
In AAMAS 2009 workshop on Agent Mediated Electronic Commerce (AMEC 2009),
May 2009.

Leading a Best-Response Teammate in an Ad Hoc Team

Peter Stone1, Gal A. Kaminka2, and Jeffrey S. Rosenschein3

1Dept. of Comp. Sci. 2Dept. of Comp. Sci. 3School of Eng. and Comp. Sci.

U. of Texas at Austin Bar Ilan U. Hebrew U.

pstone@cs.utexas.edu galk@cs.biu.ac.il jeff@cs.huji.ac.il

Abstract. Teams of agents may not always be developed in a planned, coordi-

nated fashion. Rather, as deployed agents become more common in e-commerce

and other settings, there are increasing opportunities for previously unacquainted

agents to cooperate in ad hoc team settings. In such scenarios, it is useful for indi-

vidual agents to be able to collaborate with a wide variety of possible teammates

under the philosophy that not all agents are fully rational. This paper considers

an agent that is to interact repeatedly with a teammate that will adapt to this in-

teraction in a particular suboptimal, but natural way. We formalize this setting

in game-theoretic terms, provide and analyze a fully-implemented algorithm for

finding optimal action sequences, prove some theoretical results pertaining to the

lengths of these action sequences, and provide empirical results pertaining to the

prevalence of our problem of interest in random interaction settings.

1 Introduction

As agents proliferate in the world, both in software and robotic settings, they will in-

creasingly need to band together for cooperative activities with previously unknown or

unfamiliar teammates. For example, consider a disaster rescue scenario in which robots

developed by many different people in different parts of the world converge to work

together to locate and extract victims from places that are yet too dangerous for hu-

man rescue teams to enter. These robots can be thought of as forming a team: they are

fully cooperative with no notion whatsoever of individual self-interest separate from the

team’s interest. They all aim to act so as to maximize the likelihood of finding survivors,

even if it means risking their own safety.

However, unlike most team settings considered so far (e.g., [15]), the robots are not

all programmed by the same people, and may not all have the same communication

protocols or world models. Furthermore, they are likely to have heterogeneous sensing

and acting capabilities that may not be fully known to each other. As a result, team

strategies cannot be developed a priori. Rather, a robot that is to succeed in such an

ad hoc team setting must be prepared to cooperate with many types of teammates:

those with which it can communicate and those with which it cannot; those that are

more mobile and those that are less mobile; those with better sensing capabilities and

those with worse capabilities. A good team player’s best actions are likely to differ

significantly depending on the characteristics of its teammates.

In this paper, we consider the case of such a good team player, Agent A that is inter-

acting with a teammate, Agent B, with whom it cannot communicate directly, but that is



capable of adapting to its teammate’s behavior. Specifically, Agent B observes its team-

mate’s actions and acts according to the best response to some fixed history window of

Agent A’s past moves. Agent A’s goal is to find the sequence of moves that will lead

to the highest (expected) payoff in a fully cooperative setting. In addition to the robot

disaster rescue scenario mentioned above, such a situation may arise in an e-commerce

setting, for example, if Agent B is a legacy trading agent within a firm that is essential to

daily operations but difficult or impossible to modify, whereas Agent A is a new, more

intelligent agent that needs to take Agent B’s behavior into account when selecting its

own actions. In this paper, we abstract this setting to a game-theoretic formalism in

which the agents interact in a fully cooperative iterative normal form game.

The remainder of the paper is organized as follows. First, in Section 2, we pro-

vide an example game-theoretic setting and formalize the situation of study. Then, in

Section 3, we present some analytical results, followed by some empirical results in

Section 4. Section 5 situates our problem of interest within both the game theory and

agent modeling literature, and Section 6 concludes.

2 Formalism and Example

In this paper, we represent the multiagent interaction of interest as a fully cooperative

iterative normal-form game between two agents, Agent A and Agent B. Throughout the

paper, we will consider Agent A to be the agent that is within our control; Agent B,

which reacts in a fixed way, is given by the environment.

Let the x actions available to Agent A be a0, a1, . . . , ax−1 and the y actions avail-

able to its teammate, Agent B, be b0, b1, . . . , by−1. The immediate payoff when A and

B select actions ai and bj , mi,j is stored in row i and column j of the payoff matrix

M : M [i, j] = mi,j . In addition we define the value of the highest payoff in the ma-

trix, which could be realized by multiple entries, to be m∗. Without loss of generality,

throughout this paper, we assume that mx−1,y−1 = m∗.

M1 b0 b1 b2

a0 25 1 0
a1 10 30 10
a2 0 33 40

For example, consider the payoff matrix M1 for a scenario in

which agents A and B each have three possible actions. If both

agents select action 0 (i.e., their joint action is (a0, b0)), then the

joint team payoff is m0,0 = 25. Similarly if their joint action is

(a2, b0) their joint payoff is 0. In this case, there is a unique joint

action that leads to m∗: m2,2 = m∗ = 40.

Assume that b0 is Agent B’s default action or that, for whatever reason, the agents

have been playing (a0, b0) in the past. This could be, for example, because Agent B

is not fully aware of Agent A’s payoffs so that it cannot unilaterally identify the best

joint action, or because B does not fully trust that A will play its part of the best joint

action. The question we examine is what sequence of actions should Agent A take so as

to maximize the team’s undiscounted long-term payoff over iterative interactions using

the identical payoff matrix? The answer to this question depends on Agent B’s strategy.

For example, if Agent B is non-adaptive and always selects b0, then the best Agent A

can do is always select a0.

However, if Agent B is adaptive, Agent A can lead it towards the optimal joint action

by taking a sequence of actions the responses to which will cause Agent B to abandon



b0 and choose other actions. In order to do so, it may need to accept short-term losses

with respect to the current payoffs (e.g., immediate payoffs of less than 25); however in

the long run these losses will be offset by the repeated advantageous payoff of (a2, b2).
1

In this paper, we consider a particular class of strategies that Agent B could be

using. Though they may not be the most sophisticated imaginable strategies, they are

reasonable and often studied in the literature. The fact that they are possibly suboptimal

represents the philosophy that Agent A must be able to adapt to its teammates as they

are, not as they should be. That is, we assume that we have control only over Agent A,

not over Agent B.

In particular, we specify Agent B as being a bounded-memory best response agent

with an ǫ-greedy action strategy. That is, the agent’s behavior is determined by two

parameters: a memory size mem; and a random action rate ǫ. The agent considers the

most recent mem actions taken by its teammate (Agent A), and assumes that they have

been generated by the maximum likelihood policy that assigns fixed probabilities to

each action. For example, if mem = 4 and Agent A’s last four actions were a1, a0, a1, a1,

then Agent B assumes that Agent A’s next action will be a0 with probability 0.25 and a1

with probability 0.75. It then selects the action that is the best response to this assumed

policy with probability 1−ǫ; with probability ǫ it chooses a random action. For example,

for payoff matrix M1 in this situation, it would select b1 with probability 1 − ǫ. We

denote this best response action as BR(a1, a0, a1, a1) = b1. Note that when ǫ = 1, the

agent acts completely randomly.

To illustrate, we begin by considering the case of mem = 1 and ǫ = 0. For the

remainder of this section, we consider the same case, in which Agent B always selects

the action that is the best response to Agent A’s previous action: b0, b1, or b2 depending

on whether A’s last action was a0, a1, or a2 respectively.

Now consider Agent A’s possible action sequences starting from the joint action

(a0, b0) with payoff m0,0 = 25. Because its last action was a0, it knows that B will

select b0 on the next play. It could immediately jump to action a2, leading to the joint

action (a2, b0). This action will lead to an immediate payoff of m2,0 = 0, but then

will cause Agent B to select b2 next, enabling a payoff of 40 on the next turn and

thereafter (assuming A continues to select a2 as it should). The resulting sequence of

joint actions would be S0 = [(a0, b0), (a2, b0), (a2, b2), (a2, b2), . . .] leading to payoffs

[25, 0, 40, 40, . . .].

Alternatively, Agent A could move more gradually through the matrix, first selecting

a1 for a joint payoff of 10 and leading B to select b1 on its next turn. It could then

shift to a2 for a payoff of 33, followed by 40 thereafter. The resulting sequence of

joint actions would be S1 = [(a0, b0), (a1, b0), (a2, b1), (a2, b2), (a2, b2), . . .] leading

to payoffs [25, 10, 33, 40, 40, . . .].

We define the cost C(S) of a joint action sequence S to be the loss from playing S
when compared to always playing the joint action (ax−1, by−1), which leads to payoff

1 In principle, it is possible that the game will not continue long enough to offset these losses.

In this paper, we assume that the game will be repeated a large enough number of times that it

will not terminate before the agents reach the best joint action in the way that we specify. In a

setting where this is not the case, one would need to include the number of iterations left as a

part of the state.



m∗ — in the case of M1, 40. Thus

C(S0) = (40−25)+(40−0)+(40−40)+(40−40)+· · · = 15+40+0+0+· · · = 55

and

C(S1) = (40−25)+(40−10)+(40−33)+(40−40)+· · ·= 15+30+7+0+0+· · · = 52

In this case, S1 is preferable to S0, and is in fact the optimal (lowest cost) sequence

starting from (a0, b0).
We define the length L(S) of a joint action sequence S to be the number of joint

actions prior to the first instance of the infinite sequence of joint actions that yield m∗.

Thus L(S0) = 2 and L(S1) = 3. Note that S1 has lower cost even though it is longer.

Note also that sequences that begin with a joint action (ai, bj) such that mi,j = m∗

have both length 0 and cost 0.

For a given payoff matrix, we define S∗

n(ai, bj) to be the lowest cost sequence of

length n or less starting from joint action (ai, bj). S∗(ai, bj) is the lowest cost such

sequence of any length. Thus, for matrix M1, S∗

2 (a0, b0) = S0 and S∗

3(a0, b0) =
S∗(a0, b0) = S1.

For the special case that no sequence of a given length exists (e.g., if n = 0 or

n = 1), we define S∗(ai, bj) = ω and C(ω) = ∞. Thus, for M1, C(S∗

0 (a0, b0)) =
C(S∗

1 (a0, b0)) = ∞, but C(S∗

1 (a2, b1)) = 7 and C(S∗

0 (a2, b2)) = 0.

Finally, for a given payoff matrix M , we are interested in the length of the longest

optimal sequence over all the possible starting points. We define this value as L(M) =
maxi,j L(S∗(ai, bj)). For example, in matrix M1, L(S∗(a0, b0)) = L(S1) = 3, and

there is no optimal sequence longer than 3 starting from any other cell of the matrix (as

we will prove below). Thus L(M1) = 3.

3 Finding Optimal Sequences and Analysis

In this section, we develop algorithms for finding S∗(ai, bj) given a payoff matrix M ,

and we examine the question of how long these S∗’s can be. We divide the analysis

based on Agent B’s strategy. First, in Section 3.1 we assume that Agent B has mem = 1
and ǫ = 0 as in Section 2. Next in Section 3.2 we consider the more difficult case of

mem > 1. Then, in Section 3.3 we allow Agent B’s actions to be non-deterministic by

considering ǫ > 0.

3.1 Deterministic Teammate with 1-Step Memory

We begin by presenting an efficient algorithm for finding all of the S∗’s for a matrix

M when interacting with a deterministic teammate (ǫ = 0) that always selects the best

response to our most recent action (mem = 1). Detailed in pseudocode as Algorithm 1,

it uses dynamic programming, using the S∗

n−1’s to compute the S∗

n’s.

The algorithm takes as input an x × y dimensional payoff matrix M and begins by

initializing the optimal sequence of length 0 for every cell in the matrix according to



the definition (lines 1–5). It then enters the main loop (7–21) that successively finds the

best sequences of increasingly longer lengths (as indicated by the variable len).

A key insight that aids efficiency is that for a given ai, the optimal sequences for

b1–by are the same as the optimal sequence starting from (ai, b0), other than the first

joint action. The reason is that ai determines Agent B’s next action independently from

Agent B’s current action: in all cases, its next action will be bBR(ai). Thus, Agent A’s

task is to select its action, aact, that leads to the best possible joint action of the form

(aact, bBR(ai)).

Algorithm 1 Find S∗’s (M )

1: for i = 0 to x − 1 do

2: for j = 0 to y − 1 do

3: S∗

0 (ai, bi) =



[(ai, bi), (ai, bi), . . .] if mi,j = m∗

ω if mi,j < m∗

4: end for

5: end for

6: len = 0
7: repeat

8: len = len + 1
9: for i = 0 to x − 1 do

10: S∗

len(ai, b0) = S∗

len−1(ai, b0)
11: for act = 0 to x − 1 do

12: S′ = S∗

len−1(aact, bBR(ai))
13: if m∗

− mi,0 + C(S′) < C(S∗

len(ai, b0)) then

14: S∗

len(ai, b0) = PREPEND((ai, b0), S
′)

15: end if

16: end for

17: for j = 1 to y − 1 do

18: S∗

len(ai, bj) = REPLACEHEAD(S∗

len(ai, b0), (ai, bj))
19: end for

20: end for

21: until len = UPPERBOUND(L(M))

This very compu-

tation is carried out

in lines 10–16, specifi-

cally for Agent B’s ac-

tion b0. First, it is pos-

sible that the optimal

sequence of length len,

S∗

len(ai, b0) is the same

as that of length len-

1. Thus it is initialized

as such (line 10). Then

for each possible next

action on the part of

Agent A, denoted aact,

the cost of the resulting

sequence is simply the

cost of the current joint

action (ai, b0), which is

m∗ − mi,0, plus the

cost of the best possi-

ble sequence of length

len − 1 that starts from

(aact, bBR(ai)). If that

cost is less than the cost

of the best sequence of length len found so far, then the running best sequence is updated

accordingly by prepending joint action (ai, b0) to the sequence S∗

len−1(aact, bBR(ai))
(lines 14–16).

The resulting optimal sequence is then used to determine the optimal sequence start-

ing from all other values of (ai, bj) for 1 ≤ j < y by simply replacing the first joint

action in the sequence S∗

len(ai, b0) with the joint action (ai, bj) (lines 17–19). At the end

of this loop, the optimal sequence of length len starting from any joint action (ai, bj)
(S∗

len(ai, bj)) is known and stored.

The computational complexity of the main loop of Algorithm 1 (lines 7–21) is

quadratic in x and linear in y. Assuming x and y are of similar dimension (Agents

A and B have roughly the same number of possible actions), we can call the dimension-

ality of M to be d = max(x, y). In that case, the main loop has complexity O(d2).



Note that sequence costs C(S) can be calculated incrementally in constant time as the

sequences are constructed.

The only thing left to determine is how many times this main loop needs to be run.

In particular, for what value of len is it no longer possible to find a better sequence than

the best of length len−1. We denote this value UPPERBOUND(L(M)). The following

two theorems prove that this value is exactly min(x, y). Thus the overall computational

complexity of algorithm 1 is O(d3).
First, in Theorem 1, we prove that there is no need to consider sequences of length

greater than min(x, y): UPPERBOUND(L(M)) ≤ min(x, y). Then, in Theorem 1, we

show that it is necessary to to consider sequences up to length min(x, y):
UPPERBOUND(L(M)) ≥ min(x, y).

Theorem 1. When interacting with a teammate with mem = 1 and ǫ = 0 based on an

x × y dimensional payoff matrix M , L(M) ≤ min(x, y)

Proof. We argue that ∀M, L(M) ≤ min(x, y) by first showing that L(M) ≤ x and

then showing that L(M) ≤ y. Intuitively, both cases hold because an optimal sequence

can visit every row and column in the matrix at most once. If there were multiple visits

to the same row or column, any steps in between could be excised from the sequence

to get a lower-cost sequence. The formal arguments for the two cases are quite similar,

though with a couple of subtle differences.

Case 1: L(M) ≤ x. This is equivalent to proving ∀n ≥ x, and ∀i, j, S∗

n+1(ai, bj) =
S∗

n(ai, bj). Suppose not. Then ∃k and a corresponding sequence S′ such that S′ =
S∗

n+1(ai, bj) = PREPEND((ai, bj), S
∗

n(ak, bBR(i))) with C(S′) < C(S∗

n(ai, bj)). Since

S∗

n(ai, bj) is the optimal sequence of length n or less, L(S′) = n + 1. n + 1 > x, so

by the pigeonhole principle, ∃q such that Agent A selects aq more than once in S′ prior

to the first instance of the terminal joint action with value m∗. Assume that (aq, br)
appears earlier in the sequence than (aq, br′). In both cases, Agent B’s next action in the

sequence must be BR(aq). Thus after joint action (aq, br), Agent A could have contin-

ued as it actually did after (aq, br′). This revised sequence would have cost less than S′,

violating the assumption that S′ = S∗

n+1(ai, bj). Therefore L(M) ≤ x.

Case 2: L(M) ≤ y. Similarly, this case is equivalent to proving that ∀n ≥ y, and

∀i, j, S∗

n+1(ai, bj) = S∗

n(ai, bj). Suppose not. Then ∃k and a corresponding sequence

S′ such that S′ = S∗

n+1(ai, bj) = PREPEND((ai, bj), S
∗

n(ak, bBR(i))) with C(S′) <
C(S∗

n(ai, bj)). Since S∗

n(ai, bj) is the optimal sequence of length n or less, L(S′) =
n + 1. n + 1 > y, so by the pigeonhole principle, ∃r such that Agent B selects br more

than once in S′ after the first entry (ai, bj) and up to and including the first instance

of the terminal joint action with value m∗.2 Assume that (aq, br) appears earlier in the

sequence than (aq′ , br). Then at the point when Agent A selected aq leading to (aq, br),
it could have instead selected aq′ , and then finished the sequence as from (aq′ , br) in

S′. Again, this revised sequence would have cost less than S′, violating the assumption

that S′ = S∗

n+1(ai, bj). Therefore L(M) ≤ y.

Therefore ∀M, L(M) ≤ min(x, y). ⊓⊔

2 This portion of the sequence still includes n + 1 elements, since we are ignoring the first

element (ai, bj), but then including the first instance of the terminal joint action.



Theorem 2. ∀x, y, ∃ x × y dimensional matrix M such that, when interacting with a

teammate with mem = 1 and ǫ = 0, L(M) = min(x, y).

Proof. To prove existence, we construct such a matrix.

Case 1: x = y. Consider the matrix M2 where δ = 10/x. All cells on the diagonal

are 100 − δ except for the bottom right corner, mx−1,y−1 = m∗ = 100. All cells

below this diagonal are 100 − 2δ, and all other cells are 0. We show that for M2,

L(S∗(a0, b0)) = x. Specifically,

S∗(a0, b0) = [(a0, b0), (a1, b0), (a2, b1), . . . , (ax−2, by−3), (ax−1, by−2), (ax−1, by−1)].

M2 b0 b1 b2 · · · by−3 by−2 by−1

a0 100 − δ 0 0 · · · 0 0 0

a1 100 − 2δ 100 − δ 0
.
.
. 0 0

a2 0 100 − 2δ 100 − δ
.
.
. 0

.

.

.

.

.

.
. . .

. . .
.
.
.

ax−3 0
.
.
.

. . . 100 − δ 0 0

ax−2 0 0
.
.
. 100 − 2δ 100 − δ 0

ax−1

.

.

.0 0 0 · · · 0 100 − 2δ 100

To see that this sequence is optimal, note that its cost is δ+(x−1)∗2δ < 2xδ = 20.

Note further, that ∀i, BR(ai) = bi. Now working backwards, in order to reach the opti-

mal joint action (ax−1, by−1), Agent A must have selected action ax−1 in the iteration

prior to the first appearance of (ax−1, by−1) in the sequence. When that happened, if

Agent B had selected anything other than by−2 (by−1 is not an option since we are con-

sidering the iteration prior to the first appearance of by−1 in the sequence), then there

would have been a payoff of 0, leading to a sequence cost of ≥ 100. Thus joint ac-

tion (ax−1, by−2) must appear in the optimal sequence. Similarly, considering the first

appearance of this joint action, for Agent B to have selected by−2, Agent A must have

selected ax−2 on the prior iteration. Again, any joint action other than (ax−2, by−3)
(here by−2 is not an option for the same reason as above) leads to a payoff of 0 and

a sequence cost of ≥ 100. Continuing this line of reasoning, we can see that all the

cells under the diagonal must appear in the optimal sequence starting from joint action

(a0, b0). Furthermore, adding any additional joint actions (including those on the diag-

onal) only raise the cost. Therefore the sequence presented above, of length x, is indeed

S∗(a0, b0). It is easy to see that no optimal sequence from any other cell is longer.3

Thus ∀x, ∃x × x dimension matrix M such that L(M) = x = min(x, y).
Case 2: x < y. If x < y we can construct a matrix M2′ that includes the x × x

dimensional version of M2 as a submatrix and contains an additional y − x columns

of all 0’s. By the same argument as above, S∗(a0, b0) is the same sequence as above,

which is of length x: L(M2′) = x = min(x, y).
Case 3: x > y. In this case, we can construct a matrix M2′ based on the y × y

dimensional version of M2 that adds x − y rows of all 0’s. Again, S∗(a0, b0) is the

same as above and L(M2′) = y = min(x, y).

3 To be precise, ∀i, j, L(S∗(ai, bj)) = x − i with one exception: L(S∗(ax−1, by−1)) = 0.



Therefore, ∀x, y, ∃ an x × y dimensional matrix M such that L(M) = min(x, y). ⊓⊔

Theorems 1 and 2 establish that the value of the call to the function UPPERBOUND

in line 21 of Algorithm 1 is min(x, y).
Note that in our analysis of this case in which Agent B has mem = 1 and ǫ = 0,

all of the arguments hold even if there are multiple cells in the payoff matrix M with

value m∗. Furthermore, Algorithm 1 computes the optimal sequence of joint actions

from all starting points, not just a particular starting point, all in polynomial time in the

dimensionality of the matrix.

3.2 Longer Teammate Memory

In this section we extend our analysis from the previous section to consider interacting

with teammates with mem > 1. This case presents considerably more difficulty than the

previous one in two ways. First, though the algorithm can be naturally extended, it is no

longer polynomial, but rather exponential in mem. Second, it is no longer straightfor-

ward to compute UPPERBOUND(L(M)), the maximum value of L(S∗(ai, bj)). We

identify a lower bound on this maximum value, but can only conjecture that it is a tight

bound.

Since the algorithm and analysis is so similar to that in Section 3.1, rather than

presenting them fully formally, we discuss how they differ from the previous case.

To begin with, we need an added bit of notation for indicating sequences. Because

Agent B’s actions are now no longer determined by just Agent A’s previous action, but

rather by Agent A’s history of previous mem actions, we keep track of these actions in

the sequence, indicating a step as (ai, bj)[h0; h1; . . . ; hmem−1] where h0 = ai is Agent

A’s most recent action, h1 is its prior action, etc. Then Agent B’s next action in the

sequence must be br = BR(h0, h1, . . . , hmem−1) and if Agent A’s next action is aq, then

the next element in the sequence is (aq, br)[aq; ai; h1; . . . ; hmem−2].
For example, returning to matrix M1 from Section 2, consider the case in which

Agent B has mem = 3 (and still ǫ = 0 throughout this section). A valid sequence

starting from (a0, b0)[a0; a0; a0] is

S2 = [(a0, b0)[a0; a0; a0], (a2, b0)[a2; a0; a0], (a2, b0)[a2; a2; a0], (a2, b2)[a2; a2; a2]]

Note that because BR(a2, a0, a0) = b0, Agent A needs to select a2 twice before Agent

B will shift to b2. C(S2) = 15 + 40 + 40 = 95. As in Section 2, there is another valid

sequence S3 in which Agent A leads Agent B through joint actions (a1, b0) and (a2, b1)
on the way to (a2, b2). But now, Agent A must select a1 twice before B will switch to b1

and then a2 three times before B will switch to b2. Thus C(S3) = 25+2 ∗ 30+3 ∗ 7 =
106. Hence, unlike in Section 2, when Agent B has mem = 3, Agent A is best off jumping

straight to a2.

The first necessary alteration to Algorithm 1 in this case is that it is no longer

sufficient to simply calculate S∗

len for every joint action (ai, bj) on each loop of the

algorithm. Rather, we must now calculate such values for each joint action-history

(ai, bj)[h0; . . . ; hmem-1]. Since h0 is constrained to be the same as ai, there are xmem−1

such histories for each joint action, leading to a total of xmemy optimal sequences com-

puted on each main loop of the algorithm. To accommodate this alteration, we simply



need to nest additional for loops after lines 2 and 10 of Algorithm 1 that iterate over the

(exponential number of) possible histories.

The second necessary alteration to Algorithm 1 in this case is that it is no longer

sufficient to simply arrive at a joint action (ai, bj) such that mi, j = m∗. Rather, the

agents must arrive at such an action with a history of Agent A’s actions such that if it

keeps playing ai, Agent B will keep selecting bj . We define such a joint action-history

to be stable.
M3 b0 b1 b2

a0 0 30 50
a1 41 20 0
a2 99 20 100

To see why the concept of stability is necessary, consider matrix

M3. A valid sequence starting from (a2, b2)[a2; a1; a0] proceeds to

(a2, b2)[a2; a2; a1] if Agent A selects a2. However from there, Agent

B’s best response is b0, not b2. Thus the agents do not remain stably

at joint action (a2, b2).
To accommodate this situation, the only change to Algorithm 1 that is needed is that

in line 3, only stable joint-action histories such that mi,j = m∗ should be initialized

to the sequence of repeated terminal joint actions. Unstable ones should be initialized

to ω (along with all instances such that mi,j < m∗, no matter what the history). We

can check stability by computing the best response to all histories that result from re-

peating action ai until the entire history window is full of action ai. If any of these best

responses is not bj , then the joint action-history is not stable.

Third, the main loop of Algorithm 1 needs to be altered to accommodate the inclu-

sion of histories. In particular, in line 12, care needs to be taken to compute S′ correctly,

with Agent B’s action being based on the best response to the current history, and the

history being the result of taking action ai from the current history. Furthermore the

PREPEND and REPLACEHEAD operators must manipulate the histories (and incre-

mental cost computations) in the appropriate, obvious ways.

Finally, and most significantly, the value of UPPERBOUND in line 21 of Algorithm

1 must be altered. Unfortunately, we only can prove a lower bound of this value and a

loose upper bound (min(x, y) ∗ xmem−1). We conjecture, but have not proven, that the

lower bound is tight as it is in Section 3.1.

Theorem 3. ∀x, y, ∃ x × y dimensional matrix M such that, when interacting with a

teammate with mem > 1 and ǫ = 0, L(M) = (min(x, y) − 1) ∗ mem + 1.

Proof. (sketch) This theorem, which is the analog of Theorem 2, can be proven using

a similar construction. In particular, redefining δ as δ = 10/((x − 1) ∗ mem + 1), the

same matrix M2 serves as our existence proof. Consider the optimal sequence starting

from (a0, b0) with history full of a0’s. In that case, Agent A needs to select action a1

mem times before Agent B will switch to b1. Similarly, it then needs to select a2 mem

times before B will switch to b2, and so on until A has selected each of the actions a1–

ax−1 mem times. The additional one is for the initial action (a0, b0) which appears only

once in the sequence. As before, any joint actions with payoff 0 will lead to a higher

sequence cost than this entire sequence, and any additional joint actions also increase

the cost.

Also as before, the cases of x 6= y are covered by simply adding extra rows or

columns of 0’s to M2 as needed. ⊓⊔



Conjecture 1. When interacting with a teammate with mem > 1 and ǫ = 0 based on an

x × y dimensional payoff matrix M , L(M) ≤ (min(x, y) − 1) ∗ mem + 1.

Proving or disproving this conjecture is left as an important direction for future

work. An additional important direction for future work is developing heuristics for

more efficiently finding the S∗’s when mem > 1.4 The exponential runtime in mem of

the algorithm for finding the S∗’s is of practical significance. Our algorithm finds all

the best sequences for a 60× 60 matrix in less than 30 seconds of user time on a 1GHz

laptop (calculated by the Unix time command) when mem = 1, but it can only handle

an 18×18 matrix in that time when mem = 2, a 9×9 matrix when mem = 3, 6×6 when

mem = 4, and 4 × 4 when mem = 5. For larger matrices than those listed, java ran out

of heap space with the default settings, often after running for more than 10 minutes.

3.3 Teammate Non-Determinism

Until this point, we have assumed that Agent B acts deterministically: Agent A could

predict Agent B’s next action with certainty based on its own previous actions. In this

section we relax that assumption by allowing B’s ǫ to be greater than 0.

Once again, Algorithm 1 needs to be changed minimally to accommodate this case,

so we just describe the changes. In fact, here, the only change necessary is that costs

of joint actions be computed as expected values in comparison to the expected value of

the optimal joint action.

The expected value of a joint action EV(ai, bj) = (1 − ǫ)mi,j + ǫ
y
(
∑y−1

k=0 mi,k).
m∗ is then defined to be the maximum expected value of a joint action in M . The cost

of a sequence C(S) is then the sum of the differences between m∗ and the expected

values of the joint actions in the sequence. After these changes in notation, which sim-

ply generalize our previous notation (all prior definitions hold for the case when ǫ = 0),

the only change necessary to Algorithm 1 is in line 13: the term mi,0 must be replaced

by EV(ai, b0). The notion of stable joint action-histories remains unchanged from Sec-

tion 3.2.
M4 b0 b1 b2 b3

a0 25 0 0 0
a1 88 90 99 80
a2 70 98 99 80
a3 70 70 98 100

Note that as ǫ changes, both the optimal sequence of joint

actions and the “target” joint actions (the ones that lead to ex-

pected value of m∗) can change. For example, consider the 4× 4
matrix, M4. If Agent B’s mem = 3, then if its ǫ = 0, the opti-

mal sequence from (a0, b0) starting with history [a0; a0; a0] ends

at (a3, b3) and has length 10: L(S∗(a0, b0)[0; 0; 0]) = 10. When

ǫ = 0.1, and ǫ = 0.3 the optimal lengths are 8 and 3 respectively, still ending at (a3, b3).
When ǫ = 0.4, the optimal sequence is of length 3, but now ends at (a2, b2). All of these

sequences have different costs.

The intuitive reason for these changes is that as ǫ increases, it is no longer sufficient

to reach a good cell in the matrix, but rather Agent A must aim for a good row: any value

in the row is possible to be the payoff of the joint action. For this reason, with high ǫ,

the row corresponding to a2 is preferable to that corresponding to a3 (the sum of the

values is higher).

4 Unfortunately, the problem is NP hard. Thanks to Michael Littman for helping work out a

reduction from Hamiltonian cycle.



The analysis of the algorithmic runtime remains mostly unchanged. For efficiency,

the expected values of joint actions can be cached so that they only need to be com-

puted once. However ǫ does have some effects on the value of UPPERBOUND in line

21 of the algorithm. For ǫ < 1, Theorems 1–3 all hold, though δ in the example ma-

trix M2 needs to be generalized to δ = 20(1−ǫ)
((x+1)∗mem)(2−2ǫ+ ǫ

y
) . However when ǫ = 1,

UPPERBOUND(L(M)) = 1: Agent A can always jump immediately to the action that

leads to the row with the highest expected value, which will be attained by all joint

actions in that row. It is not clear whether ǫ has any effect on Conjecture 1.

4 Empirical Results

All variations of the algorithm presented in Section 3 are fully implemented. In this

section, we present some brief empirical results from running them in various settings

that shed some light on the nature and prevalence of our problem of interest.

In particular, we consider how frequently action sequences of various lengths appear

in random matrices. At first blush, it may seem that when interacting with an agent with

mem = 1, matrices for which there ∃(ai, bj) such that L(S∗(ai, bj)) > 2 (such as M1
in Section 2) would be relatively rare in practice.

To test this hypothesis, we generated random x× y matrices such that mx−1,y−1 =
100 and all other values mi,j are generated uniformly randomly from [0, 100]. Table 1

shows the distribution of L(M) for x × x matrices when Agent B’s mem = 1 or 3. For

matrices larger than 7× 7, the mem = 3 case takes more than a day to run on a modern

laptop, so we stop at that point. Matrices such that x 6= y did not show any interestingly

different patterns.

mem=1 1 2 3 4 5 6 7 8 9 10

3 × 3 104 852 44

4 × 4 12 825 158 5

5 × 5 3 662 316 19 0

6 × 6 0 465 489 45 1 0

7 × 7 0 349 565 81 5 0 0

8 × 8 0 236 596 159 8 1 0 0

9 × 9 0 145 640 193 20 2 0 0 0

10 × 10 0 72 636 263 29 0 0 0 0 0

mem=3 1 2 3 4 5 6 7 8 9 10 11

3 × 3 98 178 344 340 28 8 4 0 0 0 0

4 × 4 15 76 266 428 134 60 21 0 0 0 0

5 × 5 1 19 115 408 234 145 71 7 0 0 0

6 × 6 0 0 22 282 272 222 164 27 11 0 0

7 × 7 0 0 5 116 293 282 220 55 17 10 1

Table 1. Distribution of L(M) for 1000 randomly generated matrices of various sizes. left: Agent

B’s mem = 1. No entries are shown for values that we know to be impossible from Theorem 1.

right: mem = 3. No values greater than 11 were found.

From these results we see that even in 3 × 3 matrices with mem = 1, it is not

uncommon for Agent A to need to reason about the cost of various sequence lengths:

In 44 of 1000 cases, there is at least one joint action from which Agent A is best off

not jumping immediately to action a2. In 104 of the cases, all optimal sequences are

of length 1, which occurs exactly when b2 is the best response to all of A’s actions:

∀0 ≤ i < x, BR(ai) = by−1 (as expected, this occurrence becomes less common as

the matrix size increases). In the other 852 cases, Agent A is best off switching to a2

immediately, leading to longest sequences of length 2.



Though matrices such that L(M) > 2 are not uncommon, it is also noticeable that

matrices with optimal sequences of lengths close to the theoretical maximum do not

occur naturally as the matrix size increases. A carefully selected construct such as M2
in Section 3 is required to find such sequences.

5 Related Work

Our work builds on existing research in game theory and in opponent modeling. Game

theory [8] provides a theoretical foundation for multiagent interaction, and though orig-

inally intended as a model for human encounters (or those of human institutions or

governments) has become much more broadly applied over the last several decades.

There is a vast research literature covering iterated play on normal form game ma-

trices, the overall framework that we explore in this paper. Many of these papers have

examined the specific questions of what, and how, agents can learn when repeatedly

playing a matrix game; special emphasis has been given to developing learning algo-

rithms that guarantee convergence to an equilibrium in self-play, or that converge to

playing best response against another player that is using one of a fixed set of known

strategies.

For example, Powers and Shoham [13] considered multiagent learning when an

agent plays against bounded-memory opponents that can themselves adapt to the ac-

tions taken by the first agent. They presented an algorithm that achieved an ǫ-best re-

sponse against that type of opponent, and guaranteed a minimum payoff against any

opponent. A small selection of other research on multiagent learning includes Conitzer

and Sandholm’s work [5] on a learning algorithm that converges in self-play, Littman’s

multiagent reinforcement learning algorithm [9], and Chakraborty and Stone’s [3] pre-

sentation of an algorithm that aims for optimality against any learning opponent that

can be modeled as a memory-bounded adversary.

There are also a large number of articles in the economics and game theory literature

on repeated matrix games, also often focused on issues related to reaching equilibria.

Hart and Mas-Colell [7] presented an adaptive procedure that leads to a correlated equi-

librium among agents playing a repeated game, while Neyman and Okada [11] consid-

ered two-player repeated games in which one agent, with a restricted set of strategies,

plays against an unrestricted player (and considered the asymptotic behavior of the set

of equilibrium payoffs).

A popular game theoretic model that may lead agents to converge to an equilibrium

is that of fictitious play [1], in which agents play best response under the assumption

that their opponents have a unchanging (though possibly mixed) strategy. At each step,

each agent imagines that others will play as they have played up to this point, and re-

sponds according to the empirical frequency of those opponents’ past play. Young [17,

18] explored a related concept called “adaptive play”, which similarly models a dy-

namic process whereby agents, each employing bounded-memory best-response algo-

rithms based upon a random sample of past plays of the game, may gradually move

towards an equilibrium (the specific choice of equilibrium by a population of agents

may be affected by small amounts of noise, which are part of the adaptive play model).



Much of the research above focused specifically on automated agent repeated play;

similar questions have been taken up by researchers who have considered repeated play

among humans. For example, a seminal paper by Nyarko and Schotter [12] investigated

the beliefs that humans have as they repeatedly play a constant-sum two-person game;

the authors elicited the players’ beliefs during play, and factored those beliefs into the

model of how players chose their moves.

All of the research mentioned above differs in fundamental ways from the work

presented in this paper. First, our model assumes that the agents are cooperative; we

are not considering general payoff matrices that model opponent rewards, nor zero sum

games. Second, we are not examining the learning behavior of our agent (or agents), but

rather are assuming that one agent is playing some variant on a best-response strategy,

and its partner is fashioning its play accordingly, for their mutual benefit. This lack of

symmetry between agents’ algorithms distinguishes our model from that of, for exam-

ple, the fictitious play model as well as Young’s adaptive play model. In addition, we

are exploring different aspects of the interaction than do those models.

More closely related to our current work is research by Claus and Boutilier [4]

that, first of all, considers cooperative agents with identical payoffs, and then considers

how (using reinforcement learning) these agents can converge to the maximal payoff.

That research considers the dynamics of the convergence (e.g., speed of convergence),

and the sliding average rewards that agents accrue as they explore their payoffs. What

distinguishes our work is its emphasis on the path through matrix payoffs imposed by

a reasoning Agent A, faced with a best-response Agent B as its partner. The process of

movement through the matrix is deliberate and optimal, the path “searched-for,” based

on knowledge of partner behavior.

Indeed, the algorithms in this paper make an explicit assumption that the teammate

observing the agent is playing a best-response policy to the observed actions of the

agent. In doing so, the agent is actually planning its actions intending for them to be

observed and interpreted. Intended plan recognition (in contrast to keyhole recognition)

is the term used when the observed agent knows that it is being observed, and is acting

under the constraints imposed by this knowledge [2].

Much of the work on planning for intended recognition settings has focused on

natural language dialogue systems. Here, one agent plans its utterances or speech acts

intending for them to be interpreted and understood in specific ways. Seminal work in

this area was carried out by Sidner [14] and later Lochbaum [10], who have focused on

collaborative dialogue settings. However, unlike our work, their focus is on the inter-

pretation (the recognition), rather than on the planning of observed actions.

The SharedPlans framework for collaboration is concerned with choosing actions

in collaborative settings [6]. However, while SharedPlans provides a logical framework

which provides guidelines informing agent design, it does not provide detailed algo-

rithms for specific cases, such as the cases covered in this paper.

Because our algorithm is—to a limited extent—reasoning about the teammate rea-

soning about itself, it is in fact engaged in a special case of recursive modeling [16].

Indeed, one question that remains open is what happens when the teammate is also try-

ing to select actions that would cause the agent to shift policies. In this case, our agent

would have to address 3-level recursive modeling.



6 Conclusion and Future Work

In this paper, we have introduced a novel game theoretic formulation of an important

problem in multiagent teamwork. Specifically, we focus on the case in which an in-

telligent agent interacts repeatedly in a fully cooperative setting with a teammate that

responds by selecting its best response to a fixed history of actions, possibly with some

randomness. Based on its teammate’s behavior, the intelligent agent can lead it to take

a series of joint actions that is optimal for their joint long-term payoff.

The main contributions of this paper are a precise formulation of the problem (Sec-

tion 2); an algorithm for finding optimal sequences of actions and a set of theoretical

results regarding the maximal lengths of optimal action sequences (Section 3); and the

results of some empirical results based on our fully-implemented algorithm (Section 4).

A few directions for future work have been mentioned throughout the paper. In par-

ticular, our proposed algorithm is exponential in the teammate’s memory size, making

solutions to interaction scenarios with more than a few possible actions per agent in-

tractable. Heuristics enabling a streamlining of this algorithm would be very useful.

Similarly, Conjecture 1 regarding the maximal possible value of L(M) is left open, as

is the effect of ǫ on this bound.

One limiting assumption of the work presented in this paper is that Agent A knows

Agent B’s action policy with certainty. Looking forward, this work sets the stage for

developing strategies for interacting with teammates that have unknown values of mem

and/or ǫ. In this more complex setting, it will be necessary to reason about the costs of

action sequences as a function of teammate strategy in order to develop strategies that

are robust to various possible teammate responses. Ultimately, we view this continuing

work as a step towards the large, multi-faceted challenge of developing agents that are

capable of interacting with a wide variety of possible teammates in ad hoc team settings.

Acknowledgments

Thanks to Michael Littman and Jeremy Stober for helpful comments and suggestions.

This work is partially supported by grants from the Fulbright and Guggenheim Foun-

dations, as well as Israel Science Foundation grant #898/05.

References

1. G. W. Brown. Iterative solutions of games by fictitious play. In T. C. Koopmans, editor,

Activity Analysis of Production and Allocation. Wiley, New York, 1951.

2. S. Carrbery. Techniques for plan recognition. User Modeling and User-Adapted Interaction,

11:31–48, 2001.

3. Doran Chakraborty and Peter Stone. Online multiagent learning against memory bounded

adversaries. In Proceedings of the 2008 European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 211–226, September 2008.

4. Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in coopera-

tive multiagent systems. In Proceedings of the Fifteenth National Conference on Artificial

Intelligence, pages 746–752, 1998.



5. Vincent Conitzer and Tuomas Sandholm. Awesome: A general multiagent learning algo-

rithm that converges in self-play and learns a best response against stationary opponents. In

Proceedings of the 20th International Conference on Machine Learning, pages 83–90, 2003.

6. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group actions. Artificial

Intelligence, 86:269–358, 1996.

7. Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated

equilibrium. Econometrica, 68(5):1127–1150, September 2000.

8. Kevin Leyton-Brown and Yoav Shoham. Essentials of Game Theory: A Concise, Multidis-

ciplinary Introduction. Synthesis Lectures on Artificial Intelligence and Machine Learning.

Morgan and Claypool Publishers, 2008.

9. Michael L. Littman. Friend-or-foe q-learning in general-sum games. In Proceedings of the

Eighteenth International Conference on Machine Learning, pages 322–28, 2001.

10. Karen E. Lochbaum. An algorithm for plan recognition in collaborative discourse. In ACL,

pages 33–38, 1991.

11. Abraham Neyman and D. Okada. Two-person repeated games with finite automata. Inter-

national Journal of Game Theory, 29:309–325, 2000.

12. Yaw Nyarko and Andrew Schotter. An experimental study of belief learning using elicited

beliefs. Econometrica, 70(3):971–1005, 2002.

13. Rob Powers and Yoav Shoham. Learning against opponents with bounded memory. In

IJCAI’05, pages 817–822, 2005.

14. Candace L. Sidner. Plan parsing for intended response recognition in discourse. Computa-

tional intelligence, 1(1), 1985.

15. Peter Stone and Manuela Veloso. Task decomposition, dynamic role assignment, and

low-bandwidth communication for real-time strategic teamwork. Artificial Intelligence,

110(2):241–273, June 1999.

16. José M. Vidal and Edmund H. Durfee. Recursive agent modeling using limited rationality. In

Proceedings of the First International Conference on Multi-Agent Systems, pages 125–132.

AAAI/MIT press, 1995.

17. H. Peyton Young. The evolution of conventions. Econometrica, 61:57–84, 1993.

18. H. Peyton Young. Individual Strategy and Social Structure: An Evolutionary Theory of

Institutions. Princeton University Press, Princeton, New Jersey, 1998.


