
Framing Reinforcement Learning from Human Reward:
Reward Positivity, Temporal Discounting, Episodicity,

and Performance

W. Bradley Knox∗

Massachusetts Institute of Technology

Media Lab

Peter Stone

University of Texas at Austin
Department of Computer Science

Abstract

Several studies have demonstrated that reward from a human trainer can be
a powerful feedback signal for control-learning algorithms. However, the space of
algorithms for learning from such human reward has hitherto not been explored
systematically. Using model-based reinforcement learning from human reward,
this article investigates the problem of learning from human reward through six
experiments, focusing on the relationships between reward positivity, which is
how generally positive a trainer’s reward values are; temporal discounting, the
extent to which future reward is discounted in value; episodicity, whether task
learning occurs in discrete learning episodes instead of one continuing session;
and task performance, the agent’s performance on the task the trainer intends
to teach. This investigation is motivated by the observation that an agent
can pursue different learning objectives, leading to different resulting behaviors.
We search for learning objectives that lead the agent to behave as the trainer
intends.

We identify and empirically support a “positive circuits” problem with low
discounting (i.e., high discount factors) for episodic, goal-based tasks that arises
from an observed bias among humans towards giving positive reward, resulting
in an endorsement of myopic learning for such domains. We then show that con-
verting simple episodic tasks to be non-episodic (i.e., continuing) reduces and
in some cases resolves issues present in episodic tasks with generally positive
reward and—relatedly—enables highly successful learning with non-myopic val-
uation in multiple user studies. The primary learning algorithm introduced in
this article, which we call “vi-tamer”, is the first algorithm to successfully learn

∗Corresponding author.
Email addresses: bradknox@mit.edu (W. Bradley Knox), pstone@cs.utexas.edu (Peter

Stone)

Preprint submitted to Artificial Intelligence September 29, 2014

non-myopically from reward generated by a human trainer; we also empirically
show that such non-myopic valuation facilitates higher-level understanding of
the task. Anticipating the complexity of real-world problems, we perform fur-
ther studies—one with a failure state added—that compare (1) learning when
states are updated asynchronously with local bias—i.e., states quickly reachable
from the agent’s current state are updated more often than other states—to (2)
learning with the fully synchronous sweeps across each state in the vi-tamer
algorithm. With these locally biased updates, we find that the general positivity
of human reward creates problems even for continuing tasks, revealing a distinct
research challenge for future work.

Keywords: reinforcement learning, modeling user behavior, end-user
programming, human-agent interaction, interactive machine learning, human
teachers

1. Introduction

The constructs of reward and punishment form the foundation of psycholog-
ical models that have provided powerful insights into the behavior of humans
and other animals. Reward and punishment are frequently received in a so-
cial context from another agent. In recent years, this form of communication
and its machine-learning analog—reinforcement learning—have been adapted
to permit teaching of artificial agents by their human users (Isbell et al., 2006;
Thomaz and Breazeal, 2008; Knox and Stone, 2009; Tenorio-Gonzalez et al.,
2010; Suay and Chernova, 2011; Pilarski et al., 2011). In this reward-based
form of teaching—which we call interactive shaping (Knox, 2012)—a human
user observes an agent’s behavior while generating reward instances through
varying interfaces (e.g., keyboard, mouse, or verbal feedback); each instance is
received by the learning agent as a time-stamped numeric value and used to
inform future behavioral choices. Here the trainer considers his or her reward
to encompass colloquial concepts like “reward” and “punishment”, “approval”
and “disapproval”, or something similar.1 We refer to these signals as human
reward. Teaching by human reward has been employed successfully in numerous
task domains, including common test-beds for reinforcement learning like grid
worlds, mountain car, and pole balancing (Knox, 2012); tasks for simulated and
physical robots (Suay and Chernova, 2011; León et al., 2011; Pilarski et al.,
2011; Knox, 2012); and various other domains such as Tetris (Knox and Stone,
2009), a simulated cooking task (Thomaz and Breazeal, 2008), and a text-based
online social environment (Isbell et al., 2006).

Interactive shaping enables people—without programming skills or compli-
cated instruction—(1) to specify desired behavior and (2) to share task knowl-

1The term “punishment” is used here only in psychological and colloquial contexts. In
artificial intelligence, the term “reward” includes both positively and negatively valued feed-
back.

2

edge when correct behavior is already indirectly specified (e.g., by a pre-coded
reward function). Further, in contrast to the complementary approach of learn-
ing from demonstration (Argall et al., 2009; Nicolescu and Mataric, 2003; Groll-
man and Jenkins, 2007; Nikolaidis and Shah, 2013), learning from human reward
employs a simple task-independent interface, exhibits learned behavior during
teaching, and, we speculate, requires less task expertise and places less cognitive
load on the trainer. For an extensive exploration of related work on learning
sequential tasks from human teachers, we refer the reader to Chapter 2.5 of
Knox (2012).

The long-term goal of this research is to improve upon existing algorithms
that learn from human reward, progressing towards algorithms that quickly
learn complex behaviors that conform to the trainer’s desires. In pursuit of this
goal, this article presents the first comparative analysis of methods for learning
exclusively from human reward. We motivate the experimental approach herein
by first noting that interactive shaping can be divided into two steps.

1. Define a learning objective with respect to human reward.

2. Improve on this objective with experience.

The best combination of learning objective and algorithm—as they interact with
the reward signals that human trainers actually generate—by definition leads to
the best task performance, as judged by the trainer giving this feedback. Thus,
the human determines the task objective, an objective unknown to the agent—
unlike its learning objective—that the human-agent team will ultimately be
evaluated upon. (For experimental purposes in this article, however, we instruct
trainers to follow specific task objectives.) For example, a trainer might decide
to teach a robot to navigate to her by positively rewarding every action that
aligns with the behavioral goal of navigating to her and withholding reward for
other actions. The task objective, subjectively defined here, is to navigate to
the trainer; a potential learning objective is to find a behavioral policy that
maximizes the expectation of the sum of future human reward. As we point
out in Section 7.1.2, the interaction between the example learning objective and
reward strategy will typically not lead the agent to perform well with respect to
the task objective in certain settings. But other learning objectives (and other
settings) may indeed lead to the desired task performance. We illustrate the
relationship between the learning objective and the task objective in Figure 1.

Critically, we emphasize that this learning scenario has two levels of perfor-
mance: (1) how well an agent maximizes its learning objective, and (2) how well
the combination of agent algorithm and learning objective perform according to
the task objective. An agent that maximizes its learning objective may perform
poorly on the task objective; indeed, this article provides many such examples.

This article primarily attempts to answer the following question: What learn-
ing objective should be chosen to maximize task performance when learning from
human reward? Other questions that receive considerable focus include: Why
do different learning objectives lead to different task performances? When the
algorithm cannot quickly maximize the learning objective, how is task perfor-
mance affected and what implications do these effects on task performance have

3

Reward

Human
trainer

signals

Reinforcement
learning
algorithm

Task
objective

+"Learning (MDP)
objective

Optimized
according to

Ultimately
evaluated by

Agent designer can control
aspects of these.

Learned
behavior

Figure 1. An illustration of the interactive shaping scenario with commen-
tary in gray about the task and learning objectives.

for algorithm design?
To address these questions, our experiments systematically explore how to

complete the previously enumerated two steps for learning from human reward.
The following three dimensions are considered:

• in defining the learning objective, the choice of temporal discounting rate—
i.e. how the agent values long-term reward in comparison to near-term
reward, where an agent that only values near-term reward is called myopic;

• in defining the learning objective, whether the task is considered episodic
or continuing (defined in Section 2);

• and how well the agent optimizes the learning objective while being trained
by a human.

Throughout our experiments, we focus on how these dimensions interact to
affect task performance. We also emphasize how the dimensions affect reward
positivity—whether a trainer gives more positive reward instances than negative
ones, and by what ratio—and how reward positivity might act as an intermediate
factor in the causal connection between these dimensions and task performance.

This empirical exploration consists of four new user studies and two exper-
iments on previously collected data. Though a full list of this article’s con-
tributions is given in the Conclusion (Section 11), we highlight the following
contributions, all in the context of learning from human reward.

• This article provides empirical support for and justification of the myopic
approach used across all previous projects.

• We report the first successful instance of non-myopic learning from human
reward and evidence that non-myopic approaches—with further research—
will enhance the effectiveness of teaching by human reward.

4

• Our results provide evidence for the incompatibility of non-myopic learn-
ing and episodic tasks for a large class of domains, and conversely provide
an endorsement of framing tasks as continuing when learning from human
reward.

More generally, this article stands as a case study on adapting a type of ma-
chine learning to include human interaction. In this vein, the article serves as
an example of how explicit study of the human element can yield insight and
performance gains over what would be achieved through naive application of
machine learning—without explicit human study.

This article is organized as follows. Section 2 provides background, describ-
ing reinforcement learning and the tamer framework, which will be used by our
agents to create predictive models of human reward. In Section 3, we discuss
in depth the topic of temporally discounting human reward, including a discus-
sion of past work in the context of discounting. Section 4 presents vi-tamer,
the novel algorithm used in most of our experiments. Section 5 previews our
four categories of experimental investigation, each given its own section (7–10),
providing a summary of each that can be used as a reference for the reader’s
convenience. Section 6 describes two baseline versions of a task, an agent,
and an experiment, one for each task domain employed in our experiments.
Sections 7–10 detail our six experiments, organized by the four investigative
categories delineated in Section 5. Section 11 concludes by summarizing the
conclusions of this article as contributions and providing recommendations for
applying reinforcement learning to human-generated reward.

2. Background and definitions

This section briefly describes reinforcement learning in Section 2.1, focusing
on terms that will be important to this article’s investigation. It then describes
the tamer framework in Section 2.2. As we explain therein, each of the learning
algorithms in this article employs tamer to create predictive models of human
reward as training progresses. These learning algorithms also use the most
recent model as a reward function for reinforcement learning.

2.1. Reinforcement learning

As described in Section 1, this article examines the effect of various objectives
for learning from human reward on task performance. In particular, we focus
on reward-based objectives used in reinforcement learning (RL) for Markov
Decision Processes (MDPs) (Sutton and Barto, 1998). MDPs are denoted as
{S,A, T,R, γ,D}. Here, S and A are the sets of possible states and actions; T is
a function describing the probability of transitioning from one state to another
given a specific action, such that T (st, at, st+1) = P (st+1|st, at); R is a reward
function, R : S × A → <, with a state and an action as inputs; γ ∈ [0, 1] is
a discount factor, controlling how much expected future reward is valued; and
D is the distribution of start states for each learning episode. RL algorithms
seek to learn policies (π : S → A, deterministic in this article) for an MDP that

5

Training under various discounting

Reinforcement
Learning

Reward
modeler

Reward

Human

Predic've)
model)of)

human)reward)

(S, A, T, D, R̂H , �)

Figure 2. An illustration of the agent’s learning algorithm, where inputs
to the human are not represented. Human reward instances label samples
that train the predictive reward model R̂H , which is used as the reward
function in an MDP. A reinforcement learning algorithm plans in and/or
learns from the resultant MDP, depending on whether the algorithm has
knowledge of the transition function and start state distribution.

improve their discounted sum of reward over time—i.e., their return—from each
state, where return is expressed as Qπ(s, π(s)) and defined in terms of reward
as Qπ(s, a) =

∑∞
t=0Eπ[γtR(st, at)] (with 00 = 1). The function Q is a called an

action-value function. The function V , defined such that V π(s) = Qπ(s, π(s)),
is referred to as a state-value function. Both Q and V are collectively called
value functions. We refer to return-maximizing policies as MDP optimal; on the
other hand, policies that maximize the task objective are called task optimal.

For the experiments described in this article, a Markovian model of human
reward, R̂H , is learned from human reward instances. This model completes
an MDP specification for the agent to plan in, {S,A, T, R̂H , γ,D} (Figure 2).
Thus, the output of R̂H(s, a) for an agent’s current state s and action a is the
reward directly experienced by the learning agent. In this research, we seek
to find reward-based objectives with the following property: algorithms that
perform well on the reward-based objective with reward functions modeled on
human trainers’ reward also perform well on the task objective. If we were
concerned only with task-optimal behavior (and not with generally improving
task performance, reaching optimality or not), this goal could be restated as
finding reward-based objectives (and compatible algorithms) such that MDP-
optimal behavior is also task optimal.

An important aspect of reward-based objectives is temporal discounting,
which is controlled by the γ parameter of MDPs according to the expression of
return above. When γ = 0 the objective is fully myopic. A fully myopic agent
only values the reward from its immediate state and action; expected future
reward is not valued. At the other extreme, an agent with a γ = 1 objective
values near-term reward equally as reward infinitely far in the future. When
γ ∈ (0, 1), future reward is discounted at an exponential rate, making near-term
reward more valuable than long-term reward. Higher γ values result in a lower
discount rate.

6

An additional dimension of MDPs is episodicity: whether the task is episodic
or continuing. In an episodic task, the agent can reach one or more episode-
terminating states, which are called “absorbing states” in the RL literature (Sut-
ton and Barto, 1998). Upon reaching an absorbing state, the learning episode
ends, a new episode starts with state chosen independently of the reached ab-
sorbing state, and the agent experiences reward that is not attributable to be-
havior during the previous episode. Absorbing states often either represent
success or failure at the task, constituting goal states or failure states; we call
tasks with goal states “goal-based”. In contrast to an episodic task, a contin-
uing task is ongoing, wherein all reward is attributable to all past behavior, if
discounting permits.

As we describe more specifically later in this section, we explore the impact
on task performance of the agent’s reward-based objective three dimensions: (1)
the discount factor, (2) whether a task is episodic or continuing, and (3) whether
the agent acts approximately MDP-optimally or is less effective in maximizing
its return. Additionally we investigate these dimensions both for tasks that end
only at a goal state and for a task that can end either at a goal state or a failure
state.

2.2. TAMER framework for learning from human reward

In our experiments, a predictive model of human reward, R̂H , is learned and
provides reward for the agent within an MDP specified as {S,A, T, R̂H , γ,D}
(Figure 2), creating what could be considered model-based RL algorithms. All
agents learn R̂H through the tamer framework (Knox and Stone, 2009). See
Knox (2012) for the current description of tamer, which we describe briefly
below.

The tamer framework is a fully myopic (i.e., γ = 0), high-level algorithm
for learning from human reward. tamer consists of three modules: (1) credit
assignment to create labels from delayed reward signals for training samples,
(2) supervised learning from those samples to model human reward, and (3)
myopic action selection using the human reward model. These modules are
each described in the following paragraphs. All of the novel learning agents in
this article perform their own action selection; thus they only use the first two
of tamer’s modules. However, when these algorithms act myopically by γ = 0,
they are effectively tamer algorithms.

To model a hypothetical human reward function, RH : S × A → R, tamer
uses established regression algorithms; we call the model R̂H . Labels for state-
action samples are constructed from real-valued human reward. The tamer
framework does not commit to any specific model or supervised learner algo-
rithm, leaving such decisions to the agent’s designer. However, we conjecture
that the models should generalize well to unseen state-action pairs and weight
recent training samples more highly, as the human’s internal reward function is
thought to change as the training session progresses. The algorithms employed
in our experiments create such recency weighting by learning R̂H through in-
cremental gradient descent, as we detail in Section 6.

7

Human feedback is necessarily delayed from the event it targets by our
nonzero reaction times. During the credit assignment step, this delay is ad-
dressed by spreading each human reward signal among multiple recent state-
action pairs, contributing to the label of each. Each sample’s weight is calculated
from an estimated probability density function for the delay in reward delivery.

To choose actions within some state s, a tamer agent directly exploits the
learned model R̂H and its predictions of expected reward. When acting greedily,
a tamer agent chooses the action a = argmaxa[R̂H(s, a)]. This is equivalent
to performing reinforcement learning myopically with γ = 0. However, tamer
is used in this article’s algorithms as a module for modeling reward; it does not
perform action selection in any experiments conducted for this article.

In the problem this article focuses on, the human trainer’s feedback is the
only source of feedback or evaluation that the agent receives. However, tamer
and other methods for learning from human reward can be useful even when
other evaluative information is available, as has been shown previously (Thomaz
and Breazeal, 2008; Knox and Stone, 2010; Sridharan, 2011; Knox and Stone,
2012). tamer has additionally been extended to learn in continuous action
spaces through an actor-critic algorithm (Vien and Ertel, 2012) and to provide
additional information to the trainer—either action confidence or summaries of
past performance—creating changes in the quantity of reward instances given
and in learned performance (Li et al., 2013).

3. Temporal discounting of human reward

The most salient distinction between all past algorithms for learning from
human-generated reward and conventional reinforcement learning algorithms—
beyond the obvious addition of an interface and a human—is how the algorithms’
learning objectives discount the value of future reward, a choice ultimately made
by the agent designer. We devote this section to the rich topic of temporal dis-
counting (defined in Section 2.1) to describe discounting in past work and then
discuss the expressivity of a reward function at different rates of discounting,
building towards the discounting-based insights we derive from our experiments.

3.1. A myopic trend in past work on learning tasks from human reward

Interestingly, all previous algorithms have discounted more severely than is
typical for MDPs. For context, when reward in an MDP comes from a pre-
programmed reward function, γ values for discounting are rarely lower than
0.9. Yet for algorithms that learn from reward delivered by an observing human
trainer, discount rates trend considerably lower. For episodic tasks, researchers
have discounted by γ = 0.75 (Thomaz and Breazeal, 2008) and γ = 0.9 (Tenorio-
Gonzalez et al., 2010). In continuing domains, γ = 0.7 (Isbell et al., 2006),
γ = 0.75 (Suay and Chernova, 2011), γ = 0.9 (León et al., 2011), and γ =

8

0.99 (Pilarski et al., 2011) have been used.2 The γ = 0.99 work is a non-obvious
example of high discounting; with time steps of 5 ms, reward one second ahead
is discounted by a factor of approximately 0.134. At the extreme of this trend,
the tamer framework discounts by γ = 0, learning a model of human reward
that is (because of this discounting) also an action-value function. This pattern
of myopic maximization of human reward has hitherto not been identified. An
additional contribution of this article is to provide sufficient justification for this
myopic trend.

In many of these studies, including those on tamer, learning from human
reward is shown to improve in some respect over learning only from MDP re-
ward. Sometimes the championed learning algorithm uses both human and
MDP reward and sometimes also a form of action suggestions (Thomaz and
Breazeal, 2008; Tenorio-Gonzalez et al., 2010). In most of the others, learning
from human reward is shown to be effective in a task where specifying an MDP
reward function would be infeasible in the motivating use case (Isbell et al.,
2006; Pilarski et al., 2011) (i.e., training a user-specific policy when the user
cannot program).

3.2. Consequences of discounting

The two extremes of discounting have different advantages, briefly described
in this section.

For γ = 1, the agent acts to maximize the undiscounted sum of future reward.
With this discounting, the reward function could encode a trainer’s desired
policy, the trainer’s idea of high-level task information such as the task goal,
or some mixture of the two. Expression of high-level task information permits
simpler reward functions. For example, in many goal-based tasks, one such
simple reward function would output 0 for transitions that reach a goal state
and -1 otherwise. These simpler reward functions with higher-level information
could reduce the need for training, allow the agent to find behaviors that are
more effective than those known by the trainer, and make the agent’s learned
behavior robust to environment changes that render ineffective a previously
effective policy but leave the purpose of the task unchanged (e.g., when the
MDP-optimal path to a goal becomes blocked, but the goal remains unchanged).
Given a model of system dynamics (i.e., a transition model) and a planning
algorithm, these advantages become even more pronounced.

For γ = 0, the agent acts myopically to maximize immediate reward. This
objective is simpler algorithmically, since the reward function is equivalent to
the value function with a discount factor of zero. Thus, setting γ = 0 effectively
reduces reinforcement learning of a value function to supervised learning of a
reward function. With supervised learning, the agent can build upon a larger
body of past research than exists for reinforcement learning, including tools

2The discount factors for three publications were learned through personal correspondence
with authors Isbell (Isbell et al., 2006) and Morales (Tenorio-Gonzalez et al., 2010; León et al.,
2011).

9

for model selection (Guyon and Elisseeff, 2003; Arlot et al., 2010). Choosing
representations and features for value function approximation is an active area
of research (Parr et al., 2008; Mahadevan, 2009; Taylor and Parr, 2009; Boots
and Gordon, 2010), but it is comparatively less mature. In general, maximizing
a myopic objective is profoundly easier than maximizing a non-myopic objective.
A disadvantage of this discounting, on the other hand, is that the reward model
can encode a policy but not more general goals of the task. Thus the trainer is
forced to micromanage the agent’s behavior, placing relatively more burden on
the human side of the human-agent system.

Our ambition in this work is to create a natural interface for which people
generate reward on their own. Accordingly, we observe that algorithm designers
should choose a discounting level that is compatible with human reward rather
than assuming the human trainers will fit their reward to whatever discounting is
chosen. Granted, there appears to be some flexibility in the choice of algorithm:
trainers can be instructed before they teach, and humans appear to adapt to the
interface and learning algorithm with which they interact. But it may nonethe-
less be the case that certain intuitively appealing algorithms are incompatible
with some or all human training, even after instruction and practice. The rest
of this article explores such a possibility.

4. The VI-TAMER Algorithm

vi-tamer is a novel approach to learning from human reward that makes a
powerful experimental tool. It is also the first algorithm to successfully learn
non-myopically from human reward (in the continuing-task experiment of Sec-
tion 8). vi-tamer consists of two established algorithms running in parallel:
(1) tamer (described in Section 2.2) learns predictive models of human reward
from the agent’s experienced state-action pairs and human reward instances,
and (2) value iteration (see Sutton and Barto (1998)) updates much more often
than experienced steps occur, quickly adapting its value function to the most
recent reward function changes from tamer. In vi-tamer, value iteration is
employed as an anytime algorithm, where the current value function is used
at any point the agent is asked to choose an action. As is typical for value
iteration, the agent chooses actions according to its learned value function and
a one-step lookahead for each potential action, which determines state-action
values (again, see Sutton and Barto (1998) for details on this process and action
selection from state-action values).

Algorithm 1 provides pseudocode for vi-tamer. The algorithm consists of
four parallel threads. The main agent thread initializes variables, starts the
other threads, and then selects actions. The value iteration thread updates the
value function with the most recent R̂H . The human interface thread listens to
the interface to the trainer and distributes incoming reward instances amongst
recently experienced state-action pairs. Lastly, the tamer reward-modeling
thread incorporates into R̂H experience samples that are no longer eligible for
a share of incoming reward. For legibility, we do not describe credit assignment
in detail. A full description of tamer’s credit assignment is given by Knox

10

Algorithm 1: The vi-tamer algorithm

Global variables: V, R̂H , Ehist
Global constants: {S,A, T,D, γ} (an MDP without a reward function)

Main agent thread (initialization and then action selection)

1: Ehist ← {} // initialize experience set
2: Initialize human reward model R̂H and state-value function V arbitrarily
3: Start value iteration, human interface, and tamer reward-modeling

threads
4: repeat (for each step)
5: s← getState()

6: a← argmaxa

[
R̂H(s, a) + γ

s′∈S∑
[T (s, a, s′)V (s′)]

]
7: ĥ← 0 // new experience starts with a label of 0

8: Ehist ← Ehist ∪ {(s, a, ĥ)} // add experience sample to memory
9: takeAction(a)

10: wait for next time step

Value iteration thread

1: repeat (possibly at regular intervals)
2: for all s ∈ S do

3: V (s)← maxa

[
R̂H(s, a) + γ

s′∈S∑
[T (s, a, s′)V (s′)]

]
// Bellman update

Human interface thread (divides reward amongst recent experiences)

1: repeat
2: if new reward is received from trainer with value h then
3: for all (s, a, ĥ) ∈ Ehist do // add reward shares to labels

4: ĥ← ĥ+ (h × proportion of credit for reward from credit assignment)

TAMER reward-modeling thread

1: repeat
2: for all (s, a, ĥ) ∈ Ehist that are ineligible for future reward credit do

3: updateModel(R̂H , (s, a, ĥ)) // add completed sample to reward model

4: Ehist ← Ehist \ (s, a, ĥ) // remove completed sample from memory

(2012). We do note though that for any instance of human reward, the sum of
the proportions of credit (line 4 of the human interface thread) across all past
experiences is 1.

Because the agent learns from a frequently changing reward function, behav-
ing optimally with respect to the current reward function is difficult. For the
simple task that we run vi-tamer on (described in Section 6.2.1), value itera-

11

tion creates approximately MDP-optimal behavior with small lag in responding
to changes to the reward function, a lag of a few time steps or less. Thus, we
can be confident that observed differences between experimental conditions can
be attributed to the reward-based objective, not to deficiencies in maximizing that
objective.

Besides vi-tamer, this article introduces two algorithms that, to our knowl-
edge, are interesting mainly for the experimental role they play here and are
described in Appendix B. We do not recommend either algorithm for general
use. One is the limited-lookahead Sarsa(λ) algorithm described in Section 6.1.
The other, avi-tamer, is described in Section 9.1.

5. Preview of experiments and results

Using adaptations of two different baselines for tasks, experimental designs,
and agent algorithms, this article includes six sets of empirical analyses
within four investigative categories. As described in the Introduction, these
analyses together seek to find general patterns in the relationship between choice
of temporal discounting (i.e., γ) and episodicity in defining the agent’s MDP
(and thus its learning objective); how close to MDP-optimal the agent can act
during training; and task performance. Throughout these experiments, we also
examine the relationship of these factors to the degree of reward positivity—the
balance of positively valued reward to negatively valued reward given by the
human trainer—which in some cases sheds light on how task performance is
affected. From our analysis of these experiments, we form a recommendation—
stated directly in the Conclusion—for how to frame the problem of learning
from human reward. Specifically, the four investigative categories examine the
effect on task performance of:

1. in the agent’s reward-based objective, varying temporal discounting (γ)
in goal-based, episodic tasks (Section 7);

2. in the agent’s reward-based objective, varying temporal discounting (γ)
in goal-based, continuing tasks (Section 8);

3. when the agent acts non-myopically (γ = 0.99) in a goal-based task, vary-
ing both episodicity and the agent’s distance from MDP-optimality (Sec-
tion 9);

4. and when the agent acts non-myopically (γ = 0.99) in a task that has
both goal and failure absorbing states, varying both episodicity and the
agent’s distance from MDP-optimality (Section 10).

Each of these four categories contains a user study in a grid world domain (de-
scribed in Section 6.2.1), and the first and third categories additionally contain
analysis from the mountain car domain (described in Section 6.1). Figure 3
indicates the different experimental settings between these categories. We now
provide a short summary of each investigative category and its corresponding
results.

In our episodic-task experiments, we investigate our conjecture (pro-
posed in Section 7.1) that in episodic tasks that are goal-based, a previously

12

Investigative category	
 Section	

Temporal

discount rate	
 Episodicity	
 MDP optimal	

Terminal
state(s)	

Episodic task experiments	
 7	
 varies	
 episodic	
 approximately	
 goal only	

Continuing-task experiment	
 8	
 varies	
 continuing	
 approximately	
 goal only	

Local-bias experiments	
 9	
 γ = 0.99	
 varies	
 varies	
 goal only	

Failure-state experiment	
 10	
 γ = 0.99	
 varies	
 varies	
 goal and

failure	

Figure 3. A description of the four investigative categories and their corre-
sponding experimental settings. Column headers in italics denote aspects
of the learning system that are dependent on the agent algorithm. We
include episodicity as dependent—despite it technically being specified by
the transition function—because the agent can adapt its experience in an
episodic domain to appear continuing, as some of the agents do in Sec-
tions 8–10.

observed human bias towards reward positivity will create “positive circuits”
(defined in Section 7.1.2) that cause the agent to avoid the goal that it is being
taught to reach. In mountain car and grid-world tasks, we observe that task
performance peaks at low γ values, plummeting as γ increases to 1, endorsing
a myopic approach. In the more rigorously examined grid-world task, we note
(1) that at high γs, high-performing agents receive the most negative reward,
and (2) that 86.6% of trainers do indeed create positive circuits. Both of these
observations give credence to our conjecture that reward positivity interacts
harmfully with low discounting in episodic, goal-based tasks.

We then repeat one of the episodic-task experiments in a continuing version
of the same task, in what we call the continuing-task experiment. We make
the following four observations. First, we find for discount factors γ < 1 that
task performance of MDP-optimal policies during training is generally high and
independent of discounting, a pattern that is quite different from that seen in the
episodic setting. Second, several strong correlations observed in the episodic-
task grid-world experiment disappear, including the relationships between γ and
both reward positivity and task performance. Third, in this investigation, the
γ = 0.99 condition with the vi-tamer algorithm is the first known instance of
successful non-myopic learning from human-generated reward (i.e., with a high
γ with relatively long time steps). Fourth, in two additional tests using the
training data from this continuing-task experiment, we find evidence for the
theoretically based conjecture that low discount rates (high γs) facilitate the
communication of higher-level task information—e.g., the location of the goal
rather than the exact sequence of steps to reach it. Such higher-level information
enables learning that is more robust to environmental changes, better guides
action in unexperienced states, and has the potential to lead the agent to learn
policies that surpass those known to the trainer.

In our third investigation—the local-bias experiments—we examine task
performance under low discount rates when the agent cannot generally act ap-
proximately MDP-optimally. These experiments are motivated in part by an

13

anticipation of converting vi-tamer to more complex tasks for which MDP-
optimal behavior is intractable to find. Specifically, we focus on agents that
update the values of state-action pairs with a local bias, meaning that pairs
reachable within a few steps of the agent’s current state receive more updates
than those further away. Such locally biased updates are a common character-
istic among RL algorithms, including Sarsa(λ), Q-learning, and Monte Carlo
tree search algorithms. We find that this local bias decreases performance in
the continuing setting, apparently because of further problems created by the
positivity of human reward. In both experiments, we observe that locally biased
agents also achieve higher task performance in continuing tasks than in episodic
tasks, though only one of the two differences is statistically significant.

Our fourth investigation—the failure-state experiment—boosts the gen-
erality of conclusions from the previous experiments by adding a failure state to
the goal-based task and then repeating the γ = 0.99 conditions from these previ-
ous experiments. The results from this failure-state experiment follow patterns
observed previously, though sometimes with less statistical significance (likely
because of smaller effect sizes).

6. Baselines for the task, agent, and experiment for each domain

Here we describe baseline versions of the task, the agent, and the experiment
used in each task domain. Except where otherwise specified, the corresponding
baseline set—for mountain car or grid world—is used in each of this article’s
experiments. For readability, we keep these descriptions at a high level. We
provide relatively less information here on the mountain-car task, since the
related user study was conducted for and described in previous work (Knox and
Stone, 2009; Knox, 2012). Participant instructions for the grid-world task can
be found in the appendix.

In all experiments a model of human reward, R̂H , is learned through the
tamer framework (Knox and Stone, 2009), and the output of this model pro-
vides reward for the agent within an MDP specified as {S,A, T, R̂H , γ,D}. Fig-
ure 2 illustrates this scenario. During training, human reward signals form
labels for learning samples that have state-action pairs as features; a regression
algorithm continuously updates R̂H with new training samples. Additionally,
all R̂H models and all value functions are initialized to 0.

We employ episodic and continuing versions of both tasks, which are conven-
tionally episodic. In the episodic version of the tasks, the goal state is absorbing.
In the continuing version, upon transitioning into the goal, the agent instead
experiences a transition to the start state. Consequently, in the continuing ver-
sion, reward received in one “episode” can be attributed to state-action pairs
in the previous “episode” (and farther in the past). Though reaching the goal
in the continuing version does not mark the end of an episode, we continue to
use the word “episode” to refer to the periods of time that are divided by the
attainment of the goal. Another valid perspective for the reader is to assume
the task is fundamentally episodic and that the continuing version is simply
tricking the agent to make it experience the task as continuing.

14

During training for all experiments, human reward was communicated via
two keys on the keyboard that map to 1 and -1. This mapping to 1 and -1,
though not infallible, is an intuitive choice that is similar to that of related
works that explain their exact mappings (Thomaz and Breazeal, 2008; Tenorio-
Gonzalez et al., 2010; Pilarski et al., 2011; Suay and Chernova, 2011). Addi-
tionally, this interface allows richer feedback than it superficially appears to for
two reasons. First, reward signals are asynchronous to actions, so the rate of
reward signaling determines intensity. Second, to account for delays in giving
feedback, the causal attribution of each reward is distributed across multiple
recent time steps by tamer’s credit assignment module (Knox, 2012), further
adding variety to the label values of samples for training R̂H .

Participants were told that the rate of feedback determined its strength and
that the agent could accommodate small delays in feedback. They were not told
the underlying numeric value of their reward, information that we felt would
make the experiments diverge from our envisioned use cases. (Pointers to the
full trainer instructions for each type of experiment are given below.)

6.1. Off-discounting experiments, using pre-trained R̂Hs in mountain car

Figure 4. A screenshot of
the mountain car task. The
action is shown by location
of the light blue vertical bar
on the left (accelerating left),
center (no acceleration), and
right (accelerating right, as in
this screenshot) of the car.

These analyses in mountain car use
19 fixed R̂Hs learned from the training
logs created from a past experiment using
tamer (Knox and Stone, 2009), taken from
the third run of 19 trainers of the mountain
car task. In mountain car, a simulated car
must accelerate back and forth across two hills
to reach the top of one. Each of these 19 fixed
R̂Hs provide reward for an RL algorithm at
various discount factors. We call these experi-
ments off-discounting3 because the human re-
ward data was gathered under γ = 0 discount-
ing, which usually differs from the discount-
ing used during evaluation, when the agent
learns a value function from the learned re-
ward model. We discuss at the end of Sec-
tion 7.2.1 possible training bias caused by the mismatched training and testing
of the off-discounting experiments. The experiments discussed in Section 6.2 do
not involve this discounting mismatch and thus are called “on-discounting”.

The R̂Hs—the trainer models—are learned with the same linear representa-
tion over Gaussian radial-basis-function features that was used during the live
training session, updating by incremental gradient descent. Each R̂H trains on

3We chose the terminology “on-discounting” and “off-discounting” to loosely parallel the
distinction between on-policy and off-policy reinforcement learning. “Off-policy” means learn-
ing about one policy through experience gathered under another policy; “off-discounting”
means learning about return under one discount rate from experience gathered while training
with another discount rate.

15

the first 20 episodes of its corresponding training log. To account for a small
step size during gradient descent (0.001), each R̂H is trained from 100 epochs on
the trainer log. Credit assignment is performed by the delay-weighted, aggre-
gate reward method described by Knox (2012), updating only when reward was
received, as in the reward-only condition described in Chapter 3.4.3 therein.

Whereas vi-tamer is the most prevalent algorithm in our experiments, the
mountain-car experiments—which come first in our results, in Section 7.2.1—
instead employ a limited-lookahead Sarsa(λ) algorithm that exhaustively searches
a transition tree up to 3 steps ahead. Pseudocode for the algorithm is provided
as Algorithm 2 in Appendix B. This algorithm estimates return for each possi-
ble immediate action by taking the highest-return path on that action’s branch,
where a path’s return is calculated as the sum of discounted reward along the
path and the discounted, learned return at the leaf state of the path. Action
selection is similar to ε-greedy: there is a probability ε at each step that the
agent will choose a uniformly random action, and otherwise the action is that
with the highest estimated return. Lastly, the depth of the agent’s exhaustive
tree search is chosen from a Uniform(0,3) distribution at each step to provide
a wider range of experiences. The agent updates its value function only on
experienced transitions. The Sarsa(λ) parameters are below, following Sutton
and Barto’s notation (1998). The action-value function Q is represented by a
linear model over Gaussian radial-basis-function features. For each action, the
means of 1600 radial basis functions are located on a 40× 40 evenly spaced grid
over the state space, where the outermost means in each dimension lie on the
extremes of the dimension. Additionally, an activation feature of 0.1 is added
for each action, creating a total of 4803 state-action features. When an action
is input to Q, the features for all other actions are zero. The width σ2 of the
Gaussian radial basis functions is 0.08, following Sutton and Barto’s definition
of a radial basis function’s “width” and where the unit is the distance in nor-
malized state space between adjacent Gaussian means. All weights of Q are
initialized to 0. The Sarsa(λ) algorithm uses ε-greedy action selection, starting
with ε = 0.1 and annealing ε after each episode by a factor of 0.998. Eligibility
traces were created as replacing traces with λ = 0.84. The step size α = 0.01.
For these experiments, the agents learn from R̂H for 4000 episodes, and episodes
are terminated (with an update of 0 reward) if the goal is not attained after 400
time steps, limiting the agent’s maximum return to a finite value.

6.2. On-discounting experiments in a grid world

The grid-world task is used in four of our six experiments and is shown
in Figure 5. Unlike with the mountain-car task, these experiments are on-
discounting, involving an agent being trained with the same discount factor by
which it calculates return when learning a value function (and thus a policy).
In other words, the agent’s behavior during training reflects its discount factor,
removing the bias inherent in the mountain-car task.

6.2.1. The grid-world task

16

!" #!"

#"

$"

%"
&"

'"
'" #" !"$"%" &"

Figure 5. The baseline grid
world task. To display the
agent’s actions and state tran-
sitions to the trainer, (1)
wheel tracks are drawn from
the agent’s previously occu-
pied cell, and (2) the simu-
lated robot’s eyes point in the
direction of the last action.
The start and goal cells are la-
beled ‘S’ and ‘G’ respectively.

The grid-world task contains 30 states. At
each step, the agent acts once by moving up,
down, left, or right, and attempted movement
through a wall results in no movement during
the step. Task performance metrics are based
on the time steps taken to reach the goal. The
agent always starts a learning episode in the
state labeled “S” in Figure 5. The shortest
path from the start state requires 19 actions.
Each time step lasts approximately 800 ms.

6.2.2. The grid-world agent

For the grid-world experiments, the base-
line agent algorithm is vi-tamer. An update
sweep occurs over all of the states every 20 ms,
creating approximately 40 sweeps per step.
We restricted update sweeps to these regular
intervals to decrease the impact of varying the
computational power available to the algo-
rithm, which certainly occurred when our par-
ticipants interacted with vi-tamer through
their web browsers (see Section 6.2.3). Up-
dates within each sweep are “in place”; i.e., each update to a state value esti-
mate overwrites the previous estimate, allowing updates to affect other updates
within the same sweep. As mentioned previously, the agent’s value function and
reward model are each initialized to output zero at the start of training (with
implications discussed in Section 9.1.1).

The tamer module in vi-tamer for this task represents R̂H as a linear
model of Gaussian radial basis functions and updates the model by incremen-
tal gradient descent. One radial basis function is centered on each cell of the
grid world, effectively creating a pseudo-tabular representation that generalizes
slightly between nearby cells. Each radial basis function has a width σ2 = 0.05,
where 1 is the distance to the nearest adjacent center of a radial basis function,
and the linear model has an additional bias feature of constant value 0.1. R̂H
is updated with new feedback by incremental gradient descent with a step size
of 0.2. In accordance with the most recent version of tamer (Knox, 2012),
we used aggregate reward for credit assignment with a probability distribution
over feedback delay of Uniform(-0.4 seconds, -0.15 seconds), with negative val-
ues because the algorithm looks backwards in time from the feedback signal
to potentially targeted events. Updates occurred at every step regardless of
whether reward was provided.

6.2.3. The grid-world experiments

All grid-world experiments were conducted through subjects’ web browsers
via Amazon Mechanical Turk. Subjects were randomly assigned to an exper-
imental condition. They were prepared with video instructions and a period

17

of controlling the agent followed by a practice training session. During these
instructions, subjects are told to give “reward and punishment” to the green
“Kermitbot” to “teach the robot to find the water as fast as possible.” Trainers
were left to determine their own reward strategies, possibly including rewarding
every time the agent acts as they would have acted or rewarding highly when
the agent reaches the goal.

In the first grid-world experiment (in Section 7.2.2), the official training
session stopped after the agent reached the goal 5 times (i.e., 5 episodes) or
after 300 steps, whichever came first (unless otherwise specified). In the three
other grid-world experiments, trainers were stopped after the first of 10 episodes
or 450 time steps.

We filter the training samples by removing any sample from analysis that
fulfills any of the following conditions: the sample was created from the second
or later time that a specific worker acted as a subject, the log file is incomplete,
the user mistyped his or her condition-specifying user ID such that the condition
was incorrectly specified, or the user gave less than 2 instances of feedback per
100 time steps, which we consider to be non-compliance with our experimental
instructions.

Because we repeat many of the same statistical tests throughout this article,
we introduce our more common tests here:

• A Fisher’s exact test comparing outcomes of reaching the goal all N times
or not by condition, where N is specified as a threshold

• A Mann Whitney U test where the dependent variable is the number of
episodes completed before training was stopped

• A Mann Whitney U test where the dependent variable is how many steps
occurred before the agent reached the goal for the first time

• A Spearman correlation test of the ratios of positive to negative reward
and success within a specific condition

7. Episodic-task experiments

We now describe our first investigation, focusing on the effect of discounting
rates when learning from human reward in a goal-based, episodic task. We
first introduce the positive circuits problem and from this problem propose a
hypothesis. Then we describe the two episodic-task experiments, discussing
their results.

7.1. The positive circuits problem of learning from human reward with high γs

We describe our intuition in two parts for why treating human reward iden-
tically to conventional MDP reward in episodic, goal-based tasks—i.e., using
γ at or near 1—will often cause minimal task performance, a situation we call
the positive circuits problem. In the discussion below, we assume MDP-optimal
policies when referring to expected return.

18

7.1.1. Humans tend to give more positive than negative reward

Thomaz and Breazeal conducted experiments in which humans train agents
in an episodic, goal-based task with γ = 0.75 (Thomaz and Breazeal, 2008).
Focusing on the first quarter of the training session—when the agent’s task
performance is generally worst—they found that 16 out of 18 of their subjects
gave more instances of positive reward than of negative reward. Over all subjects
and the entire training session, 69.8% of reward instances were positive.

We also examined the balance of positive and negative reward from two
previous experiments. One source of data was 27 subjects who taught tamer
agents to play Tetris in the control condition of the “critique experiment” de-
scribed by Knox et al. (2012). The other source was 19 subjects who taught
tamer agents to perform the mountain car task (Knox and Stone, 2009) as
defined in Sutton and Barto (1998). Comparing the sums of each trainer’s posi-
tive reward values and negative reward values, we find that 45 of the 46 trainers
gave more positive reward than negative over their training session. The one
exception, a mountain car trainer, gave an equal amount of positive and neg-
ative reward. The Tetris agents of eight trainers could not clear even 10 lines
a game, in many cases averaging less than a line cleared per game. Yet these
trainers still gave more positive reward than negative reward, despite especially
poor task performance.

Based on past experiments, human trainers appear to generally give more
positive reward than negative reward, often with remarkable consistency.

7.1.2. Consequences of positive reward bias for learning with large discount fac-
tors

In many goal-based tasks with discrete state, there exist repeatedly exe-
cutable trajectories of state-action pairs that start and end in the same state.
Additionally, in many goal-based tasks with continuous state variables, there are
likewise subsets of states an agent can repeatedly visit, though the exact trajec-
tory may differ each time. We call such repetitious behavior behavioral circuits.
Such circuits exist for many MDPs, including any deterministically transitioning
MDP with at least one recurrent state and any MDP that contains at least one
state in which an agent can remain by taking some action. A simple example
is an agent walking in circles in a navigational task. For such tasks, given the
predominance of positive reward, it is likely that at least one such circuit will
provoke positive net reward over each traversal of the circuit. Assuming that
the goal-based task is episodic (i.e., a goal state is an absorbing state that ends
a learning episode, a large class of problems), the MDP’s discount factor γ is
conventionally 1. Given that γ = 1, the expectation of return from states along
a net-positive reward circuit will consequently be infinity, since the return is the
sum of infinitely repeated positive reward. Therefore, if a circuit exists with
net-positive reward, an MDP-optimal policy for γ = 1 will never reach the goal;
an absorbing state ends accrual of reward, making the return of a goal-reaching
state-action pair finite, regardless of how large the reward is for reaching the
goal. Thus, we call this issue the positive circuits problem. The general problem
of positive circuits in RL has been discussed previously in the reward-shaping

19

Final performance using human reward predictions
as MDP reward (mountain car, all trainers)

Discount factor

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
92

0.
95

0.
98

0.
99 1

-400
-300
-200
-100
0

100
200

Human reward per episode (mean)
Task performance (-1 x time to goal)

Figure 6. Aggregate results for the off-discounting analysis in an episodic
setting, showing mean task performance and mean sum of R̂H-generated
reward per episode for mountain car, over the final 500 episodes of 4000
episodes of learning.

literature (Randløv and Alstrøm, 1998; Ng et al., 1999) but to our knowledge
has not been connected to human-generated reward or episodicity.

The positive circuits problem is most clearly explained for the case when
γ = 1, but circuits with net-positive reward can also be problematic at high γ
values that are less than 1. For instance, if γ = 0.99 and some circuit exists
that has an average reward of 0.5 per transition, the expected return from
at least one state in this circuit will be approximately 50 or higher (because∑∞
t=0(0.99t × 0.5) = 50). Though finite, such high expectations of return may,

despite the trainer’s best efforts, be larger than the expectation of return for
any path from the state to the goal.

Trainer adaptation may be insufficient to avoid such a goal-averse result;
delivering reward such that there are zero repeatable circuits of positive net
reward may be severely unnatural for a trainer. Consequently, we hypothesize
that RL algorithms using low γs will generally perform better on the trainer’s
internal task performance metric on goal-based, episodic tasks.

7.2. Empirical analysis: discounting in episodic tasks

In this section, we present two empirical analyses of the impact of different
discount factors when learning goal-based, episodic tasks from human reward.
Recall that, as discussed in Section 2, maximizing the discounted sum of hu-
man reward is not equivalent to maximizing task performance. In fact, it is
precisely the relationship between these two types of maximizations that we are
investigating.

For both tasks used below, the conventional MDP specifications (i.e., with
hard-coded reward functions) have γ = 1. Thus, at γ = 1 R̂H is being used as
if it were interchangeable with a conventional MDP reward function.

7.2.1. Off-discounting experiment (episodic)

We first describe the results of the episodic-task version of the experiment
specified in Section 6.1, using 19 fixed R̂Hs that were pre-trained during a

20

Task performance Trainer model

Index

-400

-100 1

Index

-400

-100 2

Index

-400

-100 3

Index

-400

-100 4

Index

-400

-100 5

Index

-400

-100 6

Index

-400

-100 7

Index

-400

-100 8

Index

-400

-100 9

M
ea

n
fin

al
 ta

sk
 p

er
fo

rm
an

ce
 p

er
 e

pi
so

de

Index

-400

-100 10

Index

-400

-100 11

Index

-400

-100 12

Index

-400

-100 13

Index

-400

-100 14

Index

-400

-100 15

Index

-400

-100 16

Index

-400

-100 17

Index

-400

-100 18

Index

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
92

0.
95

0.
98

0.
99 1

-400

-100 19
Discount factor

Human reward

Index

0
200 15.3

27.9

Index

0
200 64.8

98.8

Index

0
200 55.4

61.3

Index

0
200 67.0

146.6

Index

0
200 40.5

80.4

Index

0
200 47.9

182.5

Index

0
200 25.4

49.4

Index

0
200 61.6

130.9

Index

0
200 64.6

104.5

M
ea

n
su

m
 o

f p
re

di
ct

ed
 h

um
an

 re
w

ar
d

pe
r e

pi
so

de

Index

0
200 76.7

211.3

Index

0
200 29.2

68.7

Index

0
200 31.7

112.6

Index

0
200 15.1

56.0

Index

0
200 9.1

24.9

Index

0
200 29.6

126.2

Index

0
200 32.0

58.8

Index

0
200 45.9

123.6

Index

0
200 18.3

71.2

Index

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
92

0.
95

0.
98

0.
99 1

0
200 22.1

57.9

Discount factor

(a)

Task performance

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

M
ea

n
ta

sk
 p

er
fo

rm
an

ce
 p

er
 e

pi
so

de

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

-400

-100

FP[, 1]

0 500 1500 2500
-400

-100

Episodes

(b)

Figure 7. (a) Non-aggregate version of the off-discounting results in Fig-
ure 6, showing learned task performance over 500 episodes after 3500
episodes of learning (left) and mean total reward per episode over these
final 500 episodes (right) for each of the 19 trainer models. Gray shading
in the “Human reward” column indicates the inclusive range of γ values
at which the agent’s task performance is minimal (-400 per episode). (b)
Learning curves at γ = 1, showing mean task performance over 100 episode
intervals for each trainer model.

21

previous user study (Knox and Stone, 2009). Recall that during training for
this previous study, agents acted to maximize reward under γ = 0 discounting;
we address the consequences of this experiment’s off-discounting character at
the end of this subsection. Mean task performance and mean total reward per
episode for each tested discount factor across all 19 R̂H models are displayed
in Figure 6. Additionally, Figure 7 displays the same data for each R̂H model
separately to show the consistency of qualitative results between various human
models and to permit examination of the relationship of reward accrual and
performance for individual reward models over different discount factors. We
consider final performance to be over the last 500 episodes of learning (of the
total 4000 episodes described in Section 6.1).

Importantly, at final performance all 19 trainer models led to the worst
possible task performance with γ = 1. With γ = 0.99, 18 models led to minimal
task performance. We visually examined agents learning at γ = 1 from five of
the trainer models; each agent exhibited a circuitous behavior.

Additionally, the mean sum of predicted human reward per episode increases
as performance decreases, as can be seen in the plots of the final task perfor-
mance with each trainer model (Figure 7). For all 19 trainer models, the mean
human reward accrued per episode is higher at discount factor of 1 than 0.
Further, for almost every trainer, at every γ value that leads to worst-possible
task performance (i.e., values shaded gray in the “Human reward” column of
Figure 7), the corresponding mean total reward per episode is higher than at all
γ values that lead to better-than-minimal performance. The three exceptions
(trainer models 2, 3, and 6) break this general observation by small margins,
15% or less. A more subjective, visual analysis of Figure 7 reveals that, for
γ < 1, the change in performance between two contiguously plotted discount
factors is roughly proportional to the change in mean reward accrued. This sub-
jectively assessed pattern suggests that increased reward accrual from a change
in the discount factor is tightly associated with a decrease in performance.

Three general patterns emerge. We have noted the first: task performance
decreases as the discount factor increases. Second, agent algorithms also accrue
higher amounts of predicted human reward as the discount factor increases.
Third, as the discount factor varies within γ ∈ [0, 1), decreases in performance
are closely tied to increases in reward accrued. From these three patterns, we
observe that the best task performance is not aligned with behavior that accrues
the most predicted human reward. Additionally, these results provide initial
evidence of the presence of positive circuits: compared with agents optimizing
for low γ values, agents optimizing for high γ values learn policies that accrue
more human reward but do not reach the goal, and a sampling of the learned
policies for γ = 0 showed consistently circuitous behavior.

Figure 7b shows learning curves at 100-episode intervals for a single run at
γ = 1 for each trainer model. Good initial performance lasts for a varying
amount of time but then degrades to worst-possible performance quickly. In
the plots, this degradation occurs during the intervals with intermediate perfor-
mance.

In general, the choice of RL algorithm will impact performance, so one might

22

ask whether the algorithm used here is actually learning an MDP-optimal policy
for its corresponding human reward model and discount factor. At γ = 0
and γ = 1, the answer appears to be “yes.” At γ = 0, the agent optimizes
return at tree search depths greater than 0. When the search depth is zero,
it uses the learned value for Q(s,a), which is roughly equivalent to R̂H(s, a)
after many learning samples at or near (s,a). At γ = 1, if the RL algorithm
learns an infinitely repeatable sequence of actions with positive net reward, then
the disastrous policy that repeats that sequence is necessarily within the set of
MDP-optimal policies. As mentioned above, we visually checked the behavior
of five human models’ corresponding algorithms while they exhibited the worst
possible performance, and each agent repeatedly visited roughly the same circuit
of states until the episode limit was reached. During this circuitous behavior,
the maximum Q values at all observed states were positive. Therefore, the
results for γ = 0 and γ = 1 can be considered correct — independent of the
RL algorithm used — with confidence. However, for 0 < γ < 1, another RL
algorithm might learn a policy with a higher mean total reward per episode
than in these results.

There is one important caveat to the conclusions we draw from this off-
discounting analysis. Training occurred with tamer algorithms, effectively at
γ = 0. We strongly suspect that trainers adjust to the algorithm with which they
interact; if the agent is maximizing immediate reward, we expect that its trainer
will likely give more reward for immediately previous behavior. Only a on-
discounting analysis—as we perform in the following experiment—will address
whether this caveat of trainer adjustment has affected our conclusions.

We note that off-discounting analysis has one considerable advantage that
on-discounting analysis lacks, which makes these two analyses complementary.
Specifically, the off-discounting analysis permits us to examine what occurs with
a fixed R̂H at many different γ values. In particular, the tight relationship be-
tween increases in reward accrued and decreases in performance as the discount
factor changes—as a close comparison of the left and right columns of Fig-
ure 7(a) reveals—is more evident than when comparing reward functions trained
separately at different discount factors (as in the upcoming Figure 9). Our ob-
servation of this relationship from these off-discounting results precipitated the
framing of this article’s research and the experiments described hereafter. In
addition to this strength of off-discounting analysis, the off-discounting results
add supporting evidence for the conclusions within this section, though the
on-discounting results provide stronger evidence.

7.2.2. On-discounting experiment (episodic)

In the episodic-task analysis described here in Section 7.2.2—as in the off-
discounting analysis in the previous Section 7.2.1—the human reward model R̂H
is learned by tamer and provides predictions that are interpreted as reward
by an RL algorithm. But unlike the previous analysis, R̂H is learned while
performing reinforcement learning, and the RL algorithm—not tamer—selects
actions while learning R̂H . Thus this experiment is on-discounting, and the
human trainer will be adapting to the same algorithm, with the same γ, that is

23

being tested. The agent, task, and experiment conform to the baseline specified
in Section 6.2.

Subjects from Amazon Mechanical Turk were randomly assigned to train an
algorithm using one of five different discount factors: 0, 0.7, 0.9, 0.99, and 1. 10
subjects were recruited per condition; for these five conditions, the respective
number of subjects after filtering (Section 6.2.3) was 10, 8, 10, 7, and 7. As
explained in Section 6.2, the actual training session stopped after the agent
reached the goal 5 times or after 300 steps, whichever came first.

Results Figure 8 shows the success rate of trained agents by condition,
dividing them among those that never reach the goal, reach the goal 1–4 times,
and reach the goal the maximum 5 times. These results exhibit a clear pattern
of task performance worsening as the discount factor increases. This pattern is
supported by significance testing. We conducted Fisher’s exact tests of whether
the agent reached the goal 5 times, by condition: between γ = 0 and γ = 1,
p = 0.0006 (extremely significant); between γ = 0 and γ = 0.9, p = 0.0325
(significant); and between γ = 0 and γ = 0.7, p = 0.4444 (not significant).

To evaluate reward positivity, the basis for the positive circuits problem
(Section 7.1), we examine the ratio of cumulative positive reward to cumulative
negative reward given by trainers in each condition, shown in Figure 9. Success
appears highly related to this ratio; in Figure 9, we are able to draw a dividing
line at each condition between all agents that never reach the goal and all other,
more successful agents. Additionally, the ratio of this division between suc-
cess and failure monotonically decreases as the discount factor increases, which
supports our conjecture that the positivity of human reward becomes more
problematic as the discount factor increases (Section 7.1). Without recognition
of the positive circuits problem (Section 7.1), this pattern of lower-performing
agents getting more reward would be quite counter-intuitive. Further, negative
Spearman’s correlations between discount factor and these ratios are extremely
significant both for all trainers and for only trainers whose agents reached the
goal once or more (p <= 0.0005), but the correlation when considering only goal-
reaching trainers is stronger (correlation coefficient ρ = −0.7594, compared to
ρ = −0.543 for all trainers). We conjecture that γ affects ratios by both filtering
out trainers that give too much positive reward in conditions of higher γs and
by pressuring trainers to adjust their ratio in response to the agent. In surveys
given after training, at least one trainer, from the γ = 0.9 group, spoke of his
attempts to adapt to the agent: “When [the reward] key is stroked there is not
much response in the robot. Only [the punishment] key stroke worked.”

Reward is predominately positive (a ratio greater than 1) for 66.7% of train-
ers in this experiment, which supports the conjecture that human reward gen-
erally has a positive bias. At γ = 0, all trainers are predominately positive,
fitting results from tamer experiments (Section 7.1.1). At γ = 0.7, the closest
condition to that of the γ = 0.75 used in Thomaz and Breazeal, 5 of 8 trainers
are predominately positive, 2 are predominately negative, and 1 trainer’s ra-
tio is exactly 1, roughly fitting Thomaz and Breazeal’s observations (Thomaz
and Breazeal, 2008). However, for γ ≥ 0.99 most trainers are predominately
negative, contrasting with what has been reported in past work, none of which

24

!"#
$!"#
%!"#
&!"#
'!"#

(!!"#

!# !)*# !)+# !)++# (#
!"#$%&'()*+$(%,)

-,+"'"'.)/"(0)1"23,3'()1"#$%&'()*+$(%,#)
,-./0#/.1.2#
2.345.6#-738#

,-./0#2.345.6#
-738#

,-./0#2.345.6#
-738#9#:;.<#

Figure 8. Success rates for the episodic grid-world experiment by discount
factor. Ratios of positive to negative reward

Discount factor

P
os

-N
eg

 R
ew

ar
d

R
at

io

0

0.
7

0.
9

0.
99 1

0.1

1

10

Never reached goal
Reached goal
Reached goal 5 times

Figure 9. Ratio of cumulative positive reward to cumulative negative re-
ward given by each trainer, divided by discount factor condition and task
performance. Jitter has been added along the x-axis for readability. For
each condition, a horizontal line was placed above the mark for the highest
ratio at which a subject trained the agent to reach the goal at least once.

includes such non-myopic learning.
Since this task has discrete states, we can precisely test for positive circuits

by narrowing the definition of a behavioral circuit from Section 7.1.2 to be in-
finitely repeatable trajectories that start and end on the same state. Thus, any
behavioral circuit with net-positive reward is a positive circuit. After training,
there was at least one positive circuit in 35 of the 42 MDPs created from train-
ers’ reward models. In other words, 83.3% of the trained agents would exhibit
the positive circuits problem if acting to maximize return with γ = 1. Half
of the predominately negative trainers created positive circuits. Those without
positive circuits all had positive-to-negative reward ratios below 0.63 and gen-
erally were from higher γ conditions: one from 0.7 and two each from 0.9, 0.99,
and 1.

One strategy that solves the problem of positive cycles is to make all in-
stances of reward negative. We reject this strategy, since it would require a
priori knowledge that all absorbing states are goals and effectively remove the
trainer’s power to decide which absorbing states are desirable. We empirically

25

focus on goal-based tasks in this article (though Section 10 includes a task that
also contains a failure state), but we only consider strategies for learning from
human reward that free the trainer to designate any absorbing state as a goal
or a failure. Another possible strategy is to make the reward from absorbing
state positive instead of zero, such that the agent receives this value for infinite
steps in the future (though only in theory, since the calculation of return for
constant reward values is simple and can be done without actually experiencing
that reward). This strategy is arguably more biologically plausible than giving
a reward of zero, since finishing an activity typically frees a biological agent
to accrue further reward on some other activity. We do not directly investi-
gate the effects of giving positive reward from absorbing state, but the strategy
in the following section—making the task appear continuing—is equivalent to
setting the absorbing-state reward such that its resulting return is equal to the
agent’s discounted expectation of return from the distribution of starting states,
assuming the value function is accurate for the policy it assesses.

Taken together, the two experiments in this section provide evidence that
agents should act myopically (i.e., use small discount factors) when learning
goal-based, episodic tasks from human reward. A refinement of this recommen-
dation is given in the Conclusion.

8. Continuing-task experiment

In the on-discounting experiment described in this section, we investigate
the impact of the discount rate when a task is continuing. For episodic tasks,
we argued in Section 7.1 that a positive reward bias among human trainers
combined with high discount factors can lead to infinite behavioral circuits—
created by what we call “positive circuits”—and consequently minimal task
performance. In Section 7.2, we found that myopic discounting (low γs) in
episodic settings avoids this problem. However, positive circuits may only cause
severe problems in episodic tasks, since an agent reaching an absorbing goal
state is effectively penalized; it is exiting a world rich with positive reward.
We examine another strategy to remove this penalty: formulate the task as
continuing, making the goal a gateway to more opportunity to accrue reward.
Unlike for episodic MDPs, the optimal policy of a continuing MDP is unaffected
by adding a constant value to the reward from all non-absorbing state; thus, the
positivity of human reward may not present the same problem for MDP-optimal
policies in continuing tasks.

8.1. Experiment and analysis of results

This experiment uses the baseline agent, experimental design, and continuing
task in a grid-world (Section 6.2), repeating our experiment from Section 7.2.2
almost exactly, only changing the task to be continuing as described in Sec-
tion 6.2.1. For consistency with the previous experiment, we analyze data from
the first 5 episodes that occur before the 301st time step and also retain the
γ = 1 condition, even though such discounting is generally inappropriate for

26

0%#

20%#

40%#

60%#

80%#

100%#

0# 0.7# 0.9# 0.99# 1#
Discount)factor)

Training)with)different)discount)factors)
(con5nuing)task)version))

Agent#never#
reached#goal#

Agent#reached#
goal#

Agent#reached#
goal#5#:mes#

Figure 10. Success rates for the continuing-task experiment by discount
factor.

Ratios of positive to negative reward

Discount factor

P
os

-N
eg

 R
ew

ar
d

R
at

io

0

0.
7

0.
9

0.
99 1

0.01

0.1

1

10

100

Never reached goal
Reached goal
Reached goal 5 times

Figure 11. For the continuing-task experiment, ratio of cumulative positive
reward to cumulative negative reward given by each trainer (with x-axis
jitter).

continuing tasks. 25 subjects were run per condition, and one subject in the
γ = 0.9 condition was replaced by another subject for not following instructions
(a practice followed only in this experiment). After filtering (Section 6.2.3), for
γs of 0, 0.7, 0.9, 0.99, and 1, there were respectively 20, 21, 20, 23, and 23
subjects. Figures 10 and 11 show results (presented analogously to Figures 8
and 9).

In comparison to our prior episodic-task experiment in the grid world (Sec-
tion 7.2.2), the results in the continuing-task version are markedly different.
As shown in Figure 10, the task success rate at γ = 1 is lower than at other
conditions, which we expect given that this discounting is generally avoided for
continuing tasks to make rewards in the finite future meaningful. The other
discount factors create similar task performance, with γ = 0.99 achieving the
highest mean rate of full success. In Fisher’s exact tests of whether the agent
reached the goal 5 times, there is a marginally significant difference between
γ = 0.99 and γ = 1 conditions (p = 0.0574); no other pairwise comparisons
between conditions are significantly different.4

4Note that episodicity cannot affect a γ = 0 agent, making this condition identical to the
γ = 0 condition of our prior experiment. The difference in success rate at γ = 0 in the two

27

(a) (b)

Figure 12. Illustrations of the two tests of the benefits of non-myopic
learning, testing agent performance after training. (a) Starting from (high-
lighted) states off the optimal path. (b) Blocking the optimal path.

Patterns exhibited by the ratios of cumulative positive reward to cumulative
negative reward among trainers (as shown in Figure 11) also differ from the
episodic experiment. Specifically, there is no significant correlation between the
positive-to-negative reward ratios of fully successful trainers and discount fac-
tor when γ = 1 is excluded (Spearman’s coefficient ρ = −0.0564, p = 0.6628),
though the correlation is significant with γ = 1 included (ρ = −0.3233, p =
0.0050). Further, the relationship between reward positivity and task perfor-
mance is closer to the intuitive expectation that high-performance agents receive
more positively-biased reward: Spearman’s correlations between ratios and suc-
cess categories (no, partial, and full success) are significantly correlated in the
three γ ≤ 0.9 conditions (Spearman’s coefficient ρ > 0.595, p < 0.006 for all
γ ≤ 0.9) and ρ > 0 as well for the two other conditions, though the correlation
is insignificant.

For this task and this approximately MDP-optimal RL algorithm (vi-tamer),
converting the task to continuing does indeed appear to remove the adverse im-
pact of reward positivity at high discount factors, overcoming the positive circuits
problem. However, based only on the roughly equivalent task performance for
all γ < 1 conditions, the choice of which discounting to use is unclear. In
the next subsection, we investigate whether higher-level task information was
communicated by the trainer, making learning more robust to changes to the
environment or more general at certain γ values.

8.2. Benefits of non-myopic learning

At non-myopic discount rates (i.e., γs near 1), reward can communicate
a desired policy, the goals of the task, or a mix of the two, as discussed in
Section 3.2. To illustrate, we note that an example reward function for γ < 1
that provides only goal-related information is to give +1 reward at the goal

grid world experiments is likely because of either randomness—their difference is insignificant
by a Fisher’s exact test of reaching the goal 5 times (p = 0.2890)—or this experiment, run at
a different time, sampled from a lower-performing population.

28

0 0.7 0.9 0.99 1

Goal-finding of successfully trained
 agents from states off optimal path

Discount factor

S
uc

ce
ss

 ra
te

0.0
0.2
0.4
0.6
0.8
1.0

Figure 13. Mean rate of successfully trained agents reaching the goal in
less than 100 time steps from the 10 states off of the optimal path. Standard
error bars are calculated using a single agent’s success rate as one sample.

and 0 otherwise. Alternatively, for a continuing task with γ < 1, a reward
function that gives +1 reward for transitions that follow a desired policy and
-1 otherwise only communicates policy-related information; no higher-level task
information is communicated. Note that this latter reward function describes
a plausible heuristic for human training, one that is supported by participants’
descriptions of their own training strategies. Therefore, we cannot assume that
human feedback contains higher-level task information.

We now investigate whether the trained agents do learn more than a policy,
using the full training data from this experiment (up to 10 episodes or 450 time
steps). Since γ = 1 is generally inappropriate for continuing tasks, we expect
γ = 0.99 to yield the best results. We restrict our analysis to those agents
successfully trained to get to the goal 5 times in less than 300 steps. Thus, we
effectively ask, given that an agent learns a good (and usually optimal) policy
from human reward, what else does the agent learn?

We first test the learned policy from 10 states that are not along the optimal
path from the start state, which are highlighted in Figure 12a. These states may
have never been experienced by the agent during training, in which case R̂H
is built without any samples from the state. Simple policy generalization from
nearby, optimal-path states would help in only some of these 10 states, so the
ability of the agent to get to the goal reflects whether the agent has learned
some information about the task goals. Agents that had learned their policies
at higher γs were more often able to get to the goal in less than 100 time steps
(Figure 13). 18 of 19 successfully trained agents in the γ = 0.99 condition
reached the goal from every tested state. We note though that different dis-
count factors might lead to different levels of experience in these tested states,
providing a confounding factor.

In the second test, an obstacle is placed in the state two cells below the goal
(Figure 12b), blocking the optimal path, and we then determine whether the
agent can still reach the goal in less than 100 time steps. Thus, we test the
effects of changing the task-optimal policy but keeping constant the task goal:
get to the goal state as quickly as possible. For the two state-action pairs that
previously transitioned into the newly blocked state, the agent’s reward function

29

is modified to output 0 to reflect the agent’s lack of knowledge about how the
trainer would reward these transitions. Note that if there was no generalization
while learning R̂H , this modification would be identical to learning R̂H with
next state incorporated as a third input (i.e., Ĥ : S × A × S → R, instead of
Ĥ : S × A → R), still initializing all outputs to 0. In the γ = 0.99 condition,
9 of 19 successfully trained agents reached the goal. One agent from each of
the γ = 0.9 and γ = 1 conditions also reached the goal (of 14 and 12 total,
respectively); no agents with γ < 0.9 did.

These analyses support the conjecture that agents taught with higher dis-
count factors learn about the task goals themselves, making the agents generally
more robust to changes in the environment and more able to act appropriately
in previously unexperienced states. That agents may learn task goals raises the
tantalizing prospect that, under the right circumstances, an agent receiving re-
ward from a human trainer could learn a policy that is far superior to that
envisioned by the trainer. These benefits of non-myopic learning underscore
the importance of creating algorithms for complex, real-world tasks that can
learn non-myopically. As the next two sections confirm, achieving this goal is
non-trivial.

9. Local-bias experiments

In considerably more complex domains than the 30-state grid-world task
used in our continuing-task experiment, agents will likely be unable to perform
value iteration with iterating sweeps over the entire state space; even ignoring
the possibility of continuous states or actions, some tasks simply contain too
many states to quickly and repeatedly perform Bellman updates on all states.
In this section, we describe two experiments in which agents generally do not
act approximately MDP-optimally.

9.1. On-discounting local bias experiment

In anticipation of scaling the high-γ, continuing-task approach found success-
ful in the previous experiment, we implemented a version of value iteration that
learns asynchronously, which we call avi-tamer. Pseudocode for avi-tamer is
given in Algorithm 3 in Appendix B. Instead of updating each state once and
then repeating as in vi-tamer,5 avi-tamer updates state-action pairs through
the Monte Carlo tree search strategy Upper Confidence Trees (UCT). UCT-
based search has been successful in tasks with especially large state spaces (Koc-
sis and Szepesvári, 2006), originally in games like Go (Gelly and Silver, 2008)
but also in more general reinforcement learning tasks (Hester and Stone, 2011).

avi-tamer is mostly identical to vi-tamer: the human reward model R̂H is
learned as before, using tamer; a tabular action-value function is maintained;

5vi-tamer is not synchronous in the strictest sense—where the entire sweep across state
updates with the same value function—but we find this term “asynchronous” useful for dis-
tinguishing these two approaches.

30

and the agent acts greedily with respect to that function. Unlike vi-tamer, avi-
tamer’s “planning” consists of repeatedly considering different possible 40-step
trajectories from its current state. Transitions from these trajectories provide
updates for value iteration.6 Planning trajectories are chosen by UCT (Kocsis
and Szepesvári, 2006), where the search tree is reset at the start of each time
step to respect the corresponding change to the reward function R̂H at that
step, which generally makes past search results inaccurate. The confidence
value for UCT is 1.

For the avi-tamer algorithm, the number of updates to each state’s value
differs considerably among states; in contrast, between sweep iterations in our
value iteration implementation, all states have been updated an equal number of
times. Instead of a balanced distribution of updates, state transitions that can
quickly be reached from the current state receive many more Bellman updates
than transitions from less “local” states. For complex tasks in general, this bias
towards local updating appears desirable, since an effective learning agent will
likely visit regions of the state space that are worth understanding more often
than areas that can be ignored during learning. Additionally, this local updating
bias occurs in a large fraction of common RL algorithms, including Sarsa(λ),
Q-learning, and Monte Carlo tree search algorithms. We chose avi-tamer as
a representative of this class of algorithms because it learns much more quickly
than most other locally-biased algorithms. However, we recognize that there
may be unforeseen benefits from the worse MDP-based performance of these
other algorithms, similar to avi-tamer in the following section’s failure-state
experiment outperforming vi-tamer in the episodic framing of the task. We
note that there are alternative planning-based RL algorithms such as real-time
dynamic programming (RTDP) Barto et al. (1995), which we do not explore
here.

This experiment departs from the on-discounting baseline set of agent, grid-
world task, and experiment specifications only by the inclusion of avi-tamer as
the algorithm for two conditions. Since this investigation is focused on the effect
of locally-biased updates on a high-γ algorithm, all three conditions calculate
return with γ = 0.99. We are primarily interested in two conditions: VI-cont
and aVI-cont, which respectively denote vi-tamer and avi-tamer acting in
a continuing version of the task. Note that this VI-cont condition is identical
to the γ = 0.99 condition of the continuing-task experiment of the previous
section; it is rerun here to account for the differing population that subjects will
be drawn from. As a third condition called aVI-epis, we added avi-tamer in an
episodic version to see what gains are retained by making the task continuing
when updates are locally biased. The results of this experiment are shown
in Figures 14 and 15. All results concern the full duration of training unless
otherwise specified. 26 subjects were run per condition, resulting in the following

6Using experienced transitions for action-value-updating value iteration is only valid for
deterministic policies and transitions, as we have here. Also, note that the update mechanism
is not itself Monte Carlo.

31

0%#
20%#
40%#
60%#
80%#
100%#

VI+cont# aVI+cont# aVI+epis#
Condi&on'

Effects'of'locally'biased'updates'

Agent#never#
reached#goal#

Agent#reached#
goal#

Agent#reached#
goal#5#=mes#

0%#
20%#
40%#
60%#
80%#
100%#

VI+cont# aVI+cont# aVI+epis#
Condi&on'

Effects'of'locally'biased'updates'

Agent#never#
reached#goal#

Agent#reached#
goal#

Agent#reached#
goal#10#<mes#

Figure 14. Success rates by condition for the local-bias experiment.
Through their bias towards updating “local” states, the aVI-TAMER con-
ditions create behavior that is farther from MDP-optimal for the current
reward function than is behavior learned by VI-TAMER. The top plot
shows success with the stopping points used for Figures 10 and 11 of Sec-
tion 7.2.2’s experimental results, the first of 5 episodes or 300 time steps.
The lower plot displays success with this experiment’s stopping points, the
first of 10 episodes or 450 time steps.Ratios of positive to negative reward (γ=0.99)

Condition

P
os

-N
eg

 R
ew

ar
d

R
at

io

VI-cont aVI-cont aVI-epis

0.1

1

10

100 Never reached goal
Reached goal
Reached goal 10 times

Figure 15. For the local-bias experiment, ratio of cumulative positive re-
ward to cumulative negative reward given by each trainer (with x-axis
jitter).

number of samples by condition after filtering: VI-cont, 22; aVI-cont, 19; aVI-
epis, 18.

We observe that the results for the VI-cont condition are similar to that of
the equivalent γ = 0.99 condition in the continuing-task experiment (shown in
Figures 10 and 14). The performance is insignificantly higher in this experi-
ment by a Fisher’s exact test of whether the agent reached the goal 10 times
(p = 0.1085). This experiment further supports the assertion that the vi-tamer
algorithm successfully learns from human-generated reward at high discount fac-

32

tors in the continuing grid-world task.

9.1.1. Effect of local bias in the continuing task

Comparing the two continuing conditions of this experiment—VI-cont and
aVI-cont—we observe that locally biased updates result in worse performance
than vi-tamer’s uniform updates (Figure 14). This difference is highly signif-
icant by a Fisher’s exact test of reaching the goal 10 times (p = 0.0001) and
by a Mann Whitney U test of episodes finished before training was stopped
(p = 0.0016). We also conducted a Mann Whitney U test of how many steps it
took the agent to reach the goal the first time. This result is highly significant
as well (meanV I−cont = 93.45; meanaV I−cont = 272.11; medianV I−cont = 70;
medianaV I−cont = 250; p < 0.0001), indicating that the change to locally biased
updates slows early learning.

vi-tamer effectively performs 4800 Bellman updates to an action-value func-
tion per time step (40 sweeps × 30 states × 4 actions), compared to medians of
589 for the aVI-cont group and 1004 the aVI-epis group. Though avi-tamer’s
updates—dependent on the subject’s computer—were less frequent, we doubt
this difference is a meaningful factor in the results; a four-fold increase in avi-
tamer’s update speed would add less than one level of depth to its exhaustive
search tree (which is extended by greedy rollouts to reach the full trajectory
depth of 40), given that the four actions and deterministic transitions create
a branching factor of four in the search tree. Likewise, a sixteen-fold increase
would give avi-tamer more updates per time step than vi-tamer but add less
than two levels of depth to avi-tamer’s search tree.

Other than the number of updates per step, the only difference between
avi-tamer and vi-tamer in the continuing conditions is which state-action
values are updated. We suspect that the locally-biased character of avi-tamer’s
updates is interacting with the positivity of human reward to lower the avi-
tamer’s algorithm’s performance. Specifically, local bias causes nearby states
to receive more updates, and the positivity of reward—with an action-value
function initialized to 0, as in all experiments of this article—makes states that
are updated more often appear more desirable, consequently strengthening the
local bias even further. In early learning, the avi-tamer agent will not learn the
true values of states along its MDP-optimal path if it does not get near those
states, and policies that bring the agent back to previously experienced—and
thus highly valued—states will be followed. The value-function heat maps in
Figure 16 support this explanation of the performance differences; states that
are far from experienced states often have not been updated even once and
retain their original state values of 0.

Additionally, when the agent does not visit the states near the goal, the
trainer cannot give feedback for those states, preventing the agent from learning
about what reward might be received along those critical states. Accurate
expectations for rewards from such states might alleviate the effect of local bias
by providing positive near-term reward for desirable paths. Therefore an avi-
tamer agent ironically needs to traverse to the goal to learn the accurate reward
predictions that might lead it to traverse to the goal.

33

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

True%state%
values%for%MDP0
op2mal%policy%%
(by%VI0TAMER)%

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

True state values for MDP-optimal policy
(by VI-TAMER)

State values learned through local bias
(by aVI-TAMER)

State%values%
learned%through%

local%bias%%
(by%aVI0TAMER)%

=% R̂
H

=% R̂
H

=% R̂
H

=% R̂
H

Figure 16. Heat maps showing value functions learned by VI-TAMER
and aVI-TAMER, where both maps in a column were created through
the same experience trajectory. Both algorithms learn from a training
log from the VI-TAMER condition, containing a sequence of state-action
pairs and time-stamped human reward signals. Training is stopped during
the first step at which the reward function specifies the task-optimal path
to the goal. 4 logs were chosen from the 22 of the VI-cont condition at
varying time-to-first-goal values. The VI-TAMER algorithm used to create
these heat maps performs 2000 update sweeps per step, increasing from
the 40 per step in the experiment to approximate the MDP-optimal value
function with further accuracy. The aVI-TAMER algorithm experiences
the same trajectory, learning from 1000 planning trajectories per step.
Each heat map shows state values after learning of R̂H is stopped and the
corresponding algorithm performs one further step worth of updates. The
deepest red corresponds to highest value of both value functions in the
column, and white squares represent the lowest values, which is 0 or less
in all four columns. The location of the agent at the trajectory’s stopping
point is shown by an agent-sized square.

One potential solution to this problem of overly local exploration is to opti-
mistically initialize R̂H to drive exploration of the state-action space. But that
approach has its own potential pitfalls. In particular, too much optimism leads
to extensive exploration of the state-action space. Such a great amount of explo-
ration during training would frustrate, exhaust, and confuse the trainer, since
such exploration would include much behavior that goes against the trainer’s
feedback, making the agent appear unresponsive and unable to learn for a con-
siderable period. Thorough exploration would additionally sacrifice the fast
learning that is one of the chief appeals of interactive shaping. Nonetheless,
some form of mild optimism—or simply realism, initializing at some estimate of
average reward—may solve the problems of overly local exploration. We leave
an analysis of such an approach to future work, instead focusing our remaining
experiments on improving the generality of the findings we report in this and
previous sections.

34

9.1.2. Effect of episodicity for locally biased learning

Given that the locally biased updates of avi-tamer worsen performance
compared to the approximately MDP-optimal performance of vi-tamer, we
now ask whether the choice of episodic or continuing formulations still has an
appreciable effect in the context of avi-tamer’s locally biased updates. Com-
paring these two conditions by the same three statistical tests applied above to
compare the VI-cont and aVI-cont conditions, none are significant (all p > 0.49)
and the corresponding means, medians, and proportions for the tests are quite
similar across conditions.

The ratios of positive to negative reward in Figure 15 are negatively and sig-
nificantly correlated with success for aVI-epis (Spearman’s coefficient ρ = −0.50,
p = 0.035) and uncorrelated for aVI-cont (Spearman’s coefficient ρ = 0.19,
p = 0.45), following the pattern observed from the continuing-task experiment
for vi-tamer. We also look at how often an agent relapses into sub-optimal
task performance after an episode that is completed in minimal time. As men-
tioned previously, uniformly raising the value of all rewards by a constant value
does not affect the MDP-optimal policy for a continuing task but often will
for an episodic task (assuming the value is not raised at an absorbing state).
Consequently, we suspect that trainers will generally give more positive reward
after their agent acts optimally (though their reward is not necessarily uniformly
higher), which may cause more problems for the episodic avi-tamer condition.
In the aVI-cont condition, of the 11 agents that finish an episode in minimal
time during the first five episodes, 36.6% subsequently relapse into non-optimal
behavior before reaching the 10-episode or 450-time-step endpoint. In the aVI-
epis condition, 77.7% of the 9 such agents do. This difference is marginally
significant in a Fisher’s exact test (p = 0.0923).

In overall performance, avi-tamer-guided updates do not clearly benefit
from making the task continuing. However, we do observe that success in the
continuing version still appears unrelated to reward positivity. Additionally,
the relapse rate is lower in the continuing task. We suspect that these strengths
of the continuing version are balanced against one advantage of the episodic
version, that there is a simple but counterintuitive method for teaching the
agent to act task-optimal: giving only negative reward. This hypothesis informs
the experiment in Section 10.

9.2. Off-discounting local bias experiment (continuing)

We now describe a second experiment that incorporates local bias such that
the agents are generally not acting approximately MDP-optimally at higher
γ values. This experiment is the continuing-task version of the mountain car
experiment from Section 7.2.1, using the same limited-lookahead Sarsa(λ) algo-
rithm. Here, however, the task is made continuing by replacing any transition
to an absorbing state with a transition to a start state. Like avi-tamer, this
algorithm (and Sarsa(λ) generally) is locally biased in its updates. With pre-
trained R̂Hs, this experiment differs from the local-bias experiment in the grid
world in that

35

Final performance using human reward predictions
as MDP reward (mountain car, all trainers)

Discount factor

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
92

0.
95

0.
98

0.
99 1

-400
-300
-200
-100
0

100
200

Human reward per episode (mean)
Task performance (-1 x time to goal)

Figure 17. Aggregate results for the off-discounting model analysis with
local bias from the limited-lookahead Sarsa(λ) algorithm. Results from the
continuing setting are shown in bold solid lines; thin dotted lines show
results from the episodic setting (and were shown previously in Figure 6).
The plot shows mean task performance and mean sum of R̂H-generated
reward per episode for mountain car, over the final 500 episodes of 4000
episodes of learning.

1. as mentioned in Section 7.2.1, the R̂Hs likely reflect trainer adaptation to
the γ = 0 discount factor under which these human reward models were
trained;

2. the samples that are used to learn the R̂Hs come from multiple full trajec-
tories to the goal (though not always efficient trajectories), unlike in the
grid-world experiment where the agent must be trained on-discounting to
reach the goal before such full trajectories are available for modeling the
reward function; and

3. the agent explores through an action selection policy similar to ε-greedy.

Experimental results for both the continuing and episodic versions of the
task are shown in Figure 17. We observe that performance is higher in the
continuing task than in the episodic task at all γ ≥ 0.3, by a range of 4.7
time steps per episode at γ = 0.3 to 153.3 time steps per episode at γ =
0.99. By Wilcoxon signed-rank tests—non-parametric tests for paired data—at
each γ value, this improvement in performance is significant by p ≤ 0.05 at all
γ ≥ 0.3. Additionally, we observe that the highest mean performance across
all γs in both episodic and continuing tasks is at γ = 0.7, outperforming the
myopic γ = 0 agent by 8.4 time steps per episode; however, this difference—
calculated with the continuing-task γ = 0 performance, which is slightly higher
than the episodic version—is not significant by a Wilcoxon signed-rank test
(p = 0.246). This improvement over full myopia occurs despite the R̂Hs having
been trained at γ = 0 (i.e., the results are on-discounting or γ = 0 but off-
discounting otherwise). In this second local-bias experiment, which differs from
the first in the key ways listed above, we see a performance advantage conferred
by making the task continuing, even with local bias. However, performance in
the continuing task is still considerably lower at non-myopic discounting than
at more myopic values; performance drops monotonically for γ ≥ 0.7, with

36

especially poor performance at γ > 0.9. Thus a non-myopic agent that learns
successfully from human reward with local bias is achieved in neither task.

10. Failure-state experiment

Figure 18. The grid-
world task with a fail-
ure state added.

In this experiment, the task is further manipulated
to have a failure state that is closer to the start state
than the goal state, as shown in Figure 18. In the
episodic version of this task, both the failure and goal
states are absorbing states; in the continuing version,
transitions to either are experienced by the agent as
transitions to the start state. When this modified
task is episodic, giving only negative reward is likely
to create MDP-optimal policies that fail by repeat-
edly looping through the failure state. In designing
this task, we hope to represent the large class of tasks
for which failure can be achieved more quickly than the goal (e.g., driving to
a destination without crashing). In this task, we predicted that the continuing
version would outperform the episodic version by a greater margin. This exper-
iment tests both this prediction and the generality of the results from the other
experiments, which thus far have been exclusively demonstrated in a goal-only
task.

We use the same algorithms and discount rate (γ = 0.99) as in the previous
experiment, adding as a fourth condition the vi-tamer algorithm with the
episodic version of the task, making this a full 2x2 experiment. We refer to
the new condition as VI-epis. Except for an additional instruction to make the
agent avoid the failure state—a “black pit that takes [the agent] back to the
start”—the experiment was conducted identically as the baseline experiment
until the agent reaches the goal a 10th time. If a trainer reaches that point,
instead of stopping the experiment we allow the user to continue training until
all 450 time steps have passed. We made this adjustment to add resolution
among the most successful trainers (e.g., between trainers who would get the
agent to the goal 11 times or 18 times). 20 subjects were run per condition; after
filtering the data (as explained in Section 6.2.3), the number of subjects were
as follows: 15 for VI-cont, 16 for VI-epis, 14 for aVI-cont, and 14 for aVI-epis.

Results from this experiment are described by Figures 19 and 20 and the
table of statistical test results in Figure 21. Generally speaking, we observe the
same performance patterns as in the experiments with the goal-only task, though
these patterns are less pronounced. VI-cont performs best in all comparisons,
significantly so in 5 of 6. For both vi-tamer and avi-tamer algorithms, perfor-
mance is better for the continuing version of the task, except for avi-tamer’s
mean rank of time to goal from the Mann Whitney U test of the time steps
before the agent first reached the goal, where aVI-epis is insignificantly better
than aVI-cont. Interestingly, the new comparison between VI-epis and aVI-epis
reveals that the agent performs better in the algorithm with locally biased up-
dates, aVI-epis. We suspect that this result arises because the sub-optimality

37

0%#

20%#

40%#

60%#

80%#

100%#

VI,#cont# VI,#epis# aVI,#cont# aVI,#epis#
Condi&on'

Effects'of'locally'biased'updates'
with'failure'state'

Agent#never#
reached#goal#

Agent#reached#
goal#

Agent#reached#
goal#10#<mes#

Figure 19. Success rates by condition for the failure-state experiment,
which investigates the effects of locally-biased updates (the avi-tamer con-
ditions) and episodicity when there is both a goal state and a failure state.

Ratios of positive to negative reward
with failure state (γ=0.99)

Condition

P
os

-N
eg

 R
ew

ar
d

R
at

io

VI-cont VI-epis aVI-cont aVI-epis

0.1

1

10

100 Never reached goal
Reached goal
Reached goal 10 times

Figure 20. For the same experiment, the ratio of cumulative positive re-
ward to cumulative negative reward given by each trainer (with x-axis
jitter).

of avi-tamer makes it less likely to find existing positive circuits, which could
prevent the agent with a γ = 0.99 reward-based objective from going to the
goal. In other words, failing to achieve an undesirable objective can be better
than achieving it. This result raises the surprising prospect that the combina-
tion of an agent objective that poorly aligns MDP-optimal and task-optimal
behavior combined with an agent that poorly maximizes that objective might
produce better results than can be achieved by any considerably sub-optimal
agent attempting to maximize a perfectly aligned objective.

We also examine reward positivity (Figure 20). For both vi-tamer and
avi-tamer, reward was more positive in the continuing version of the task,
which fits observations from the two experiments on the goal-only task. In VI-
epis, there is a marginally significant negative correlation between success and
reward positivity by a Spearman’s correlation test (ρ = −0.4266, p = 0.0994);
this correlation is insignificant for the other 3 conditions. Overall, we see that
episodicity has a smaller effect on reward positivity in this failure-state task
than in the goal-only task. We suspect that this observation is connected to a
previously described effect of adding the failure state: that the simple strategy
of always giving negative reward, without regard for the state or action, no

38

VI-episVI-episVI-epis aVI-contaVI-contaVI-cont aVI-episaVI-episaVI-epis

Test Fisher
Success

MWU
Eps.

Finished

MWU
Time to

Goal

Fisher
Success

MWU
Eps.

Finished

MWU
Time to

Goal

Fisher
Success

MWU
Eps.

Finished

MWU
Time to

Goal

VI-cont p<0.0001,
VI-cont

p=0.0022,
VI-cont

p=0.0128,
VI-cont

p=0.2635,
VI-cont

p=0.0574,
VI-cont

p=0.0257,
VI-cont

VI-epis p=0.0365,
aVI-epis

p=0.0615,
aVI-epis

p=0.5222,
aVI-epis

aVI-cont p=0.4401,
aVI-cont

p=0.5823,
aVI-cont

p=0.4593,
aVI-epis

Figure 21. Statistical tests for comparisons of interest. Test shorthand is
as follows: “Fisher Success” is a Fisher’s exact test of whether the agent
reached the goal 10 times or more, “MWU Eps. Finished” is a Mann
Whitney U test of the number of episodes completed before training was
stopped at 450 time steps, and “MWU Time to Goal” is a Mann Whitney
U test of how many steps occurred before the agent reached the goal for the
first time. Each cell contains the p-value for the corresponding test as well
as the name of the condition that performed better on the metric, which
could be highest proportion of success, highest mean ranking of episodes
finished, or lowest mean ranking of time to first goal. (The Mann-Whitney
U test converts samples to rankings.) Cells with p-values below 0.1 are
emboldened.

longer creates MDP-optimal behavior that is also task-optimal.
From analyzing these results, we believe that adding the failure state af-

fected the ease of training in both positive and negative ways. As an alternate
absorbing state to the goal, the failure state generally forces trainers to give
more discriminating reward (e.g., the arbitrarily all-negative strategy for the
episodic version becomes unsuccessful). In comparison to the goal-only task, on
the other hand, the avi-tamer algorithm performed better overall in both the
continuing and episodic versions of the failure-task; this increase might be due
in part to the failure state being used as an intermediate “goal” that the learner
makes updates for, goes to, and then gets experience and reward for those states
near it, which then help the agent go to the real goal. Because of these multi-
ple factors that likely affect performance (as well as randomness and different
subject populations at different experiment times), we hesitate to draw strong
conclusions from comparisons across experiments. However, we can say that
this experiment does not reveal an increased performance difference between
the aVI-epis and aVI-cont conditions, as we had predicted.

Nonetheless, the results from this experiment give additional empirical sup-
port for the generality of the patterns that have been identified previously in
this article, showing that these patterns appear when the task contains both
desirable and undesirable absorbing state. Most important among these pat-
terns are that (1) performance is better for a continuing formulation of the
task—especially when the agent acts approximately MDP-optimally as with the

39

vi-tamer algorithm—and that (2) the choice of the best algorithm for complex
tasks, where MDP-optimal behavior is generally intractable, is a challenging
direction for future work. In such future work, we suspect that learning tab-
ular value functions for large, discrete state spaces will provide a more easily
analyzed platform than would continuous state spaces or learning value func-
tions via function approximation, both of which might eventually be critical for
scaling learning from human feedback.

11. Conclusion

Any solution to the problem of interactive shaping—i.e., learning sequential
tasks from human-generated reward—requires the definition of a reward-based
objective and an agent algorithm. This article examines the relationship be-
tween reward discounting rates, episodicity, reward positivity, acting approxi-
mately MDP-optimally or not, and the ultimate objective, task performance.
These relationships are examined in six experiments across two domains. The
table in Figure 22 summarizes our findings.

We note the following contributions in this article:

1. identifying and ultimately giving sufficient justification for the myopic
trend in past work on learning from human reward;

2. linking human reward positivity to positive circuits and empirically estab-
lishing positive circuits’ prevalence;

3. adding structure to the body of past work on learning from human reward
by framing and comparatively analyzing the impact on task performance
of temporal discounting, whether the task is experienced as episodic or
continuing, and other factors;

4. empirically finding that for approximately MDP-optimal agents, convert-
ing the otherwise episodic grid-world task to a continuing task (a) enables
successful training at non-myopic discount rates, (b) removes negative
correlations between reward positivity and discount factor values, and (c)
removes negative correlations between reward positivity and task perfor-
mance within non-myopic conditions;

5. achieving the first known instance of consistently successful training of a
non-myopic agent by live, human-generated reward signals;

6. demonstrating that successfully trained agents with non-myopic objectives
learn higher-level task information, making them more robust to changes
in their environments and better able to act from states in which they lack
experience;

7. and showing that when the agent’s MDP-based performance is worsened—
as it must be for complex tasks—by the common practice of locally biased
learning, task performance worsens significantly in continuing tasks.

These contributions lead to the following concrete recommendation for de-
termining a learning objective for human-generated reward signals. Given the
possibility that a human trainer will want to teach a goal-based task, an agent

40

Approximately
MDP-optimal

(VI-TAMER)

Locally biased
learning

(UCT-driven aVI-TAMER)

Episodic

Continuing

• Effective with few trainers
• Success negatively

correlated with reward
positivity in both tasks

• Effective with some
trainers

• Success negatively
correlated with reward
positivity in goal-only task

• Effective with almost all
trainers

• Success independent of
reward positivity in both
tasks

• Effective with some
trainers

• Success independent of
reward positivity in both
tasks

Figure 22. Qualitative summary of this article’s experimental conclusions
on non-myopic, on-discounting learning (in the grid-world task). Note
that VI-TAMER is approximately optimal because it does not iterate until
convergence between each update to the human reward model and the
subsequent action selection.

should either learn myopically or experience the task as continuing—even though
the task may more naturally be considered episodic. Note that this recommen-
dation is only conditional on the possibility that a human trainer would want to
teach a goal-based task, a condition we expect to generally be true in rich envi-
ronments that permit numerous desirable tasks. Making this recommendation
more specific, we suggest myopic learning for current applications—where the
unsolved problems of local bias are likely unavoidable—and non-myopic learn-
ing for research aiming to improve the power and generality of algorithms for
learning from human reward.

This article also presents a contribution from a broader perspective. The
work herein—an in-depth case study on adapting a machine learning problem to
include human interaction—clearly indicates that machine learning algorithms
generally cannot be applied with naive hopes that the human will conform to the
assumptions of the algorithms. Rather, the human element must be explicitly
investigated.

This article represents substantial progress in the effort to create effective
algorithms for learning from human-generated reward. We note, however, that
more analysis is required to establish the generality of our observations. Chang-
ing the reward-giving interface, the mapping of reward cues (e.g. keys) to scalar
values, the instructions to trainers, our algorithmic choices, and the task to be
learned—though all carefully chosen to avoid overt bias—might create qualita-
tively different results.

From this research, we believe that the greatest future contributions of learn-
ing from human reward will come from non-myopic objectives and will likely

41

be in continuing tasks. However, we expect that naively designed agents with
biases towards local updates—agents often well-suited for complex tasks—will
ineffectively learn from human reward even in continuing tasks; the problems
of reward positivity extend beyond episodic tasks. Identifying algorithms that
learn non-myopically from human-generated reward in complex domains—where
approximately MDP-optimal behavior will likely be impossible—remains a crit-
ical research question.

Acknowledgments

This work has taken place in the Personal Robots Group at the MIT Media
Lab and in the Learning Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (IIS-0917122), ONR (N00014-09-1-0658),
and the FHWA (DTFH61-07-H-00030). We thank George Konidaris and Rich
Sutton for fruitful discussions on discounting human reward and Tom Walsh for
feedback on our manuscript.

References

Argall, B., Chernova, S., Veloso, M., Browning, B., 2009. A survey of robot
learning from demonstration. Robotics and Autonomous Systems 57 (5), 469–
483.

Arlot, S., Celisse, A., et al., 2010. A survey of cross-validation procedures for
model selection. Statistics surveys 4, 40–79.

Barto, A. G., Bradtke, S. J., Singh, S. P., 1995. Learning to act using real-time
dynamic programming. Artificial Intelligence 72 (1), 81–138.

Boots, B., Gordon, G. J., 2010. Predictive state temporal difference learning.
In: Advances in neural information processing systems. pp. 271–279.

Gelly, S., Silver, D., 2008. Achieving master level play in 9× 9 computer go. In:
Proceedings of AAAI. pp. 1537–1540.

Grollman, D., Jenkins, O., Apr 2007. Dogged learning for robots. In: Interna-
tional Conference on Robotics and Automation (ICRA 2007). Rome, Italy,
pp. 2483–2488.
URL http://www.cs.brown.edu/~cjenkins/papers/dang_ICRA_2007.pdf

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection.
The Journal of Machine Learning Research 3, 1157–1182.

Hester, T., Stone, P., 2011. Learning and using models. In: Wiering, M., van
Otterlo, M. (Eds.), Reinforcement Learning: State of the Art. Springer Verlag,
Berlin, Germany.

42

http://www.cs.brown.edu/~cjenkins/papers/dang_ICRA_2007.pdf

Isbell, C., Kearns, M., Singh, S., Shelton, C., Stone, P., Kormann, D., 2006.
Cobot in LambdaMOO: An Adaptive Social Statistics Agent. Proceedings of
The 5th Annual International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS).

Knox, W., Stone, P., 2010. Combining manual feedback with subsequent MDP
reward signals for reinforcement learning. Proceedings of The 9th Annual
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS).

Knox, W. B., August 2012. Learning from human-generated reward. Ph.D. the-
sis, Department of Computer Science, The University of Texas at Austin.

Knox, W. B., Glass, B. D., Love, B. C., Maddox, W. T., Stone, P., 2012. How
humans teach agents: A new experimental perspective. International Journal
of Social Robotics, Special Issue on Robot Learning from Demonstration 4 (4),
409–421.

Knox, W. B., Stone, P., September 2009. Interactively shaping agents via human
reinforcement: The TAMER framework. In: The 5th International Conference
on Knowledge Capture.

Knox, W. B., Stone, P., June 2012. Reinforcement learning with human and
MDP reward. In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS).

Kocsis, L., Szepesvári, C., 2006. Bandit based monte-carlo planning. Machine
Learning: ECML 2006, 282–293.

León, A., Morales, E., Altamirano, L., Ruiz, J., 2011. Teaching a robot to
perform task through imitation and on-line feedback. Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, 549–556.

Li, G., Hung, H., Whiteson, S., Knox, W. B., May 2013. Using informative
behavior to increase engagement in the TAMER framework.

Mahadevan, S., 2009. Learning Representation and Control in Markov Decision
Processes. Now Publishers Inc.

Ng, A., Harada, D., Russell, S., 1999. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. ICML.

Nicolescu, M., Mataric, M., 2003. Natural methods for robot task learning:
Instructive demonstrations, generalization and practice. In: AAMAS. ACM,
pp. 241–248.

Nikolaidis, S., Shah, J., 2013. Human-robot cross-training: Computational for-
mulation, modeling and evaluation of a human team training strategy. In:
Proceedings of the IEEE/ACM International Conference on Human-Robot
Interaction.

43

Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., Littman, M., 2008. An analy-
sis of linear models, linear value-function approximation, and feature selection
for reinforcement learning. In: Proceedings of the 25th international confer-
ence on Machine learning. ACM, pp. 752–759.

Pilarski, P., Dawson, M., Degris, T., Fahimi, F., Carey, J., Sutton, R., 2011.
Online human training of a myoelectric prosthesis controller via actor-critic
reinforcement learning. In: IEEE International Conference on Rehabilitation
Robotics (ICORR). IEEE, pp. 1–7.

Randløv, J., Alstrøm, P., 1998. Learning to drive a bicycle using reinforcement
learning and shaping. In: Proceedings of the Fifteenth International Confer-
ence on Machine Learning. Citeseer, pp. 463–471.

Sridharan, M., 2011. Augmented reinforcement learning for interaction with
non-expert humans in agent domains. In: Proceedings of IEEE International
Conference on Machine Learning Applications.

Suay, H., Chernova, S., 2011. Effect of human guidance and state space size on
interactive reinforcement learning. In: 20th IEEE International Symposium
on Robot and Human Interactive Communication (Ro-Man). pp. 1–6.

Sutton, R., Barto, A., 1998. Reinforcement Learning: An Introduction. MIT
Press.

Taylor, G., Parr, R., 2009. Kernelized value function approximation for rein-
forcement learning. In: Proceedings of the 26th Annual International Confer-
ence on Machine Learning. ACM, pp. 1017–1024.

Tenorio-Gonzalez, A., Morales, E., Villaseñor-Pineda, L., 2010. Dynamic re-
ward shaping: training a robot by voice. Advances in Artificial Intelligence–
IBERAMIA, 483–492.

Thomaz, A., Breazeal, C., 2008. Teachable robots: Understanding human teach-
ing behavior to build more effective robot learners. Artificial Intelligence
172 (6-7), 716–737.

Vien, N. A., Ertel, W., 2012. Reinforcement learning combined with human
feedback in continuous state and action spaces. In: Development and Learning
and Epigenetic Robotics (ICDL), 2012 IEEE International Conference on.
IEEE, pp. 1–6.

44

Appendix A. Details for the on-discounting, grid-world experiments

These experiments were conducted through a web interface via Amazon.com’s
Mechanical Turk service. Each subject’s task is called a “HIT” by Amazon,
meaning a Human Intelligence Task. Subjects received the following initial
instructions:

Kermitbot needs your help!

Kermit the Robot Frog wants to be more like a real frog, but he
doesn’t understand that frogs need water. On top of that, he’s
always getting lost in the corridors. Poor Robo-kermie. Your job is
to teach him how to go to the local watering hole. The videos below
give the main instructions, but first:

• The final result of your Robo-kermie pupil will be tested later
for how quickly it can get to the water. The trainers of the best
50% of robots will be paid 25% more.

• We strongly suggest closing all other applications currently run-
ning on your computer. Otherwise the game might have prob-
lems that hurt your chance of being in the top half of trainers.

• Don’t refresh your browser! If something is terribly wrong,
describe it in detail at the end and you may receive credit.

• Reasons we would reject your HIT: (1) You either did not watch
the videos fully or did not answer the questions. (2) The records
indicate that you did not honestly try to train the robot. (We
will not reject simply for poor robot performance, though. But
we will be sad.)

• You can only do this HIT once. We will only pay each worker
for one completion.

Start your task here. You’ll go through 6 steps. When you are asked
for your HIT ID, enter unique user ID exactly (all the characters that
are red above). Do not put in your worker ID!!! Once you finish,
you’ll be given a number. Then answer the questions below and
enter the number at the bottom.

The word “here” contains a hyperlink that opens a page with an introductory
video. The script for the video is below, with on-screen text in brackets.

[Teach a Kermitbot to find the water]

For this Turk task, you’ll be training a simulated robot to play a
game. Together you’ll form a team: you (the trainer) and the robot
(the student). Your robot’s performance in the game will be judged
against that of other Turkers.

45

Kermit the Robot Frog is very thirsty. He needs your help to find
the water. So your goal is to teach the robot to find the water as
fast as possible. [As fast as possible!]

[Play the game yourself] Before you teach the robot, we’ll have you
do the task yourself by controlling it. Click on the box below, and
Kermit to the water three times.

After watching the video, the subject controls the agent to get to the goal 3
times. The experiment will not progress if the subject does not complete this
task. To the right of the applet containing the agent and its environment are
the instructions, “To play the game, move Kermitbot to water with the arrow
keys.” Once this stage is complete, the subject clicks on a button to go to
another page. Again, an instructional video is at the top; the script is below.

Good job. Now I’ll describe how you’re going to train the agent.

[Training basics] Here’s the challenge. You’ll be training the robot
through reward and punishment signals. The forward slash button—
which is also the question mark button—gives reward. Every time
you push it, it gives a little bit of reward to the robot. You’ll also
see the screen flash blue when you give reward. The ’z’ button gives
punishment and will make the screen flash red. You can think of
this as similar to training a dog or another animal through reward
and punishment, but it will be somewhat different.

[Pre-practice pointers] I’ll give you a couple of pointers now before
you practice.

Number one. You can reward or punish rapidly to send a stronger
signal than if you just pushed it once. [1. Rapid presses = stronger
feedback] So, if I saw something I really liked, I might push reward,
reward, reward, reward, reward, reward (really fast, eventually inar-
ticulate) ... [well, not quite that much] and that would be a lot
stronger than if I just pressed reward.

Second pointer. The robot knows that people can only respond so
quickly, so don’t worry about your feedback being slightly delayed.
[1. Rapid presses = stronger feedback, 2. Small delays in feedback
are okay.]

When you’re ready to start practicing, click on the box below, and
follow the instructions beside it.

Try your hardest, but don’t be hard on yourself. The first time is
often rough, and this is just practice. Remember that, as the robot
is learning from you, you are also learning, learning how to teach
the robot.

As on the previous page, an applet is below the video. Through the applet, the
subject practices training the agent until the agent reaches the goal twice or 200

46

time steps pass (at 800 milliseconds each). To the right of the applet are the
following instructions:

To train the robot:

• ’/’ rewards recent behavior

• ’z’ punishes recent behavior

• The arrow keys do nothing. Kermitbot is in control now.

To control the game environment:

• ’0’ pauses

• ’2’ unpauses

Once practice is complete, the subject clicks a button to move to another page.
At the top is another video with the following script:

[The real test] The mandatory practice is over, and the real test
begins soon. If your practice training didn’t go well, don’t worry;
it’s just practice.

[Closing instructions] For the real test, you’ll train a little bit longer.
The approximate amount of time is at the bottom of the screen. [3
minutes]

Good luck, and thank you.

Through the applet below the video, the subject trains the agent in the session
that is actually used as experimental data. To the right of the applet is the same
set of instructions as on the previous page (indicating push-keys for training).
The training session lasts for the durations reported in the article, which differ
amongst the experiments. At the end of the training session, the trainer is
given a “finish code” and is told to return to the original page. On this page
is a questionnaire, which we use to screen for non-compliant subjects but have
not analyzed further. At the end of the questionnaire, the trainer inputs the
finish code received after training, completing their portion of the experiment.

Appendix B. Algorithms

Pseudocode for two of the three novel algorithms in this article are given be-
low. A description of limited-lookahead Sarsa(λ) (Algorithm 2) can be found in
Section 6.1, and Section 9.1 describes avi-tamer (Algorithm 3). A description
of and pseudocode for the third algorithm, vi-tamer, is in Section 4.

47

Algorithm 2: Limited-lookahead Sarsa(λ)

R̂H learned from a previous record of training a tamer agent.
Global variables: Q, e, R̂H , maxDepth

Main agent thread

1: Initialize action-value function Q arbitrarily
2: e(s, a) = 0, for all s ∈ S, a ∈ A // initialize eligibility traces
3: repeat (for each episode)
4: s← getState()
5: a← epsilonGreedySearch(s) // choose action
6: repeat (for each step of episode)
7: takeAction(a)
8: wait for next time step
9: s′ ← getState()

10: a′ ← epsilonGreedySearch(s′)
11: δ ← [R̂H(s, a) + γQ(s′, a′)]−Q(s, a) // temporal-difference error
12: e(s, a)← e(s, a) + 1 // increment eligibility trace for current (s, a)
13: for all s ∈ S, a ∈ A do
14: Q(s, a)← Q(s, a) + αδe(s, a)
15: e(s, a)← γλe(s, a) // decay eligibility traces
16: end for
17: s← s′

18: a← a′

19: until s is terminal

function epsilonGreedySearch(s)

1: if random(0, 1) > ε then
2: a← greedySearch(s)
3: else
4: a← random action from uniform distribution over A
5: end if
6: return a

function greedySearch(s)

1: depth← getRandomInteger(0,maxDepth) // choose search depth
2: return argmaxagetLookAheadV al(s, a, depth)

function getLookAheadV al(s, a, depthToGo)

1: if depth = 0 then return Q(s, a)
2: s′ ← sampleTransition(s, a)
3: return γ × [R̂H(s, a) +maxa′getLookAheadV al(s

′, a′, depth− 1)]

48

Algorithm 3: The avi-tamer algorithm

Human interface thread and tamer reward-modeling thread are identical to
that in vi-tamer.
Global variables: Q, R̂H , Ehist, state-action visit counter visits(·, ·)
Global constants: {S,A, T,D, γ} (an MDP without a reward function),
confConst, rolloutDepth

Main agent thread

1: Initialize human reward model R̂Hand action-value function Q
2: Ehist ← {}; visits(s, a)← 0 for all (s, a) ∈ S ×A
3: Start value iteration, human interface, and tamer reward-modeling

threads
4: repeat (for each step)
5: s← getState()
6: a← argmaxaQ(s, a)

7: ĥ← 0
8: Ehist ← Ehist ∪ {(s, a, ĥ)} // add experience sample to memory
9: visits(s, a)← 0 for all (s, a) ∈ S ×A // reset search tree

10: takeAction(a)
11: wait for next time step

Value iteration thread (asynchronous, order by UCT)

1: repeat (for each step of episode, possibly at regular intervals)
2: s← getState()
3: depthToGo← rolloutDepth
4: rollout← getUCTRollout(s, depthToGo)
5: for all (s, a) ∈ rollout do

6: Q(s, a)←
[
R̂H(s, a) + γ

s′∈S∑
[T (s, a, s′)×maxa′Q(s′, a′)]

]
function getUCTRollout(s, depthToGo)

1: if depthToGo == 0 or isTerminalState(s) return {}
2: else if ∃a ∈ A such that visits(s, a) = 0 then
3: a← argmaxa∈A s.t. visits(s,a)=0Q(s, a) // greedily select untaken action
4: else

5: stateV isits←
a∈A∑

visits(s, a)

6: confBound← confConst× [ln(stateV isits/visits(s, a))]2

7: a← argmaxaQ(s, a) + confBound
8: end if
9: visits(s, a)← visits(s, a) + 1

10: s′ ← sampleNextState(s, a)
11: rollout← {(s, a)} ∪ getUCTRollout(s′, depthToGo− 1)
12: return rollout

49

	Introduction
	Background and definitions
	Reinforcement learning
	TAMER framework for learning from human reward

	Temporal discounting of human reward
	A myopic trend in past work on learning tasks from human reward
	Consequences of discounting

	The VI-TAMER Algorithm
	Preview of experiments and results
	Baselines for the task, agent, and experiment for each domain
	Off-discounting experiments, using pre-trained "705ERHs in mountain car
	On-discounting experiments in a grid world
	The grid-world task
	The grid-world agent
	The grid-world experiments

	Episodic-task experiments
	The positive circuits problem of learning from human reward with high s
	Humans tend to give more positive than negative reward
	Consequences of positive reward bias for learning with large discount factors

	Empirical analysis: discounting in episodic tasks
	Off-discounting experiment (episodic)
	On-discounting experiment (episodic)

	Continuing-task experiment
	Experiment and analysis of results
	Benefits of non-myopic learning

	Local-bias experiments
	On-discounting local bias experiment
	Effect of local bias in the continuing task
	Effect of episodicity for locally biased learning

	Off-discounting local bias experiment (continuing)

	Failure-state experiment
	Conclusion
	Details for the on-discounting, grid-world experiments
	Algorithms

