agent’s learning of the true task. However, such a reward is not necessary for model-based 
agents, which perform value function updates by planning on their model. Stout and Barto [13] extend this work to the 
case where the agent is learning multiple tasks and must balance the intrinsic rewards that promote the learning of each 
skill. This algorithm requires an external reward, as the intrinsic reward is speeding up the learning of the task defined by 
the external reward function.

Singh et al. [14] argue that in nature, intrinsic rewards come from evolution and exist to help us perform any task. Agents 
using intrinsic rewards combined with external rewards should perform better than those using solely external rewards. For 
two different algorithms and tasks, they search over a broad set of possible task and agent specific intrinsic rewards and 
find rewards that make the agent learn faster than if it solely used external rewards.

These different approaches demonstrate that the correct intrinsic motivation is dependent on the type of algorithm. For 
example, with a q-learning agent [12], it makes sense to give intrinsic rewards for where the value backups will have 
the largest effect, as done in [11]. When learning with a tabular model, the agent must gain enough experiences in each 
state-action to learn an accurate model of it. Thus it makes sense to use intrinsic motivation to drive the agent to acquire 
these experiences, as done by r-max [4]. With a model learning approach that generalizes as texplore-vanir’s does, the 
best intrinsic rewards are different again.

The Policy Gradient Reward Design algorithm (pgrd) learns the best intrinsic rewards on-line for cases where the true 
reward function is given and the agent is limited in some way [15–17]. pgrd uses its knowledge of the true reward function 
to calculate the gradient of intrinsic rewards to agent return. Using this gradient, intrinsic rewards are found that enable 
the best agent performance given its limitations. For example, if the agent has a limited planning depth, then even with the 
true reward function, it cannot perform well. However, good intrinsic rewards can make up for this deficiency. This work 
does not apply to agents without limitations, as providing the agent with the reward function effectively solves the problem. 
Similarly, in tasks where the reward function is not given, then the gradient cannot be calculated and this method does not 
work.

Sequeira et al. [18,19] propose a set of emotion-based intrinsic rewards that present some similarities to texplore-vanir. 
They present four intrinsic rewards: novelty, motivation, control, and valence. The novelty and control rewards are similar 
to the novelty and variance rewards in texplore-vanir, however they are count-based with no generalization across the 
state-space.

Reward shaping algorithms are another set of approaches that use intrinsic rewards. These methods provide the agent 
with intrinsic rewards for improving performance rather than only providing the agent external rewards when the goal has 
been achieved. These shaping rewards are intended to improve the learning speed of the agent. Shaping rewards have been 
used to enable RL agents to learn to ride a bicycle [20] and speed up learning on gridworld tasks [21]. Typically, the shaping 
rewards are created heuristically by the user based on their knowledge of the domain [22]. These methods affect the agent’s 
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exploration in the domain to speed up learning, but they typically require the user to have specific knowledge about what 
constitutes improvement in the task. In addition, if shaping rewards are used that are not potential-based, they can cause the 
agent to learn sub-optimal policies, diverging into cycles that receive lots of shaping reward without accruing any external 
reward [21].

4. TEXPLORE-VANIR

Our goal is to develop an intrinsically motivated curious agent using RL. This agent should use intrinsic rewards to 
1) efficiently learn a useful model of the domain’s transition dynamics; and 2) explore in a developing curious way. To this 
end, we have the following desiderata for such an algorithm:

1. The algorithm should be model-based, both to enable multi-step exploration trajectories and to allow the agent to use 
the learned model later to perform tasks.

2. It should incorporate generalization into its model learning so as to learn the model quickly.
3. It should not be required to visit every state-action, because doing so is intractable in large domains.

This article presents the texplore-vanir algorithm [23], which has all of these properties. texplore-vanir follows the 
typical approach of a model-based RL agent. It plans a policy using its learned model (including intrinsic rewards), takes 
actions following that policy, acquiring new experiences which are used to improve its model, and repeats. In order to be 
applicable to robots, texplore-vanir uses the Real-Time Model Based Architecture [24]. This architecture uses approximate 
planning with uct [25] and parallelizes the model learning, planning, and acting such that the agent can take actions in 
real-time at a specified frequency.

4.1. Model learning

Making the intrinsically motivated agent model-based enables it to: 1) plan multi-step exploration trajectories; 2) learn 
faster than model-free approaches; and 3) use the learned model to solve tasks given to it after its learning. It is desirable 
for the model to generalize the learned transition and reward dynamics across state-actions. This generalization enables the 
model to make predictions about unseen or infrequently visited state-actions, and therefore the agent does not have to visit 
every state-action. Thus, texplore-vanir approaches the model learning task as a supervised learning problem, with the 
current state and action as the input, and the next state as the output to be predicted.

texplore-vanir is built upon the texplore algorithm [3], which uses random forests to learn separate predictions of 
each of the n state features in the domain. In order to learn effectively, the algorithm must learn an accurate model of 
the domain quickly to learn the task with high sample efficiency. Although tabular models are a common approach, they 
require the agent to take every action from each state once (or multiple times in stochastic domains), since they learn a 
prediction for each state-action separately. Instead, texplore uses supervised learning techniques to generalize the effects of 
actions across states, as has been done by some previous algorithms [26,27]. Since the relative transition effects of actions 
are similar across states in many domains, texplore follows the approach of Leffler et al. [28] and Jong and Stone [27] in 
predicting relative transitions rather than absolute outcomes. In this way, model learning becomes a supervised learning 
problem with (s, a) as the input and s′ − s and r as the outputs to be predicted. Model learning is sped up by the ability of 
the supervised learner to make predictions for unseen or infrequently visited states.

Like Dynamic Bayesian Network (dbn) based RL algorithms [29–31], the algorithm learns a model of the factored domain 
by learning a separate prediction for each of the n state features and the reward. The MDP model is made up of n models to 
predict each feature (featModel1 to featModeln) and a model to predict reward (rewardModel). Each model can be queried for 
a prediction for a particular state-action (featModel ⇒ query(〈s,a〉)) or updated with a new training experience (featModel ⇒
update(〈s,a,out〉)). In texplore, each of these models is a random forest.

texplore’s model learning algorithm starts by calculating the relative change in the state (srel), then it updates the model 
for each feature with the new transition and updates the reward model. Like dbn-based algorithms, texplore assumes that 
each of the state variables transitions independently. Therefore, the separate feature predictions can be combined to create 
a prediction of the complete state vector. The agent gets the prediction of the value of the change in each feature and adds 
this vector, srel, to s to get the prediction of s′ .

We tested the applicability of several different supervised learning methods to the task of learning an MDP model in 
previous work [32]. Decision trees, committees of trees, random forests, support vector machines, neural networks, nearest 
neighbor, and tabular models were compared on their ability to predict the transition and reward models across three toy 
domains after being given a random sample of experiences in the domain. Decision tree based models (single decision trees, 
committees of trees, and random forests) consistently provided the best results. Decision trees generalize broadly and can 
be refined to make accurate predictions at all states. Another reason decision trees perform well is that in many domains, 
the state space can be split into regions with similar dynamics. For example, on a vehicle, the dynamics can be split into 
different regions corresponding to which gear the car is in.

Based on these results, texplore uses decision trees to learn models of the transition and reward functions. The decision 
trees are learned using an implementation of Quinlan’s C4.5 algorithm [33]. The inputs to the decision trees are treated both 
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Fig. 1. This figure shows the decision tree model learned to predict the change in the x feature (or �x). The two room gridworld is shaded to match the 
corresponding leaves of the left side of the tree where the agent has taken the east action. Each rectangle represents a split in the tree and each rounded 
rectangle represents a leaf of the tree, showing the probabilities of a given value for �x. For example, if the action is east and x = 14, the agent is hitting 
the right wall. This input falls into the leaf on the top left, where the probability of �x = 0 is 1.

as numerical and categorical inputs, meaning both splits of the type if x = 3 and if x > 3 are allowed. The C4.5 algorithm 
chooses the split at each node of the tree based on information gain. texplore’s implementation includes a modification to 
make the algorithm incremental. Each tree is updated incrementally by checking at each node whether the new experience 
changes the optimal split in the tree. If it does, the tree is re-built from that node down.

The decision trees are the supervised learner that is called to predict each feature and reward. Each tree makes predic-
tions for the particular feature or reward it is given based on a vector containing the n features of the state s along with the 
action a: 〈s1, s2, . . . , sn,a〉. This same vector is used when querying the trees for the change in each feature and for reward.

Fig. 1 shows an example decision tree predicting the relative change in the x variable of the agent in the given gridworld 
domain. The decision tree can split on both the actions and the state of the agent, allowing it to split the state space up 
into regions where the transition dynamics are the same. Each leaf of the tree can make probabilistic predictions based on 
the ratio of experienced outcomes in that leaf. The grid is shaded to match the leaves on the left side of the tree, making 
predictions for when the agent takes the east action. The tree is built on-line while the agent is acting in the MDP. At the 
start, the tree will be empty, and then it will generalize broadly, making predictions about large parts of the state space, 
such as what the east or west actions do. For unvisited state-actions, the tree will predict that the outcome is the same 
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Fig. 2. Model Learning. This is how the algorithm learns a model of the domain. The agent calculates the difference between s′ and s as the transition effect 
srel . Then it splits up the state vector and learns a random forest to predict each state feature. Each random forest is made up of stochastic decision trees, 
which get each new experience with probability w . The random forest’s predictions are made by averaging each tree’s predictions, and then the predictions 
for each feature are combined into a complete model of the domain. Averaging the predictions makes the agent balance exploring the optimistic models 
with avoiding the pessimistic ones.

as that of similar state-actions (ones in the same leaf of the tree). It will continue to refine itself until it has leaves for 
individual states where the transition dynamics differ from the global dynamics.

Using decision trees to learn the model of the MDP provides texplore with a model that can be learned quickly with 
few samples. However, each tree represents just one possible hypothesis of the true model of the domain, which may be 
generalized incorrectly. Rather than planning with respect to this single model, our algorithm plans over a distribution of 
possible tree models (in the form of a random forest) to drive exploration. A random forest is a collection of decision trees, 
each of which differ because they are trained on a random subset of experiences and have some randomness when choosing 
splits at the decision nodes. Random forests have been proven to converge with less generalization error than individual 
tree models [34].

Each of the m decision trees in the forest is trained on only a subset of the agent’s experiences (
〈
s,a, s′, r

〉
tuples), as it is 

updated with each new experience with probability w . To increase stochasticity in the models, at each split in the tree, the 
best input is chosen from a random subset of the inputs.

texplore plans greedily with respect to a distribution of m model hypotheses. texplore’s action-values are then:

Q (s,a) = 1

m

m∑
i=1

Ri(s,a) + γ
1

m

m∑
i=1

∑
s′

Pi(s′|s,a)max
a′ Q (s′,a′). (3)

Each decision tree in the random forest generalizes transitions differently, resulting in different hypotheses of the true 
MDP. As each tree model’s predictions differ more, the predictions from the aggregate model become more stochastic. For 
example, if each of five trees predict a different next state, then the aggregate model will have a uniform distribution over 
these five possible next states. The aggregate model includes some probability of transitioning to the states and rewards 
predicted by the optimistic models as well as those predicted by the pessimistic ones. Thus, planning on the aggregate 
model makes the agent balance the likelihood that the transitions predicted by the optimistic and pessimistic model will 
occur. The agent will explore towards state-actions that some models predict to have higher values while avoiding those 
that are predicted to have low values.

Another benefit of planning on this aggregate model is that it enables texplore to explore multiple possible generaliza-
tions of the domain, as it can explore state-actions that are promising in any one of the hypotheses in the aggregate model. 
In contrast, if texplore acted using a single hypothesis of the task model, then it would not know about state-actions that 
are only promising in other possible generalizations of its past experience. Fig. 2 shows a diagram of how the entire model 
learning system works. The variance of the different trees’ predictions can be used as a measure of the uncertainty in the 
model.
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4.2. Intrinsic motivation

The main contribution of this article is a method for extending the model-based texplore algorithm for learning specific 
RL tasks to the intrinsically motivated texplore-vanir algorithm. The best intrinsic rewards to use to improve the efficiency 
of model-learning are highly dependent on the type of model being learned. With the random forest models texplore uses, 
we hypothesize that the following two intrinsic motivations will perform the best: 1) preferring to explore areas of the state 
space where there is a large degree of uncertainty in the model, and 2) preferring regions of the state space that are far 
from previously explored areas (regardless of how certain the model is).

The variance of the predictions of each of the trees in the forest can be used to motivate the agent towards the state-
actions where its models disagree. These state-actions are the ones where there are still multiple hypotheses of the true 
model of the domain. texplore-vanir calculates a measure of the variance in the predictions of each state feature for a 
given state-action:

D(s,a) =
n∑

i=1

m∑
j=1

m∑
k=1

DKL(P j(xi |s,a)||Pk(xi |s,a)), (4)

where for every pair of models ( j and k) in the forest, it sums the KL-divergences between the predicted probability 
distributions for each feature i. D(s, a) measures how much the predictions of the different models disagree. This measure 
is different than just measuring where the predictions are noisy, as D(s, a) will be 0 if all the tree models predict the 
same stochastic outcome distribution. An intrinsic reward proportional to this variance measure, the variance-reward, is 
incorporated into the agent’s model for planning:

R(s,a) = v D(s,a), (5)

where v is a coefficient determining how big this reward should be.
This reward will drive the agent to the state-actions where its models have not yet converged to a single hypothesis 

of the world’s dynamics. However, there will still be cases where all of the agent’s models make incorrect predictions. For 
the random forest model that texplore-vanir uses, the model is more likely to be incorrect when it has to generalize its 
predictions farther from the experiences it is trained on. Therefore, texplore-vanir uses a second intrinsic reward based on 
the L1 distance in feature space from a given state-action and the nearest one that the model has been trained on. This 
distance is calculated separately for each action. For an action a, Xa is the set of all the states where this action was taken. 
Then, δ(s, a) is the L1 distance from the given state s to the nearest state where action a has been taken:

δ(s,a) = min
sx∈Xa

||s − sx||1, (6)

where each feature is normalized to range from 0 to 1. For boolean features, the distance between true and false is assumed 
to be 1. A reward proportional to this distance, the novelty-reward, drives the agent to explore the state-actions that are 
the most novel compared to the previously seen state-actions:

R(s,a) = nδ(s,a), (7)

where n is a coefficient determining how big this reward should be. One nice property of this reward is that given enough 
time, it will drive the agent to explore all the state-actions in the domain, as any unvisited state-action is different in some 
feature from the visited ones. However, it will start out driving the agent to explore the state-actions that are the most 
different from ones it has seen. The agent will take the actions with the highest long-term rewards, causing it to trade-off 
between exploring faraway states with large intrinsic rewards and closer states with smaller intrinsic rewards. As the agent 
explores the states with the highest intrinsic rewards, other features of the domain will become more rewarding and the 
agent will move to explore them.

The texplore with Variance-And-Novelty-Intrinsic-Rewards algorithm (texplore-vanir) is completed by combining these 
two intrinsic rewards. They can be combined with different weightings of their coefficients (v and n), or with an external 
reward defining a task. Pseudo-code for texplore-vanir’s model learning algorithm is shown in Algorithm 1. A combination 
of the two intrinsic rewards should drive the agent to learn a model more efficiently, as well as explore in a developing and 
curious way: seeking out novel and interesting state-actions, while exploring increasingly complex parts of the domain.

5. Empirical results

We empirically evaluate the texplore-vanir algorithm on both a simulated domain called light world and on a physical 
robot. In the simulated domain, we are able to perform detailed experiments and comparisons with other state-of-the-art 
methods. The experiments on the robot demonstrate the algorithms ability to work on a physical robot. Intrinsically moti-
vated learning fits robots well as they must learn their own dynamics and environment, which are then applicable to any 
task the robot may want to perform.
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Algorithm 1 Model.

1: procedure init-model(n) � n is the number of state variables
2: for i = 1 → n do
3: featModeli ⇒ init() � Init random forest to predict feature i
4: end for
5: for i = 1 → nactions do
6: Xi ← ∅ � Init visited state set for action i
7: end for
8: end procedure

9: procedure update-model(list) � Update model with list of experiences
10: for all

〈
s,a, s′〉 ∈ list do

11: srel ← s′ − s � Calculate relative effect
12: for all srel

i ∈ srel do
13: featModeli ⇒ update(〈s,a〉 , srel

i ) � Train feature model
14: end for
15: Xa ← Xa ∪ s � Add s to visited set for action a
16: end for
17: end procedure

18: procedure query-model(s, a, v, n) � Get prediction of 
〈
s′, r

〉
for s, a

19: for i = 1 → length(s) do
20: srel

i ← featModeli ⇒ query(〈s,a〉) � Sample prediction for feat i
21: end for
22: s′ ← s +

〈
srel

1 , . . . , srel
n

〉
� Get absolute next state

23: D(s, a) ← ∑n
i=1 featModeli ⇒ variance(〈s,a〉) � Calculate variance.

24: � Each forest returns 
∑m

j=1
∑m

k=1 DKL(P j(xi |s, a)||Pk(xi |s, a))

25: δ(s, a) ← minsx∈Xa ||s − sx||1 � Calculate model novelty
26: rvar ← v D(s, a) � Calculate variance reward
27: rnov ← nδ(s, a) � Calculate novelty reward
28: r ← rvar + rnov

29: return
〈
s′, r

〉 � Return sampled next state and reward
30: end procedure

5.1. Light world

Evaluating the benefits of intrinsic motivation is not as straightforward as evaluating a standard RL agent on a specific 
task. Rather than attempting to accrue reward on a given task, a curious agent’s goal is better stated as preparing itself 
for any task. We therefore evaluate texplore-vanir in four ways on a complex domain with no external rewards. First, 
we measure the accuracy of the agent’s learned model in predicting the domain’s transition dynamics. Second, we test 
whether the learned model can be used to perform tasks in the domain when given a reward function. Third, we examine 
the agent’s exploration to see if it is exploring in a developing, curious way. Finally, we demonstrate that texplore-vanir

can combine its intrinsic rewards with external rewards to learn faster than if it was given only external rewards. These 
results demonstrate that the intrinsic rewards and model learning approach texplore-vanir uses are sufficient for the agent 
to explore in a developing curious way and to efficiently learn a transition model that is useful for performing tasks in the 
domain.

The agent is tested on the light world domain [35], shown in Fig. 3. In this domain, the agent goes through a series of 
rooms. Each room has a door, a lock, and possibly a key. The agent must go to the lock and press it to open the door, at 
which point it can then leave the room. It cannot go back through the door in the opposite direction. If a key is present, it 
must pick up the key before pressing the lock. Open doors, locks, and keys each emit a different color light that the agent 
can see. The agent has sensors that detect each color light in each cardinal direction. The agent’s state is made up of 17 
different features: its x and y location in the room, the id of the room it is in, whether it has the key, whether the door 
is locked, as well as the values of the 12 light sensors, which detect each of the three color lights in the four cardinal 
directions. The agent can take six possible actions: it can move in each of the four cardinal directions, press the lock, or
pickup the key. The first four actions are stochastic; they move the agent in the intended direction with probability 0.9 and 
to either side with probability 0.05 each. The press and pickup actions are only effective when the agent is on top of the 
lock and the key, respectively, and then only with probability 0.9. The agent starts in a random state in the top left room 
in the domain, and can proceed through the rooms indefinitely.

This domain is well-suited for this task because the domain has a rich feature space and complex dynamics. There 
are simple actions that move the agent, as well as more complex actions (pickup and press) that interact with objects in 
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Fig. 3. The light world domain. In each room, the agent must navigate to the key, pickup the key, navigate to the lock, press it, and then navigate to and 
exit through the door to the next room.

different ways. There is a progression of the complexity of the uses of these two actions. Picking up the key is easier than 
pressing the lock, as the lock requires the agent to have already picked up the key and not yet unlocked the door.

Based on informal testing, we set texplore-vanir’s parameters to v = 1 and n = 3. texplore-vanir is tested against the 
following agents:

1. Agent which selects actions randomly
2. Agent which is given an intrinsic motivation for regions with more competence progress (based on r-iac [5])
3. Agent which is given an intrinsic motivation for regions with more prediction errors
4. Agent which uses r-max style rewards (terminal reward of Rmax for state-actions with fewer than m visits)
5. Agent which acts randomly with a tabular model
6. r-max algorithm [4]

These six algorithms provide four different ways to explore using texplore-vanir’s random forest model, as well two ap-
proaches using a tabular model. The tabular model is initialized to predict self-transitions for state-actions that have not 
been visited.

We have created a method based on r-iac to compare with our approach (the Competence Progress method). We chose 
to compare against r-iac (presented in Section 3) because it is one of the most well-known intrinsic motivation algorithms 
and maps to reinforcement learning well. This method splits the state space into random regions at the start, maintains 
error curves in each region, and provides intrinsic rewards based on competence progress within a region. These intrinsic 
rewards are combined with the same texplore model learning approach as the other methods. As another comparison, the 
Prediction Error method uses the same regions, but rewards areas with high prediction error.

All the algorithms are run in the light world domain for 1000 steps without any external reward. During this phase, 
the agent is free to play and explore in the domain, all the while learning a model of the dynamics of this world. All of the 
algorithms use the rtmba parallel architecture [24] and take 2.5 actions per second.

First, we examine the accuracy of the agent’s learned model. After every 25 steps, 5000 state-actions from the domain 
are randomly sampled and the variational distance between the model’s predicted next state probabilities are compared 
with the true next state probabilities. Fig. 4 shows the variational distance between these distributions, averaged over 
the 5000 sampled state-actions. This figure shows that texplore-vanir learns significantly more accurate models than the 
other methods (p < 0.025). The next best algorithm is r-max. However, using r-max style reward with the texplore model 
strategy is worse than acting randomly. This result illustrates our point that the best intrinsic reward is dependent on the 
particular model learning approach that is used. The method rewarding visiting regions with high prediction error performs 
poorly, possibly because it is not visiting the right state-actions within these regions.
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Fig. 4. Accuracy of each algorithm’s model plotted versus number of steps the agent has taken, averaged over 30 trials and 5000 randomly sampled 
state-actions. texplore-vanir learns the most accurate models.

Fig. 5. Cumulative rewards received by each algorithm over the 3000 steps of the task, averaged over 30 trials. Agents act greedily with respect to their 
previously learned transition model and the given external reward function. texplore-vanir receives the most reward.

While texplore-vanir and r-max appear to learn fairly accurate models, it is more important for the algorithms to be 
accurate in the interesting and useful parts of the domain than for them to be accurate about every state-action. Therefore, 
we next test if the learned models are useful to perform a task. After the algorithms learned models without rewards for 
1000 steps, they are provided with a reward function for a task. The task is for the agent to continue moving through the 
rooms (requiring it to use the keys and locks). The reward function is a reward of 10 for moving from one room to the next, 
and a reward of 0 for all other actions. In this second phase, the agents act greedily with respect to their previously learned 
transition models and the given external reward function with no intrinsic rewards for 3000 steps.

Fig. 5 shows the cumulative external reward received by each algorithm over the 3000 steps of the task. Again, texplore-

vanir performs the best, slightly out-performing r-max and significantly out-performing the other methods (p < 0.001). 
Learning an accurate transition model appears to lead to good performance on the task, as both texplore-vanir and r-max

perform well on the task. For comparison, an optimal policy (with full a priori knowledge of the transition and reward 
functions) would be expected to receive a cumulative reward of 1800.6 over the 3000 steps. Thus, the performance of all of 
these learning agents is still far below optimal performance in this domain.

Next, the exploration of the texplore-vanir agent is examined. In addition to learning an accurate and useful model, 
we desire the agent to exhibit a developing curiosity. Precisely, the agent should progressively learn more complex skills in 
the domain, rather than explore randomly or exhaustively. Figs. 6(a) and 6(b) show the cumulative number of times that
texplore-vanir and the random agent select the press action in various states over 1000 steps in the task with no external 
rewards, averaged over 30 trials. Comparing the two figures shows that texplore-vanir calls the press action many more 
times than the random agent. Fig. 6(a) also shows that texplore-vanir tries press on objects more often than on random 
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Fig. 6. This plot shows the cumulative number of times that texplore-vanir and a Random Agent select the press action in various states over 1000 steps 
in the task with no external rewards, averaged over 30 trials. Note that the random agent attempts the press action much less than texplore-vanir does.
texplore-vanir starts out trying to press the key, which is the easiest object to find, and eventually does learn to press the lock, but has difficulty learning 
when to press the lock (it must be with the key but without the door already being open). The agent does not try calling the press action on random 
states very often. In contrast, the random agent calls press action on random states more often than it calls it correctly on the lock.

states in the domain. In contrast, Fig. 6(b) shows that the random agent tries press on arbitrary states more often than it 
uses it correctly.

Analyzing the exploration of texplore-vanir further, Fig. 6(a) shows that it initially tries press on the key, which is the 
easiest object to access, then tries it on the lock, and then on the door. The figure also shows that texplore-vanir takes 
longer to learn the correct dynamics of the lock, as it continues to press the lock incorrectly, either without the key or with 
the door already unlocked. These plots show that texplore-vanir is acting in an intelligent, curious way, trying actions on 
the objects in order from the easiest to hardest to access, and going back to the lock repeatedly to learn its more complex 
dynamics. The agent moves from easier to harder tasks as it learns due to its variance reward. For particularly difficult state 
transitions, the agent’s model may make an incorrect prediction in all of its forest trees, and as some of the trees start to 
learn the transition, the variance increases and the agent moves to explore the true dynamics of how it works.

Not only should the agent’s intrinsic rewards be useful when learning in task without external rewards, they should 
also make an agent in a domain with external rewards learn more efficiently. For this experiment, the algorithms are run 
for 3000 steps with their intrinsic rewards added to the previously used external reward function that rewards moving 
between rooms. Instead of an agent acting randomly, we instead have one agent acting using only the external rewards, and 
one performing Boltzmann, or soft-max, exploration with temperature τ = 0.2. Fig. 7 shows the cumulative external reward 
received by each agent over the 3000 steps of the task. texplore-vanir receives significantly more reward than the other 
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Fig. 7. Cumulative rewards received by each algorithm, using intrinsic and external rewards combined, over the 3000 steps of the task, averaged over 30 
trials. texplore-vanir receives the most reward, while the agent using only external rewards performs very poorly.

Fig. 8. Cumulative rewards received by each algorithm, using intrinsic and external rewards combined, over the 5000 steps of the task, averaged over 30 
trials. texplore-vanir with v = 1, n = 3 receives the more reward than versions using either intrinsic reward alone.

algorithms (p < 0.001), followed by r-max. Now that exploration and exploitation are no longer separated into separate 
phases, the exploration of r-max is too aggressive and costs it external reward.

Next, we compare versions of texplore-vanir using one or both of its intrinsic rewards combined with the external 
rewards. Fig. 8 shows the cumulative reward accrued by each algorithm over the 3000 steps. Here, the version of texplore-

vanir using both variance and novelty intrinsic rewards performs better than the versions using just one of the intrinsic 
rewards. Having novelty rewards is important at the start to drive the agent to expand its knowledge about unseen parts 
of the world, and early on adding variance rewards to this has little effect. However, after the agent gets back to the first 
room again, it becomes useful to take actions to disambiguate its various models’ hypotheses of how the objects work, and 
then it becomes important to have variance rewards as well.

These results show that texplore-vanir’s intrinsic rewards out-perform other exploration approaches and intrinsic moti-
vations combined with the texplore model. texplore-vanir performs similarly to r-max when exploration and exploitation 
are split into separate phases, but out-performs r-max significantly when combining intrinsic and external rewards together.
texplore-vanir explores the domain in a curious manner progressing from state-actions with easier dynamics to those that 
are more difficult. Finally, in a task with external rewards, texplore-vanir can use its intrinsic rewards to speed up learning 
with respect to an algorithm using only external rewards.

It is important to note that the best intrinsic rewards are dependent on the learning algorithm and the domain. For 
example, the competence progress rewards used by r-iac are intended to be used in complex high-dimensional domains 
where learning is slow. It takes quite a few samples in one region to get a reasonable estimate of the derivative of the error. 
In the light world domain, by the time the algorithm has determined error is improving in a region, the agent has already 
learned a model of that region and no longer needs to explore there. When using other model learning methods, the best 
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Fig. 9. The experimental setup with an Aldebaran Nao robot. The robot is placed in a sitting position, with a cymbal within arm’s reach, and a square of 
pink taped to its hand. The learning agent can move either of the robot’s right shoulder joints and can potentially hit the cymbal, push the button on its 
right foot, or move more or less pink into the view of its camera.

intrinsic reward will vary as well, for example, the r-max reward works well for a tabular model, but not for a random 
forest model.

In this particular domain, the agent is drawn to explore the areas of the statespace that are most different and compli-
cated, meaning that it explores the corners of the rooms, the dynamics of the objects, and the different boolean values of 
having or not having the key, or locking or unlocking the door. While we demonstrated the agent learns to use the objects 
to get through the rooms, this exploration enables it to perform simpler tasks as well, such as simply navigating across the 
room. Depending on the task to later be performed, the bias given by the vanir exploration towards a particular definition 
of “interesting” domain dynamics could hinder learning. For example, if the eventual goal is only to learn to navigate around 
one room, the time spent learning about the key and the lock are wasted. However, the agent still learns to navigate the 
room as well, even as it learns how to use the objects.

5.2. Robot learning

Next, we evaluate the ability of texplore-vanir to learn to control the arm of a humanoid robot. Due to the difficulty 
of performing experiments on a real robot, instead of the detailed evaluations we performed on the light world task, we 
only examine two aspects of the learning agent on the robot. First, we look at the amount of the state space that the agent 
was able to explore. Second, we test whether the learned model can be used to perform tasks in the domain when given 
a reward function. These results demonstrate that the intrinsic rewards and model learning approach texplore-vanir uses 
are sufficient for the agent to explore in a developing curious way and to efficiently learn a transition model that is useful 
for performing tasks in the domain.

The agent is tested controlling the arm of an Aldebaran Nao robot, shown in Fig. 9. A video of the robot learning is 
available at http :/ /www.cs .utexas .edu /~AustinVilla /?p =research /vanir. The agent has control of the robot’s two right shoul-
der joints. It can take one of five actions: Increase the angle of either joint by 8 degrees, decrease the angle of either 
joint by 8 degrees, or do nothing. The agent’s state is made up of 8 state features: the angle of both shoulder joints, the 
3-dimensional location of the robot’s hand in mm relative to its chest, how many pink pixels the robot can see in its camera 
image, whether its right foot button is pressed, and the amount of energy it hears on its microphone. The robot is placed 
in a sitting position where it can reach its right foot button, and has a cymbal within reach to its right. It also has a pink 
square attached to its arm which it can move in front of its camera. The robot takes actions at 3 Hz to give the arm time 
to reach its new position after each action.

This domain was created as an example of an open-ended robotic task where there are many rich dynamics that the 
robot can learn about. In addition to learning about how the position of its hand changes as it moves its shoulder joint, it 
can learn how its foot button works, how the cymbal makes noise, and how to move the pink square on its arm in front of 
its camera.

Based on informal testing, we set texplore-vanir’s parameters to v = 3 and n = 10. We tested texplore-vanir against 
performing random exploration. The robot acted following one of these two exploration strategies for 400 steps, with no 
external rewards. During this phase, the agent is free to play and explore in the domain, all the while learning a model of 
the dynamics of this world. Then we tested whether the model the robot learned could be used to perform tasks in the 
domain. We provided the agent with the reward function for 3 different tasks: maximizing the amount of pink it could see 
in its camera, pushing the button on its right foot, and maximizing the energy it received on its microphone.

For the viewing pink task, the reward was equal to the number of pink pixels the robot saw in its camera image. The 
robot has 153,600 pixels in its camera image, so if every pixel was pink, it would receive a reward of +153,600. However, 

http://www.cs.utexas.edu/~AustinVilla/?p=research/vanir
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Fig. 10. The fraction of the 13 trials where the robot pushed its right foot button over the 400 exploration steps.

Fig. 11. The maximum number of pink pixels seen in the robot’s camera image, averaged over 13 trials.

it is not possible for the robot to bring the pink square close enough to its camera to take up the entire field of view. In 
addition, as the pink square gets closer to the robot’s head it gets shadowed and is no longer classified as pink. The highest 
number of pink pixels seen in our experiments was 5434. For the button pushing task, the reward was +200.0 when the 
robot’s foot button was pushed, and 0 otherwise. For the microphone task, the reward was equal to the power of the signal 
received on the microphone. We capped this value to a maximum of 4000 as that was the range of values typically seen in 
the room during our experiments.

First, we can look at how much the agent explored during the 400 step exploration phase. Fig. 10 shows the fraction of 
trials that had discovered how to push the robot’s right foot button over the 400 steps. By the end of the 400 steps, the
texplore-vanir agent had pushed the foot button on 7 of the 13 trials. In contrast, when doing random exploration, none 
of the trials pushed the foot button. Similarly, Fig. 11 shows the maximum number of pink pixels the robot had seen over 
the 400 steps, averaged over the trials. The texplore-vanir agent brings the robot’s hand much closer to its face and sees 
nearly twice as many pink pixels in its camera image.

While it appears that texplore-vanir explores more of the statespace and discovers more of the complexities of the 
domain than random exploration, it is important for the agent to be able to perform actual tasks in the domain. After the 
algorithms learned models without rewards for 400 steps, they are provided with a reward function for a task. We tested 3 
different tasks. The first task was to maximize the number of pink pixels seen in the robot’s camera image. The second task 
was to push the robot’s right foot button. The third task was to maximize the energy sensed on the robot’s microphone. 
Each task was run for 200 steps.

Fig. 12 shows the average external reward received by both exploration strategies over the 200 steps of the task to 
maximize pink in the camera image, after the 400 exploration steps. The agent that explored using texplore-vanir performs 
better on this task, receiving more average reward on every time step.
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Fig. 12. Average rewards received by the agents over the 200 steps of the task to maximize the number of pink pixels seen in the robot’s camera image, 
averaged over 13 trials. Agents act greedily with respect to their previously learned transition model and the given external reward function. texplore-vanir

receives the most reward.

Fig. 13. Average rewards received by the agents over the 200 steps of the task to push the robot’s right foot button, averaged over 13 trials. Agents act 
greedily with respect to their previously learned transition model and the given external reward function. texplore-vanir receives the most reward.

Fig. 13 shows the average external reward received by both agents on the task of pushing the robot’s foot button. Again, 
the agent that explored with texplore-vanir performs better than the agent that did random exploration. However, the 
algorithm does have some difficulty keeping the button pressed for the entire 400 steps, eventually moving its hand off the 
button in all the trials.

The final task that we evaluated was for the agent to maximize the energy sensed on the robot’s microphone. The idea 
was for the robot to learn how to make noise by hitting the cymbal with its arm, although it could also make quieter noises 
by hitting its arm into itself. This task proved to be more difficult than the other two tasks. For the agent that explored 
randomly, the agent never hit the cymbal during the task phase. For the agent that explored using texplore-vanir, the 
agent learned to hit the cymbal in just one trial out of 5. Fig. 14 shows the reward received by the texplore-vanir agent 
on this one trial. Rewards over approximately 800 represent noise made by the robot hitting the cymbal with its arm.

These results show that texplore-vanir’s intrinsic rewards drive the agent to explore more of the state space and dis-
cover more affordances in the task than if the agent explored randomly. Exploring with texplore-vanir enables the robot 
to learn a more accurate model of more of the state space and perform better on possible tasks given to the robot after 
exploring the domain.

6. Code release

The texplore-vanir algorithm is available as an open source robot operating system (ROS) [36] package at: http :/ /www.
ros .org /wiki /rl-texplore-ros-pkg. ROS is a popular robot middleware package that provides a framework for many nodes to 
communicate with each other through defined messages. With the code released as an ROS package, texplore can be easily 

http://www.ros.org/wiki/rl-texplore-ros-pkg
http://www.ros.org/wiki/rl-texplore-ros-pkg
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Fig. 14. Rewards received by the one successful trial of texplore-vanir on the task of maximizing the energy received by the robot’s microphone. Rewards 
greater than 800 represent times that the robot hit the cymbal with its arm.

downloaded and applied to a learning task on any robot running ROS with minimal effort. The goal of this algorithm and 
code release is to encourage more researchers to perform learning on robots using state-of-the-art algorithms.

The code release enables users to run the texplore-vanir algorithm as well as the light world domain. The texplore-

vanir domain can be run with different exploration parameters for both the variance and novelty exploration rewards.

7. Conclusion

This article presents the texplore-vanir algorithm for intrinsically motivated learning. This algorithm combines random 
forest based model learning with two novel intrinsic rewards. One reward drives the agent to where the model is uncertain 
in its predictions, and the second drives the agent to acquire novel experiences that its model has not been trained on.

This article presents three main contributions:

1. Novel methods for obtaining intrinsic rewards from a random-forest-based model of the world.
2. The texplore-vanir algorithm for intrinsically motivated model learning, which has been released open-source as an

ROS package: http :/ /www.ros .org /wiki /rl-texplore-ros-pkg.
3. Empirical evaluations of the algorithm, both in a simulated domain and on a physical robot.

Experiments show empirically that texplore-vanir can learn accurate and useful models in a domain with no external 
rewards. In addition, texplore-vanir’s intrinsic rewards drive the agent to learn in a developing and curious way, progressing 
from learning easier to more difficult skills. texplore-vanir can also combine its intrinsic rewards with external task rewards 
to learn a task faster than using external rewards alone.

One of the major use cases of this type of learning is learning on robots. Robots must learn their own dynamics and 
environment affordances, which are then applicable to tasks the robot may want to perform in its environment. We demon-
strated texplore-vanir learning to move the arm of an Aldebaran Nao humanoid robot. First, the agent learned solely from 
intrinsic motivation, exploring the state space, and then we showed that it was able to use its learned model to perform 
various tasks in the domain.

Our main interest in the pursuit of this research is to apply it to developmental learning on robots. One area where
texplore-vanir’s performance on robots can be improved is handling continuous actions. While texplore-vanir selects from 
a set of discrete actions, robots typically take a vector of continuous commands. For example, controlling the Aldebaran Nao 
robot requires a continuous vector of either desired velocities or positions for each of the robot’s 25 joints. texplore-vanir’s 
tree models should already be able to handle multi-dimensional continuous actions as input in making predictions about 
the next state and reward. Thus, extending texplore-vanir to use multi-dimensional continuous actions mainly requires 
extensions to the uct planning algorithm for sampling and selecting from a multi-dimensional continuous action space. 
One possible approach to this problem is to utilize recent work [37,38] adapting the hoo algorithm for continuous bandit 
problems [39] to action selection at each level of the uct tree.

The texplore-vanir algorithm represents an important step towards fully autonomous developmental learning on robots. 
The texplore-vanir algorithm could be utilized on robots in multiple ways. It can be used without an external reward on 
robots to create curious robots that learn and develop. It can also be combined with external rewards to speed up learning 
of tasks. By releasing texplore-vanir as an open-source ROS package, we hope many other researchers are able to apply 
and extend it on their robots to improve learning.

http://www.ros.org/wiki/rl-texplore-ros-pkg
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