
Learning a Robust Multiagent Driving Policy for Traffic
Congestion Reduction

Yulin Zhang
The University of Texas at Austin

United States
yulin@cs.utexas.edu

William Macke
The University of Texas at Austin

United States
wmacke@cs.utexas.edu

Jiaxun Cui
The University of Texas at Austin

United States
cuijiaxun@utexas.edu

Daniel Urieli
General Motors R&D Labs

Israel
daniel.urieli@gm.com

Peter Stone
The University of Texas at Austin and

Sony AI
United States

pstone@cs.utexas.edu

ABSTRACT
In most modern cities, traffic congestion is one of the most salient
societal challenges. Past research has shown that inserting a limited
number of autonomous vehicles (AVs) within the traffic flow, with
driving policies learned specifically for the purpose of reducing
congestion, can significantly improve traffic conditions. However,
to date these AV policies have generally been evaluated under the
same limited conditions under which they were trained. On the other
hand, to be considered for practical deployment, they must be robust
to a wide variety of traffic conditions. This paper establishes for the
first time that a multiagent driving policy can be trained in such a
way that it generalizes to different traffic flows, AV penetration, and
road geometries, including on multi-lane roads.

1 INTRODUCTION
According to Texas A&M’s 2021 Urban Mobility Report, traffic
congestion in 2020 in the U.S. was responsible for excess fuel con-
sumption of about 1.7 billion gallons, an annual delay of 4.3 billion
hours, and a total cost of $100B [9]. A common form of traffic
congestion on highways is stop-and-go waves, which have been
shown in field experiments to emerge when vehicle density exceeds
a critical value [15]. Past research has shown that in human-driven
traffic, a small fraction of automated or autonomous vehicles (AVs)
executing a controlled multiagent driving policy can mitigate stop-
and-go waves in simulated and real-world scenarios, roughly double
the traffic speed, and increase throughput by about 16% [14]. Fre-
quently, the highest-performing policies are those learned by deep
reinforcement learning (DRL) algorithms, rather than hand-coded or
model-based driving policies.

Any congestion reduction policy executed in the real world will
need to perform robustly under a wide variety of traffic conditions
such as traffic flow, AV penetration (percentage of AVs in traffic, re-
ferred to here as "AVP"), AV placement in traffic, and road geometry.
However, existing driving policies have generally been tested in the
same conditions they were trained on, and have not been thoroughly
tested for robustness to different traffic conditions. Indeed, their
performance can degrade considerably when evaluated outside of
the training conditions (Figure 1). Therefore, it remains unclear how
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Figure 1: Increasing incoming vehicle flow (the demanded in-
flow) degrades performance of a policy trained with inflow of
1650 veh/hour, with respect to both throughput (a) and speed
(b). A visual representation (c) is given that shows what this
decreased efficiency looks like.

to create a robust DRL congestion-reduction driving policy that is
practical for real-world deployment.

In this paper, we establish for the first time the existence of a
robust DRL congestion-reduction driving policy that performs well
across a wide variety of traffic flows, AVP, AV placement in traffic,
and several road geometries. Moreover, we investigate the question
of how to come up with such a policy and what degree of robustness
it can achieve. We create a benchmark with a diverse, pre-defined
collection of test traffic conditions of real-world interest including
the single-lane merge scenario shown in Figure 1c. Such merge sce-
narios are a common source of stop-and-go waves on highways [10].
While there are different approaches to training robust DRL policies
in other domains with different levels of success, our approach is
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to systematically search for a robust policy by varying the training
conditions, evaluating the learned policy on our proposed test set in
a single-lane merge scenario, and selecting the highest performing
one. The highest performing policy outperforms the human-only
baseline with as few as 1 % AVs across different traffic conditions in
the single-lane merge scenario. We further investigate the policy’s
generalization to more complex roads it has not seen during training,
specifically with two merging ramps at a variety of distances, or on
a double-lane main road, with cars able to change lanes. Notwith-
standing negative prior results showing that a policy developed in
a single-lane ring road fails to mitigate the congestion on a double-
lane ring road [3], the learned policy outperforms human-only traffic
and effectively mitigates congestion in all of these scenarios defined
by our benchmark. Taken together, this paper’s contributions and
insights take us a step closer towards making the exciting concept of
traffic congestion reduction through AV control a practical reality.

2 RELATED WORK
Traffic optimization has long been a challenging research area with
direct real-world impact [4]. An important research question is how
to mitigate highway stop-and-go waves, which have been demon-
strated to emerge when vehicle density exceeds a critical value, and
to result in reduced throughput and increased driving time [15]. In
small-scale field experiments, vehicles controlled autonomously by
hand-designed driving policies successfully dissipated stop-and-go
waves, thus reducing congestion [14]. The industry-wide develop-
ment of autonomous vehicles (AVs) has inspired researchers to tackle
this problem at a larger scale.

Recent progress in Reinforcement Learning (RL) [16] has made
it possible to learn congestion reduction AV driving policies that
perform well in simulation. Using state-of-the-art algorithms, sig-
nificant congestion reduction was achieved both in circular roads
with a fixed set of vehicles (referred to as closed road networks),
and acyclic roads with vehicles entering and leaving the system
(referred to as open road networks) [8, 19, 22], as compared with
simulated human-driven traffic implemented with accepted human
driving models [18]. Most of these past successful driving policies
controlled AVs in a centralized manner, where a single controller
simultaneously processes all available sensing information and sends
driving commands to the AVs. More recent efforts focused on devel-
oping decentralized driving policies which might be harder to learn,
but are considered a more realistic option for real-world deployment,
as they mostly rely on local sensing and actuation capabilities [2, 19].
This paper continues the line of research on decentralized policies
but aims to develop one that is robust to real-world traffic conditions
of practical interest.

Recent RL techniques for developing robust policies include ad-
versarial training [12] and domain randomization [17]. Existing
research uses these ideas to build congestion reduction policies that
are robust to some particular traffic conditions. Wu et al. present
policies that can generalize on a closed ring road to traffic densities
higher and lower than the ones they were trained on, by randomizing
densities during training [23]. Parvate et al. evaluate the robustness
of a hand-coded controller over different AV penetration and driv-
ing aggressiveness [11]. This paper focuses on learning a driving

policy that is robust to different traffic flows, AV penetrations, AV
placement within traffic, and road geometries.

In a parallel unpublished work [20], Vinitsky et al. studied a
similar setup. In particular, similarly to our work, they developed
a robust, decentralized policy that is shared among all AVs for an
open road network scenario. On the other hand, our work differs
from theirs in several ways. First we focus on merge scenarios,
while they focus on bottleneck scenarios. Second, they developed
a robust policy by randomizing the training conditions, while we
did a systematic sweep of the training conditions to understand
how each training condition contributes to the performance of the
trained policy. Third, we further examined the robustness of the
policy trained from a merge scenario on a more complex road with
multiple merging ramps and multiple lanes.

3 BACKGROUND AND SETUP
We start by introducing the background and the problem of learning
a robust traffic congestion reduction policy.

3.1 Road-merge congestion reduction
Consider a network with a main highway and a merging road, as
shown in Figure 1c. There are vehicles joining and leaving the net-
work, and the traffic consists of both human-driven and autonomous
vehicles. The human drivers are assumed to be self-interested and
optimize their own travel time, while autonomous vehicles (AVs)
are assumed to be altruistic and have a common goal of reducing
traffic congestion. Our goal is to come up with a driving policy that
controls each AV such that traffic performance is improved.

We measure the performance of policies in terms of both outflow
and average speed. Outflow is the number of vehicles per hour
exiting the simulation, representing system-level throughput. The
average speed represents the time delay it takes an average driver to
drive the simulated road. We note that it is important to report both
metrics, since scenarios with low and high average speeds could have
the same system throughput, such that one is considered congested
while the other is not.

A policy can be hand-programmed or learned. Reinforcement
learning (RL) has been shown to produce superior policies [8, 19, 22]
and is therefore our method of choice. Congestion reduction driving
policies can either be centralized, controlling all vehicles simulta-
neously based on global system information, or decentralized, con-
trolling each vehicle independently based on its local observations.
Decentralized policies with no vehicle-to-vehicle communication are
most realistic, since they mostly rely on local sensing and actuation
capabilities [2, 20], and are therefore the focus of this paper.

This multiagent traffic congestion reduction problem can be mod-
elled as a discrete-time, finite-horizon decentralized partially observ-
able Markov decision process (Dec-POMDP) [1], denoted as a tuple
(S, {A𝑖 }, 𝑃, 𝑅, {Ω𝑖 },O,𝑇 ,𝛾) where,

• S is a state space representing the location and speed of every
vehicle in the network,

• {A𝑖 } is a joint action space for all agents, where A𝑖 specifies
an acceleration action for agent 𝑖,

• 𝑃 : S × {A𝑖 } × S → [0, 1] is a state transition probability
distribution, which is realized via a traffic simulator,

• 𝑅 : S × {A𝑖 } → R is a global reward function,



• {Ω𝑖 } is a collection of local observations for each agent (see
Section 3.2),

• O : S × {A𝑖 } × {Ω𝑖 } → [0, 1] outputs the probability that
each agent receives a specific observation given the next state
and the joint action just taken,

• 𝑇 is the episode length,
• 𝛾 ∈ [0, 1] is the discount factor of reward.

A decentralized, shared driving policy is a probability density
function over the action space 𝜋𝜃 : Ω × A → [0, 1] parameterized
by 𝜃 that stochastically maps each agent’s local observations to its
driving actions.

Throughout this paper we use the SUMO traffic simulator [6]
as the state transition function. SUMO is a micro simulator that
includes accepted human driving models [7, 18], configurable traffic
networks and flows, and mechanisms for enforcing traffic rules,
safety rules, and basic physical constraints. To learn AV driving
policies, we use the RLlib library [5]. We interface with SUMO and
RLlib using UC Berkeley’s Flow software [21].

3.2 RL-based decentralized driving policy
To learn a decentralized driving policy we use the Proximal Policy
Optimization (PPO) algorithm [13]. To facilitate data and compu-
tational efficiency and reduce the risk of overfitting, all AVs learn
and execute a single, shared driving policy. The observation space
and reward design used in this paper are modeled after those used
by Cui et al. [2], which were shown to be effective for decentralized
policies. The observation for each AV includes

• the speed and distance of the closest vehicles in front of and
behind it,

• the AV’s speed,
• the AV’s distance to the next merging point,
• the speed of the next merging vehicle and its distance to

the merge junction (assumed to be obtained by the vehicle’s
cameras/radars, or be computed by some global infrastructure
and then shared with all the vehicles).

The reward of the 𝑖th AV at time step 𝑡 is defined as:

𝑟𝑖,𝑡 = (1 − I{𝑑𝑜𝑛𝑒})
(
− 𝜂 + (1 − 𝜂) ×

∑𝑛𝑡
𝑗=1 𝑣 𝑗

𝑛𝑡𝑉𝑚𝑎𝑥

)
+ I{𝑑𝑜𝑛𝑒} · 𝐵𝑜𝑛𝑢𝑠

where I{𝑑𝑜𝑛𝑒} is an indicator function of whether an AV is leaving
the network; 𝐵𝑜𝑛𝑢𝑠 is a constant reward for an AV if it exits the

network; the term
∑𝑛𝑡

𝑗=1 𝑣𝑗
𝑛𝑡𝑉𝑚𝑎𝑥

represents the normalized average speed,
where 𝑣 𝑗 is the speed of vehicle 𝑗 , 𝑛𝑡 is the total number of vehicles
in the network at time t, 𝑉max is the max possible speed, and 𝜂 is a
constant that weights the individual and the global reward.

3.3 Robustness evaluation conditions and metrics
Similarly to past work, our baseline setup consists of simulated
human-driven vehicles only. In contrast to past work, which typically
showed improvement over this baseline in a single combination of
traffic conditions, our goal is to develop a robust AV driving policy
that improves over this baseline across a range of realistic traffic
conditions, characterized by:

• Main Inflow Rate: the amount of incoming traffic on the main
artery (veh/hour),

• Merge Inflow Rate: the amount of incoming traffic on the
merge road (veh/hour),

• AV Placement: the place where the AVs appear in the traffic
flow; the AVs can either be distributed evenly or randomly
among the simulated human-driven vehicles.

• AV Penetration: the percentage of vehicles that are controlled
autonomously,

• Merge road geometry: the distance between two merge junc-
tions (in relevant scenarios), and the number of lanes.

In this paper, we fix the merge inflow rate to be 200 veh/hour (small
enough to cause traffic congestion on the main road) and set the
range of the main inflow to be [1600, 2000] veh/hour (resulting in
minimal to maximal congestion in our simulations), AV penetration
(AVP) to be within [0, 40] percent (for a realistic amount of con-
trollable AVs in the coming years). The placement of the AVs can
either be random or even. For even placement, AV are placed every
N human-driven vehicles in a lane. For random placement, AVs are
placed randomly among simulated human-driven vehicles. Merge
road geometries include one or two merges at distances that vary
between [200, 800] meters, and the main road can have one or two
lanes.

4 LEARNING A ROBUST POLICY IN THE
SINGLE-LANE MERGE SCENARIO

While real-world congestion-reducing driving policies need to op-
erate effectively in a wide variety of traffic conditions, most past
research has tested learned policies under the same conditions on
which they were trained. Since in the real world it is impractical
to deploy a separate policy for each combination of conditions, our
primary goal is to understand whether it is feasible to learn a sin-
gle driving policy that is robust to real-world variations in traffic
conditions.

The performance of an RL-based driving policy depends on the
traffic conditions under which it is trained. We hypothesize that
the policy trained under high inflow, medium AV penetration, and
random vehicle placement is robust in a range of traffic conditions
defined in Section 3.3 for a single-lane merge scenario. We test this
hypothesis by comparing 30 policies, each of which is trained under
a combination of traffic conditions specified below in Section 4.1.
The training of each policy takes about 7 hours on a 3.7GHz Intel
12 Core i7 processor. Each policy, including human-only baseline,
is evaluated 100 times using the same 100 random seeds, and each
evaluation takes about 1 hour. After identifying a policy that gener-
alizes well across training conditions, we then evaluate it on road
geometries different from its training scenario.

4.1 Discretization of traffic conditions for training
Since there is an innumerable set of possible traffic conditions, for
the purpose of training we discretize traffic conditions along their
defining dimensions to a total of 30 representative combinations of
conditions, as follows. We consider main inflows of 1650, 1850, and
2000 veh/hour which result in low, medium, and high congestion.
We discretize AV placement in traffic to be random or even-spaced.
Finally, we discretize the training AV penetration into 5 levels: 10 %,
30 %, 50 %, 80 %, 100 %. Based on this 3 × 2 × 5 discretization, we
train 30 policies, one for each combination.



Each trained policy is then evaluated across the range of traffic
conditions described in Section 3.3, leading to two performance val-
ues (outflow and average speed) on each testing condition for each
policy. We plot these results using the following convention. The
label of a data point consists of two parts: (i) the training conditions
of the policy to be evaluated, and (ii) the policy’s evaluation condi-
tions. The policy’s training conditions indicate the vehicle placement,
main inflow, merge inflow, and AVP, separated by “-". For example,
“random-2000-200-30" denotes the policy trained under random ve-
hicle placement with main inflow 2000 veh/hour, merging inflow
200 veh/hour, and 30 % AVP. The evaluation conditions also consist
of vehicle placement, main inflow, merging inflow, and AVP. In this
paper, the merging inflow is always fixed to be 200 veh/hour and
the vehicle placement is specified separately from the graph label.
Therefore we only specify the evaluation-time main inflow and AVP
to indicate the evaluation condition for each data point. Hence, each
evaluation result is labeled as a 6-tuple, where the first four elements
describe the training conditions and the remaining two describe the
evaluation conditions. For example, “random-2000-200-30:1800-10"
labels the result of policy “random-2000-200-30" evaluated under
main inflow 1800 veh/hour and AVP 10 %. We further use “*" in the
evaluation condition to denote which evaluation condition varies in
a plot. For example, “random-2000-200-30:1800-*" indicates that
the policy “random-2000-200-30" was evaluated under main inflow
of 1800 and varying AVPs; “random-2000-200-30:*-10" indicates
that policy “random-2000-200-30" was evaluated under AVP 10 %
and varying main inflows.

4.2 Robustness to vehicle placement, AV
penetration and inflow

In this section, we will test our hypothesis that training with high in-
flow, medium AV penetration, and random vehicle placement yields
a robust policy, by showing representative slices of the evaluation
results.

We start by showing that the policies trained under random vehi-
cle placement outperform others that are trained under even vehicle
placement. The performance of a subset of these policies is depicted
in Figure 2a and 2b. The red curves represent the evaluation results
for the policies trained under random vehicle placement, and the blue
curves represent the results for the policies trained under even vehi-
cle placement. These policies are evaluated using the outflow and
average speed metrics under both random vehicle placement (Fig-
ure 2a) and even vehicle placement (Figure 2b). When evaluating on
either random placement or even placement, the policies trained with
random placement outperform the human baseline as well as their
counterparts trained with even placement. Specifically, the results
in Figure 2a confirm the intuition that when evaluated with random
vehicle placement, the policies trained under random vehicle place-
ment should have better performance than their counterparts trained
with even vehicle placement. However, counter-intuitively, random
placement at training time also results in more robust policies when
testing under even placement. We hypothesize that this performance
increase is due to the more diverse data collected when RL vehicles
are randomly placed.

Next, we confirm the intuition that the polices trained under
medium AV penetration are better than others. Figure 2c show when

fixing the main inflow, the policies trained under AVP 30 % (red
curve) are competitive in both their outflow and average speed when
evaluated under varying AVPs. They have the best performance
across a large range of the evaluation AVPs. The same conclusion
also holds if we fix the AVP but instead vary the main inflow during
evaluation. We hypothesize that these mid-range AVP values during
training perform best since (i) the policies are well-trained with
sufficient AVs collecting training data; (ii) there are a certain amount
of human-driven vehicles and the learned policies are useful to
reduce traffic congestion created by these human-driven vehicles.

Finally, we test the hypothesis that the policies trained under high
inflow are robust. When fixing the AVP and varying main inflow
during evaluation, Figure 2d shows that our proposed policy trained
under main inflow 2000 veh/hour (green curve) has better perfor-
mance in both outflow and average speed than other policies trained
with different main inflows. The same conclusion also holds if we
fix the main inflow but vary the AVPs during evaluation. We hypoth-
esize that the policies trained under the highest inflow outperform
others because a higher main inflow yields more diverse vehicle
densities at training time. Specifically, the simulation dynamics can
lead high inflow to include both dense vehicle placements and sparse
vehicle placements, while a lower main inflow tends to mostly result
in sparse vehicle distribution.

Verifying our hypothesis, we find that the policy “random-2000-
200-30", which is trained under random vehicle placement, main
inflow 2000 veh/hour, merge inflow 200 veh/hour, and AVP 30 %,
outperforms the alternatives. In the single-lane merge scenario, this
policy achieves significant improvement over the human-only base-
line when the AVP is greater than or equal to 1 % during deployment
(with p-value 0.05 as the cutoff for significance).

5 DEPLOYING THE LEARNED POLICY TO
MORE COMPLEX ROADS

We learned a robust policy in a single-lane merge scenario. To push
this policy one step further toward a real-world deployment, we test
this policy’s robustness to more complex road structures: roads with
two merging roads, and roads with two lanes.

5.1 Deployed to roads with two merging ramps
We first deploy the selected policy on more complex road structures,
which have two merging roads at varying distances, and evaluate
the performance of the learned policy with respect to the distance
between these two ramps. An example road with two merging on-
ramps is shown in Figure 3.

Consider the merge scenario with two merging ramps: the first
merging ramp is located 500 meters from the simulated main road’s
start, the second merging ramp is located 200, 400, 600, or 800
meters after the first, the total length of the main road is 1500 meters,
and the total length of the merging roads is 250 meters. We tested
the random-2000-200-30 policy with random AV placement, main
inflow of 1800 veh/hour, merge inflow 200 veh/hour, across a range
of AV penetrations and the above gaps between the two merging
roads.

The results are shown in Figure 4, where the blue curves show
the performance of the policy to be tested, and the red curve shows
the human baseline’s performance. The random-2000-200-30 policy
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Figure 2: Results of policies trained under different AV placements, AV penetrations, main inflows. Figure (a)–(b): we show that the the
policies under random vehicle placement is robust when evaluated under random or even vehicle placement. Figure (c): we fix the
evaluation inflow, and find an AVP 30 % that is robust when varying evaluation AVPs; Figure (d): we fix the evaluation AVP, and verify
that main inflow 2000 veh/hour is also robust when varying evaluation inflows.

Figure 3: A more complex road with two merging on-ramps.

is better than the human baseline even when the merging ramps are
just 200 meters away. As we increase the distance between these two
on-ramps, the performance increases. When this distance is small,
the traffic congestion at the second merging ramp interferes with the
traffic flow at the first merging ramp, but is not observable to the
RL vehicles approaching the first ramp. As we increase the distance
between these two merging ramps, such interference decreases and
the traffic flow approaching these two merging ramps can be treated
by the AVs increasingly independently. As a consequence, when
these two merging ramps become further away from each other, the
decision making processes for the AVs are similar to those on the
single-lane merge roads — they only need to consider the traffic
flow at the next incoming junction. Accordingly, the selected policy
effectively reduces traffic congestion in the two-ramp scenario; and
its performance improves as the distance between these two ramps
increases.

5.2 Deployed to double-lane merge roads
Urban highway often consists of multiple lanes. Thus past research
suggesting that AVs might increase traffic congestion on multi-lane
roads [3] has (rightfully) raised concerns about the practical deploy-
ability of systems like the one considered in this paper. Contrary
to those results, we find that AVs can reduce congestion even in
multi-lane scenarios. Specifically, we consider a double-lane merge
road as shown in Figure 5, by adding a second lane in the main road.
Similar to that of the single-lane merge scenario, the vehicles in
the right lane must yield to the vehicles from the merging lane and
may cause potential congestion in the right lane. But the vehicles in
the left lane have the right of way when passing the junction. As a
consequence, the vehicles in the left lane tend to move at a faster
speed, and there will be more vehicles changing from right to left
for speed gain than the number of vehicles changing from left to
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Figure 4: Results of deploying the selected training policy on
roads with two on-ramps.

right. Those lane-changing vehicles cause additional stop-and-go
waves in the left lane. To test the robustness of the selected policy
in this new road structure, we deploy the learned policy to control
the AVs on the right lane. During evaluation, there are only human-
driven vehicles in the left lane with inflow 1600 veh/hour, and 10 %
of the vehicles in the right lane are AVs, each of which is controlled
by our learned policy. Figure 6 shows that the performance of the
deployed policy is always significantly better than that of the human-
only traffic, regardless of the right main inflow. We find that the
learned policy, mitigating the congestion in the right lane, also re-
duces the amount of lane-changing vehicles since the right lane is
less congested. Hence, the policy trained on the single-lane merge
road generalizes well in the double-lane merge scenario.

Figure 5: A double-lane merge road.
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Figure 6: Results of deploying the selected training policy on the
double-lane merge roads.

6 CONCLUSION AND FUTURE WORK
We presented an approach for learning a congestion reduction driving
policy that performs robustly in road merge scenarios over a variety
of traffic conditions of practical interest. Specifically, the resulting
policy reduces congestion in AV penetrations of 1 %–40 %, traffic
inflows ranging from no congestion to heavy congestion, random AV
placement in traffic, single-lane single-merge road, single-lane road
with two merges at varying distances, and double-lane single-merge
road with lane changes. The process of finding this policy involved
identifying a single combination of training conditions that yields a
robust policy across different evaluating conditions in a single-lane
merge scenario. We find, for the first time, that the resulting policy
generalizes beyond the training conditions and road geometry it was
trained on.

Recently there has been an increasing interest in developing RL
training methods that result in robust policies. In our domain we
find that randomizing AV placement and searching for an effective
training setup over the space of traffic conditions achieve robustness
effectively. The straightforward nature of our method and its limited
set of assumptions and tuning parameters make it a potential can-
didate for real-world deployments. Given that RL algorithms have
been shown to be brittle in many domains, finding an RL-based pol-
icy that performs robustly across a wide variety of traffic conditions
in the challenging domain of multiagent congestion reduction is both
encouraging and somewhat surprising.

Nonetheless, our work has a few limitations that could serve as im-
portant directions for future research. First, the question of whether
there exists a driving policy that reduces congestion when deployed
on the left lane of multilane scenarios still open. Second, our tests
used the same aggressiveness level for all simulated human-driven
vehicles. Testing with a variety of human behaviors would further
increase the simulation results’ applicability. Third, there is room
to investigate a wider variety of road geometries beyond the ones
we investigated. Finally, even after investigating these extensions,
there will likely be a sim2real gap to close, due to noisy/limited
sensing and actuation delay. These limitations notwithstanding, this
paper’s contributions and insights advance our ongoing effort to
reduce traffic congestion via AV control in the real world.
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