
Collaboration in Ad Hoc Teamwork:
Ambiguous Tasks, Roles, and Communication

Jonathan Grizou
Flowers Team

INRIA - ENSTA ParisTech
France

jonathan.grizou@inria.fr

Samuel Barrett
Kiva Systems

North Reading, MA 01864
USA

basamuel@kivasystems.com
Peter Stone

Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
pstone@cs.utexas.edu

Manuel Lopes
Flowers Team

INRIA - ENSTA ParisTech
France

manuel.lopes@inria.fr

ABSTRACT
Creating autonomous agents capable of cooperating with previ-
ously unfamiliar teammates, known as “ad hoc teamwork”, has
been identified as an important challenge for multiagent systems.
Previous research has assumed that either the task, the role of each
agent, or the communication protocol among agents is known be-
fore the interaction begins. We consider these three variables si-
multaneously and show how an ad hoc agent can fit into a new
team while handling ambiguous tasks, roles, and communication
protocols. We assume a known distribution of possible tasks, roles,
and communication protocols. We present experimental results in
the pursuit domain showing that our ad hoc agent can join such a
team while barely impacting the overall performance compared to
a pre-coordinated agent.

1. INTRODUCTION
There are many situations where an international effort is needed

to address a particular well focused problem, e.g. rescue efforts in a
natural disaster area. In this setting, multiple robots might be avail-
able, but they are unlikely to have the same software and hardware,
and they will not communicate using standard protocols. Neverthe-
less, they should be able to coordinate to achieve a common goal,
even if team coordination strategies cannot be pre-defined.

This challenge of multi-agent interaction without pre-coordination
is also called the pickup team challenge [10] or the ad hoc team
challenge [14]. It states that agents should learn to collaborate
without defining pre-coordination schemes and/or without know-
ing what the other agents are capable of [6, 10, 14].

In this work, we focus on the ad hoc team challenge ([14]). We
imagine a team of specialized agents that work to achieve a specific
task and coordinate using a specific language. We replace one of
these agents with an ad hoc agent that should learn to collaborate
with the team. The ad hoc agent must take its role in the team and
must therefore identify all of the three following components:

• the task the team is trying to solve, so as to help the team
achieve it;

• the role of each agent, so as to replace the missing special-
ized agent;

• the communication protocol used by the team, so as to be
informed of important facts concerning the task.

We present empirical results in the pursuit domain showing that an
ad hoc agent can efficiently replace any member of such a team.
For this purpose, we assume the ad hoc agent has access to a set
of hypotheses about the possible tasks, team configurations, and
communication systems. Given this information it is possible to
infer which hypothesis is the most likely given the observations
of other agents’ movements and communications. We show that
the default team performance is quickly recovered after our ad hoc
agent is included. We further introduce partial observability and
noise on the agent’s actions and communication.

2. RELATED WORK
Previous research focused on different variations of the problem.
How an ad hoc agent can influence its teammates to achieve a

new task ([13]). It is usually assumed that teammates have limited
action capabilities and a fixed and known behavior. Furthermore,
only the ad hoc agent is aware of the goal of the task and has to
influence the behaviors of the others to fulfill it. [15, 13] define the
general problem and provide a solution for the two agents scenario.
Extension to the multi-teammates case is presented by [1]. An in-
teresting application is the study of how an ad hoc agent can learn
to lead a flock of agents ([9]).

How an ad hoc agent can adapt in a pre-formed team, with
the specific aim of optimally helping the team to achieve its goal
([4]). It is usually assumed the task to achieve is known to the ad
hoc agent. In a first approach the model of the other agents was
known [3], but this assumption was progressively removed: first,
by assuming agents were drawn from a set of possible agents [3,
8], and then, by learning online a model of each teammate [4] –
even considering learning abilities from the other agents [7].

How an ad hoc agent can best communicate with its team-
mates ([2]). This recent work assumes the ad hoc agent is omni-
scient – knowing the task, the model of the agents, and the com-
munication protocol. However, the ad hoc agent does not always
knows how its teammates would react to its messages. The problem
was how to optimally communicate with other agents to improve
the team performance in a k-armed bandit problem.

This paper differs from previous work in that the ad hoc agent
is not informed of the task to be achieved and does not initially
understand the communication of the other agents. Our main con-
tribution is the formulation of this complex problem in a way that
can be addressed by an online method based on a Bayesian filter.
This work shares similarities with previous work in that our team

includes specialized agents, as in [8], and we will assume a finite
set of possible teammates and domain configurations, as in [8, 3,
2].

A similar problem, where both the task and the communication
are unknown, has been investigated in human-machine interaction
[12, 11]. They consider only two agents, a teacher and a learner.
Their learning agent can only act on its own towards the success
of the task and can observe non-symbolic communication signals
from the teaching agent, whose meaning is part of a finite set but
initially unknown. This work differs mainly by the multiagent sce-
nario. On the one hand, it makes the problem less tractable, but on
the other hand, it simplifies the problem because the learning agent
has access to more information (i.e. it can observe other agent’s
actions).

3. FLUID COLLABORATION IN AD HOC
TEAMWORK

3.1 Problem Definition
We consider a team B of nB agents B = {b1, . . . , bnB} that is

functional and well suited to solve the task from a domain d ∈ D.
A domain is made of four components:

• An environment E made of nS states, which we denote
{s1, . . . , snS}, and where agents can perform nU actions,
which we denote {u1, . . . , unU }. The environment dynam-
ics are known and described by a probability distribution that
for any given state s and action u gives the probability of a
next state s′, p(s′|s, u, E).

• A task τ that the agents should achieve, represented by a
reward function R.

• A configuration κ that defines the role given to each agent,
i.e. their specialties.

• A protocol ρ that defines the way agents communicate to
each others, i.e. their language. We denote mb as the mes-
sage of an agent b.

A domain is defined by d={E, τ, κ, ρ} that is a subset of all
possible domains D. We denote S as the set of all agent states,
S={sb1 , . . . , sbnB

} and S′ the set of all agent next states. We de-
note M as the set of all agents’ messages, M={mb1 , . . . ,mbnB

}.
We want to evaluate how an ad hoc agent a can adapt in such a do-
main. To evaluate its performance, we remove one agent randomly
from a fully formed team, creating the set B−, and replace it by
the ad hoc agent. The resulting team is denoted as B−a . The team
performance is evaluated on the task τ using the reward function
R. We denote score(B, d) as the score resulting from the team B
executing the problem d, i.e. the accumulated reward. In this work,
we want to create an ad hoc agent that minimizes the score loss be-
tween the original team score(B, d) and the team with the ad hoc
agent score(B−a , d). The problem is that the ad hoc agent needs
to fit into a team yet unknown to it. It must therefore identify all
the components of the domain (E, τ, κ, ρ). The main challenge is
that the ad hoc agent does not have direct access to its performance.
Indeed, it cannot compute score(B−a , d) because d is unknown to
it.

3.2 Algorithm
To tackle this problem, we assume the agent has access to a

bigger set D = {d1, . . . , dnH}, containing nH possible domains,

from which is pulled the particular domain d considered. We fur-
ther consider that, for any given dh, the ad hoc agent can predict,
in a probabilistic way, the expected behavior and communication
of the agents. Hence, our approach relies on computing the poste-
rior probability of each hypothetical domain given the information
available to the ad hoc agent, here the observation from states and
messages of the other agents. The correct hypothesis will be the
one that maximizes this probability:

argmax
h

p(dh|S′, S,M) (1)

where S and S′ are the observed states and next states, andM is the
messages sent by each agent. At each step a new tuple (S′, S,M) is
observed and the probabilities are updated. Following Bayes’ rule,
we have to compute two different components: first the probability
of the observed next states given the initial states, the messages,
and a domain hypothesis p(S′|S,M, dh), and then the probability
of the messages themselves given the oberved states and a domain
hypothesis p(M |S, dh). In the following subsections, we detail
these components as well as how the ad hoc agent plans its actions.

3.2.1 Using state observations
Observing the behavior of all other agents is a valuable source of

information. Given a hypothesis domain dh, we can compute the
probability of the next agent state S′ given the current agent state
S. For each hypothesis, we create a Bayes’ filter that accumulates
the probability of each domain conditionally on the observation of
the agent movements. To do so, we must estimate the probability
that each agent selected each available action. We then estimate the
probability of the observed state given all possible combinations of
agents’ actions and the environment dynamics:

p(dh|S′, S) ∝ p(S′|S, dh)p(dh) (2)

with

p(S′|S, dh) =
∏
i

∑
j

p(s′bi |sbi , uj , Eh)p(uj |sbi , S, dh) (3)

where Eh is the environment in dh which includes the state tran-
sition model. And p(uj |sbi , S, dh) is the model of agent bi action
selection, which is based on all the components of dh and the cur-
rent state of the domain S. Given the agents’ roles, their actions are
independent.

The equation above considers the case of full observability of the
states. As this might not always be true (e.g. partial observability
from the ad hoc agent in section 4.5), the update rule should also
account for partial observability, represented by a discrete proba-
bily distribution on S and S′. The update becomes:

p(dh) =
∑
S′

∑
S

p(dh|S′, S)p(S′)p(S) (4)

which can be expanded as Equation 2 is in Equation 3.

3.2.2 Using communication
Communication can greatly benefit coordination in a team. In

our setting, the messages exchanged can provide two valuable types
of information. First, in case of partial state observation, they help
narrow the probability of the states:

p(S|M,Sobs, dh) (5)

with Sobs being the state observed by the agent. This is helpful
to narrow down the update in equation 4. Second, given a specific
domain hypothesis dh, they can be used to test the coherence of
the messages agents sent based on the associated communication

protocol ρh. For example, if messages from all agents do not in-
dicate concordant information, and if they cannot be explained by
communication noise, then the communication protocol associated
to the domain hypothesis dh is not the one used by the team. This
results in an additional domain probability update rule:

p(dh|M,S) ∝ p(M |S, dh)p(dh) (6)

The set of equations defined above are generic update rules for an
ad hoc agent to infer which domain it is facing. Details about their
particular implementation for the pursuit domain are provided in
the following sections.

3.2.3 Planning
We now consider the action selection method for the ad hoc

agent. Previous work considered ad hoc agents that solve the op-
timal teammate problem. Such agents know the model of their
teammates and select their next action in order to improve maxi-
mally the team performance – often resulting in better performance
than the initial team [3]. The aim of this study is different; we
want to demonstrate the fact that the ad hoc agent can work under
fewer assumptions than before and be able to estimate more infor-
mation about the new team. Hence, we isolate our algorithm from
the planning aspects and test whether it can select between can-
didate domains. Therefore, in this work, the ad hoc agent simply
tries to replace a missing agent in the team. To this end, the ad hoc
agent will weight the policies for each domain hypotheses dh by
the probability currently assigned to this configuration p(dh).

p(ua|M,S) =
∑
h

p(ua|M,S, dh)p(dh) (7)

With this planning strategy, once the correct hypothesis is identi-
fied, the ad hoc agent will mimic the default behavior of the agent
it replaces. But the agent is likely to make sensible decisions earlier
as irrelevant hypotheses are discarded.

4. PURSUIT DOMAIN
We test our approach in a variant of the pursuit domain [5]. The

pursuit domain is often used in the multi-agent literature [16] in-
cluding in ad hoc team scenarios [3] and involves a set of predators
aiming at capturing a prey. We consider a 2D discrete toroidal 7x7
grid world (an agent leaving from one side of the grid will “reap-
pear” on the opposite side), 4 predators, and 1 prey. Agents can
perform 5 actions: North, South, East, West, and a “no move” ac-
tion. The task is to lock the prey on a particular grid cell, called
the capture state. To capture the prey, the predators must encircle
it (i.e. one predator on each grid cell nearby the prey). This prob-
lem is well-suited for the ad hoc challenge because the task cannot
be performed by a subset of the predators alone – all team mem-
bers play a key role in accomplishing the task. Figure 1a and 1c
illustrate a random team state and a capture position. For the teams
used in this work, each predator is allocated a specific role in the
team, i.e. taking one side of the prey (North, South, East, or West).
In an advanced scenario, the predators have only partial observ-
ability, which dramatically decreases team efficiency. To overcome
this problem, the predators are given the ability to communicate –
using a specific protocol – about the prey position. Finally, noise is
added to actions and communications.

In the remainder of this section, we describe how agents plan
their actions, as well as the strategy of the predators to surround the
prey at the capture state. We first assume predators have full ob-
servability of the domain and later remove this ability and describe
the communication systems.

4.1 Notation
Each position on the grid is called a state s, which for conve-

nience is also described as the (x, y) coordinate. For each domain
hypothesis d ∈ D, the environment E is the same, including its
dynamic and noise level. A task τ is fully defined by the position
of the capture state, denoted sC , that could be any grid cell. The
reward function is one when the prey is locked on that state and is
zero otherwise. A team configuration κ describes the role of each
agent. For example, κ = [N,E, S,W] indicates that the first agent
is in charge of the North side of the prey, the second one of the East
side, etc. The communication protocol ρ includes a mapping and a
reference (more details are provided in Section 4.5).

4.2 Action selection method
To select their actions, all our agents use a two step process.

They first assign rewards to states they would like to reach. Then,
knowing the full dynamics of the environment, they follow the op-
timal policy computed using dynamic programming methods [17],
here value iteration using a discount factor of 0.95. An agent con-
siders all other agents as static obstacles.

When noise is applied, the result of an action can lead to any of
the orthogonal directions with equal probability (i.e. if the noise
level is 0.2 and considering no obstacle, taking North action results
in the North state with p = 0.8, the East state with p = 0.1, and the
West state with p = 0.1). The noise does not affect the “no move”
action. If an agent moves towards an obstacle, including another
agent or the prey, the action fails and the agent stays in its current
state.

4.3 Escaping prey
The prey tries to escape from its predators by randomly select-

ing an open neighboring cell to move to. When there is no predator
neighboring it, the prey moves randomly. When the prey is sur-
rounded by predators it does not move.

4.4 Specialized predators
The strategy of the team is to guide the prey towards the capture

state. Intuitively, two or three predators constrain the prey to move
in a specific direction while the remaining predators limit the extent
to which the prey can move. For this, some predators will aim
for states neighboring the prey, and others will leave one empty
cell between them and the prey – allowing the prey to move in the
desired direction. Each predator is specialized to handle one side of
the prey (N/S/E/W). For example, the agent in charge of the North
side of the prey will target the state directly North of the prey if the
prey can reach the capture state faster by going South than by going
North. Conversely, if the prey can reach the capture state faster by
going North, the North agent will target the state two cells North of
the prey – leaving space for the prey to move towards the capture
state by the shortest path. Figure 1c and 1d show the targeted team
state when chasing the prey in two different conditions.

If the prey position is known exactly, each predator will aim at
only one state, i.e. only one state will have non zero reward value
for the planning. This corresponds to the situation in Figure 1d.
The same reasoning can be extended for a probabilistic knowledge
of the prey state: for each prey state is associated a target state (as
described above), to which we assign as reward the probability of
the prey being in the state considered. This is of particular impor-
tance for the case of partial observability presented next.

4.5 Partial observability and communication
We introduce partial state observability to this domain. We con-

sider predators that can only see the prey if it is one or two steps

(a) A random position. (b) A capture position. (c) The predators chasing
the prey to the North-East.

(d) States to target for each
predator, chasing East.

(e) States observable by a
predator in position (3,3).

Figure 1: Illustration of the pursuit domain, the team strategy, and the partial observability. The green circle is the prey and the red ones are
predators. The cell with a blue circle marked with CS is the capture state.

away from them as illustrated in Figure 1e. The predators can
still see each other. As illustrated in Figure 2, partial observability
dramatically impacts the team performance. Indeed, if a predator
does not see the prey it can only estimate the prey probability to
be uniform over the non-observable states. To combat this issue,
predators are given the ability to communicate about the prey po-
sition. We describe the communication strategy in the following
paragraphs.

Message encoding
If one agent sees the prey, it can broadcast the position of the prey –
informing all other predators. Therefore, as soon as one agent is in
close range with the prey, all other agents are informed, becoming
the full observability case described previously.

Each team comes with its own communication protocol ρ. In
some teams, the predators will communicate about the absolute po-
sition of the prey in the world, i.e. (xprey, yprey). In other teams,
predators will provide the position of the prey relative to their posi-
tions, i.e. ((xprey − xagent)mod w, (yprey − yagent)mod h).
Furthermore, each team has its own “words” to designate each of
the nS locations on the grid. In practice, the language is a map-
ping between a list of symbols and the list of states. In addition,
the communication can be noisy such that agents might not always
report the correct prey state. There is a uniform probability to refer
to a neighboring cell. All predators in a team use the same commu-
nication protocol.

Message decoding
Given a set of messages, the prey position is estimated as follows.
If the predator can see the prey, it ignores all messages. If it cannot
see the prey and there are no messages available, it assigns uni-
form prey probability to all unobservable states. If it cannot see the
prey and some messages are available, it computes, for each mes-
sage, the probability of prey position given its knowledge about the
noise in the communication, the reference (relative/absolute), and
the communication mapping. It then merges this information with
the observability area for each agent – an agent communicates only
if it sees the prey. Finally, if several agents communicate, the prob-
abilities of prey state decoded from each messages are combined.

For a full team, the probability map of the prey state will never
be uniform, i.e. merging the information from messages of dif-
ferent agents will always be coherent. As we will see in the next
section, this might not be the case when the ad hoc agent tries to
understand what is going on by interpreting messages according to
different hypotheses on the communication protocol. Observing a
discrepency between messages will thus be valuable to inferring
the team communication system.

5. AD HOC AGENT IN THE PURSUIT DO-
MAIN

The team described in the previous section is a well-formed and
complete one. Capturing the prey requires all agents to play their
role in the team. We now remove one predator randomly from this
team and replace it by our ad hoc agent using the algorithm pre-
sented in Section 3. For example, this scenario would occur when
our ad hoc agent is used to replace a broken robot. As described,
the ad hoc agent does not know in advance its teammates, but it
has access to a set of possible domains D, which includes a set of
tasks, team configurations, and communication protocols. In addi-
tion, the ad hoc agent has access to the full dynamic model of the
environment.

As detailed in Section 3, to infer the correct configuration the
ad hoc agent can rely on two sources of information. First, it can
partially observe the movements of all the predators. Second, in
the partial observability case, it can observe the communication
broadcasted by all agents. We now describe how our algorithm
has been implemented for the pursuit scenario considered.

5.1 Estimating the Correct Domain
First, the agent can use the observation of other agents’ state as

described in Equation 2. In our pursuit domain, the ad hoc agent
knows the state of all the predators, but, in the partial observability
case, it has uncertainty about the prey position.

p(dh) =
∑
s′prey

∑
sprey

p(dh|S′, S)p(s′prey)p(sprey) (8)

with p(dh|S′, S) as expanded in Equation 3. In the case of full
observability, the sum over all possible prey states disappears. In
the case of partial observability, messages allow to reduce the un-
certainty about the prey state. It is very helpful to narrow the com-
putation of Equation 8. We explicitly write the state of the prey as
sprey in the following equations. sobsprey represents the information
the ad hoc agent has about the prey before integrating information
from the messages. Equation 5 unfolds as:

p(sprey|M, sobsprey, S, dh)

=
∏
i

p(sprey|mbi , sbi , s
obs
prey, ρh) (9)

with ρh from dh and because agents’ messages are independent.
The estimation of the coherence of agents’ messages p(M |S, dh)

from Equation 6 is computationally costly because the prey posi-
tion is not fully observable to the ad hoc agent. It can only rely on
a probability map of the prey state, therefore requiring to update
on all states weigthed by their respective probability. To speed up
the process, we approximates Equation 6 by summing the values

of the prey state probability map inferred from the decoding of the
messages in Equation 9.

p(M |S, dh) ≈
∑
s

p(sprey = s|M, sobsprey, S, dh) (10)

For example, if the map is full of zeros, the information decoded
from predators’ messages is not coherent and therefore the hypoth-
esis can be discarded, i.e. p(M |S, dh) = 0. The more the maps
decoded from each agent overlap, the higher the probability.

5.2 Ad hoc communication
The ad hoc agent does not send messages. It would require fur-

ther developments that are not central to the point made in this
work. Indeed, deciding of a communication protocol in the begin-
ning of the experiment – when all hypotheses are viable – is sensi-
tive because a wrong message broadcasted by the ad hoc agent will
impact the behavior of the full team. Especially given that agents
are not capable of handling incoherent messages. As we will see
in next section, not considering ad hoc messages has only a minor
impact on the final performance.

6. RESULTS
We now present several experiments to evaluate how an ad hoc

agent can join a team for which it does not know the specific task,
its role, and the communication signals being used. We will com-
pare several teams: a pre-formed team (T), a team including the
ad hoc agent (A), and a few baselines described next. We consider
several different conditions that affect the team efficiency and the
difficulty for the ad hoc agent to join the team: full observability
(FO) and partial observability without (PO) and with (POC) com-
munication. We present results with 20 percent noise in the action
and communication as described in Section 4.

For each experiment run we randomly create a domain set D,
comprised of a set of 10 task hypotheses, 10 team configurations,
and 10 communication protocols; resulting in 1000 domains. Among
this set, one configuration was selected for the team but was un-
known to the ad hoc agent. All the figures presented next display
the mean and standard error of the variable considered. Standard er-
rors are shown as a shaded area, but, given the high number of sam-
ples (1000 runs using the same random seed for all conditions), it
is barely visible. Statistical results presented are two-sample t-test
to determine if the average final scores of teams are equal.

The code to reproduce these results is available online at https:
//github.com/jgrizou/adhoc_com.

A team of agents is evaluated by its total reward accumulated
in 200 steps, i.e. the number of times the prey was captured. After
each capture of the prey, the predators and the prey position are ran-
domly reassigned. The capture state, the team configuration, and
the communication protocol do not change during the 200 steps.

Default Team Performance.
We start by showing how the different conditions affect the be-

havior of the pre-coordinated team (Figure 2). Partial observability
(T-PO) dramatically impacts the performance of the team, but it
is recovered by the use of communication (T-POC). Yet, T-POC
does not catch up with T-FO (the null hypothesis is rejected with
p = 0.014) because in some configurations none of the agents can
see the prey.

Ad Hoc with Full Observability.
We now remove one of the agents from the standard team and re-

place it with our ad hoc agent (Figure 3). In the case of full observ-
ability the inclusion of the ad hoc agent has no impact, on average,

Figure 2: Comparison of teams with full observability (T-FO), par-
tial observability without (T-PO) and with (T-POC) communica-
tion. The use of communication in the partial observability case
allows recovering similar performances to full observability.

on the team performance (T-FO vs A-FO – the null hypothesis can-
not be rejected with p = 0.276). It means that the ad hoc agent can
correctly identify the correct team configuration without impacting
the behavior of the full team. As a point of comparison, we added
the performance of a team with one of the agents acting randomly
(R-FO). Such a team almost never captures the prey.

Figure 3: Comparison of default team (T-FO), ad hoc team (A-
FO), or a team including a predator with random policy (R-FO).
All predators have full observability. The inclusion of our ad hoc
agent does not impact the performance.

Ad Hoc with Partial Observability.
A more interesting case is when agents act under partial observ-

ability. Here the communication has a fundamental role and it will
be harder for the ad hoc agent to estimate it besides its required role
and the team task. We can see in Figure 4 that the ad hoc agent is
able to successfully estimate task, role, and communication. In the
long term, even in presence of partial observability, the inclusion of
the ad hoc agent has a small impact, on average, on the team per-
formance (the null hypothesis is rejected with p < 0.001). The gap
performance with a pre-formed team could not be reduced further
because the ad hoc agent is not able to use communication itself
to inform the others. For comparison, we simulated a pre-formed

team with one mute agent (T-POC-OM) that understand messages
but cannot send messages and a pre-formed team with one non
communication aware agent (T-POC-ONC). Our ad hoc agent per-
forms better than T-POC-ONC (p < 0.001) and similarly to T-POC-
OM (the null hypothesis cannot be rejected with p = 0.139) despite
having 1000 trials, showing that these methods perform similarly.

Figure 4: Comparison of default team (T-POC), ad hoc team
(A-POC), or a team with one muted (T-POC-OM) or one non-
communicanting (T-POC-ONC) predator. All predators have par-
tial observability. The ad hoc agent does not communicate. The
inclusion of our ad hoc agent does not impact the performances
compared to T-POC-OM.

Computational Time.
Given the exact inference method we presented, the computa-

tional cost is high during the first steps because all hypotheses are
still active (Figure 5). Once an hypothesis is discarded (i.e. reaches
a probability of zero), we stop updating its value, reducing the com-
putational cost. The difference between A-POC and A-FO is due
to an increase in the number of hypotheses considered. Indeed,
A-POC evaluates 1000 hypotheses but A-FO evaluates only 100
hypotheses because there is no communication between agents in
the full observability case.

Figure 5: After 20 steps, most hypotheses are discarded and the
updates become faster. A-FO (respectively A-POC) disambiguates
between 100 (respectively 1000) hypotheses.

7. CONCLUSIONS
The results presented in this paper show that an ad hoc agent can

integrate into a team without knowing in advance the task, its role,
and the communication protocol of the team. To our knowledge it is
the first time that these three aspects are considered simultaneously
in an ad hoc setting. Notably, we believe that this is the first paper
to address ambiguous communication protocols in ad hoc teams.
We used exact inference to infer in only a few iterations the correct
team configuration. As a result, the performance of the team was
barely impacted.

But considering that many hypotheses is costly, and the approach
presented in this paper is computationally expensive (see Figure 5).
An important challenge for the future is to find ways to approximate
this process while minimizing the impact on the performance of
the team. A potential avenue is to consider a sampling strategy,
evaluating only a subset of all possible domains each step.

Finally, our results show that the default team we built is not opti-
mal. Indeed an ad hoc agent, which is not always taking the action
the agent it replaces would have chosen, can on average achieve
similar performances. If the pre-coordinated team was optimal, we
would expect the performance of the ad hoc team to be “delayed”
– having the same slope but loosing some important steps in the
beginning. Therefore, it is likely that a more advanced planning
method for the ad hoc agent (see [3]) could improve the perfor-
mance of the default team.

Open Science
The code developed for this work is available online at https:
//github.com/jgrizou/adhoc_com.

Acknowledgments
Work partially supported by INRIA, Conseil Régional d’Aquitaine,
the ERC grant EXPLORERS 24007, and a INRIA Explorer fel-
lowship. A portion of this work has taken place in the Learn-
ing Agents Research Group (LARG) at the Artificial Intelligence
Laboratory, The University of Texas at Austin. LARG research
is supported in part by grants from the National Science Foun-
dation (CNS-1330072, CNS-1305287), ONR (21C184-01), AFRL
(FA8750-14-1-0070), and AFOSR (FA9550-14-1-0087).

REFERENCES
[1] N. Agmon and P. Stone. Leading ad hoc agents in joint

action settings with multiple teammates. In Proc. of 11th Int.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), June 2012.

[2] S. Barrett, N. Agmon, N. Hazon, S. Kraus, and P. Stone.
Communicating with unknown teammates. In Proceedings of
the Twenty-First European Conference on Artificial
Intelligence, August 2014.

[3] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of ad
hoc teamwork in the pursuit domain. In The 10th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 567–574, 2011.

[4] S. Barrett, P. Stone, S. Kraus, and A. Rosenfeld. Teamwork
with limited knowledge of teammates. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 2013.

[5] M. Benda, V. Jagannathan, and R. Dodhiawala. On optimal
cooperation of knowledge sources - an empirical
investigation. Technical Report BCS–G2010–28, Boeing

Advanced Technology Center, Boeing Computing Services,
Seattle, WA, USA, July 1986.

[6] M. Bowling and P. McCracken. Coordination and adaptation
in impromptu teams. In AAAI, volume 5, pages 53–58, 2005.

[7] D. Chakraborty and P. Stone. Cooperating with a Markovian
ad hoc teammate. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), May 2013.

[8] K. Genter, N. Agmon, and P. Stone. Role-based ad hoc
teamwork. In Proceedings of the Plan, Activity, and Intent
Recognition Workshop at the Twenty-Fifth Conference on
Artificial Intelligence (PAIR-11), August 2011.

[9] K. Genter, N. Agmon, and P. Stone. Ad hoc teamwork for
leading a flock. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2013), May 2013.

[10] E. Gil Jones, B. Browning, M. B. Dias, B. Argall, M. Veloso,
and A. Stentz. Dynamically formed heterogeneous robot
teams performing tightly-coordinated tasks. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pages 570–575. IEEE, 2006.

[11] J. Grizou, I. Iturrate, L. Montesano, P.-Y. Oudeyer, and
M. Lopes. Interactive learning from unlabeled instructions.
In Proceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, 2014.

[12] J. Grizou, M. Lopes, and P.-Y. Oudeyer. Robot Learning
Simultaneously a Task and How to Interpret Human
Instructions. In Joint IEEE International Conference on
Development and Learning and on Epigenetic Robotics
(ICDL-EpiRob), Osaka, Japan, 2013.

[13] P. Stone, G. A. Kaminka, S. Kraus, J. R. Rosenschein, and
N. Agmon. Teaching and leading an ad hoc teammate:
Collaboration without pre-coordination. Artificial
Intelligence, 203:35–65, October 2013.

[14] P. Stone, G. A. Kaminka, S. Kraus, J. S. Rosenschein, et al.
Ad hoc autonomous agent teams: Collaboration without
pre-coordination. In AAAI, 2010.

[15] P. Stone and S. Kraus. To teach or not to teach?: decision
making under uncertainty in ad hoc teams. In Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, pages 117–124.
International Foundation for Autonomous Agents and
Multiagent Systems, 2010.

[16] P. Stone and M. Veloso. Multiagent systems: A survey from
a machine learning perspective. Autonomous Robots,
8(3):345–383, 2000.

[17] R. Sutton and A. Barto. Reinforcement learning: An
introduction, volume 28. Cambridge Univ Press, 1998.

