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Abstract. While Adversarial Imitation Learning (AIL) algorithms have
recently led to state-of-the-art results on various imitation learning bench-
marks, it is unclear as to what impact various design decisions have on
performance. To this end, we present here an organizing, modular frame-
work called Reinforcement-learning-based Adversarial Imitation Learn-
ing (RAIL) that encompasses and generalizes a popular subclass of ex-
isting AIL approaches. Using the view espoused by RAIL, we create
two new IfO (Imitation from Observation) algorithms, which we term
SAIfO: SAC-based Adversarial Imitation from Observation and SILEM
(Skeletal Feature Compensation for Imitation Learning with Embodi-
ment Mismatch). We go into greater depth about SILEM in a separate
technical report [11]. In this paper, we focus on SAIfO, evaluating it
on a suite of locomotion tasks from OpenAI Gym, and showing that it
outperforms contemporaneous RAIL algorithms that perform IfO.

Keywords: Reinforcement Learning · Imitation Learning · Adversarial
Imitation Learning

1 Introduction

In the past decade, the field of deep learning has been punctuated by revo-
lutionary results in computer vision, natural language processing (NLP), and
reinforcement learning (RL). Key to this explosive growth has been an implicit
modularization that has allowed researchers to work on improving individual
modules independently and in parallel. For example, in computer vision, an
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approach to tackle the ImageNet challenge [16] can be said to comprise the fol-
lowing two main modules among a host of other components: an optimization
algorithm, and the deep network architecture. Research into optimization algo-
rithms has yielded algorithms such as AdaGrad [4] and Adam [12], while research
into deep network architectures has resulted in architectures such as convolu-
tional networks and ResNet [9]. Progress in NLP can similarly be characterized
by modules corresponding to optimization algorithm and network architecture.
Research into network architectures for NLP has been taking place indepen-
dent of the optimization algorithm used, and has resulted in success stories from
seq2seq [19] to the Transformer [21].

Recently, there has been rapid progress on imitation learning (IL), especially
with respect to a class of new algorithms termed adversarial imitation learning
(AIL). Starting from GAIL [10] and GAIfO [20], to DAC [13] and OPOLO [22],
the sample complexity of AIL approaches have been rapidly declining. However,
progress in this space has been ad hoc: AIL research lacks the type of orga-
nizing and modular characterization that has led to the steady and substantial
improvement enjoyed by the other communities mentioned above.

In this work, we aim to provide a modular characterization for a sub-class of
AIL algorithms that employs RL. We term this class of algorithms Reinforcement-
learning-based Adversarial Imitation Learning (RAIL). We characterize RAIL
techniques using a modular framework, with modules corresponding to the RL
backbone and the input format to the discriminator. As evidence that the mod-
ularization of RAIL can accelerate progress in it, we explore the resulting design
space and discover a new RAIL variant for imitation from observation that we
call SAC-based Adversarial Imitation from Observation (SAIfO), where SAC [7]
is a recently proposed RL algorithm. We evaluate SAIfO on a suite of locomotion
tasks from OpenAI Gym [3], and show that it outperforms recent IfO algorithms
that fall under the RAIL umbrella.

2 Background

The ultimate goal in imitation learning is to learn a controller that solves a se-
quential decision making problem. Such problems are typically formulated in the
context of a Markov decision process (MDP), i.e., a tupleM =< S,A, T,R, γ >,
where S denotes an agent’s state space, A denotes the agent’s action space,
T : S × A → ∆(S) denotes the environment model which maps state-action
pairs to a distribution over the agent’s next state, R : S×A×S → R is a reward
function that provides a scalar-valued reward signal for state-action-next-state
tuples, and γ ∈ [0, 1] is a discount factor that specifies how the agent should
weight short- vs. long-term rewards. Solutions to sequential decision making
problems are often specified by reactive policies π : S → ∆(A), which specify
agent behavior by providing a mapping from the agent’s current state to a dis-
tribution over the actions it can take. Machine learning solutions to problems
described by an MDP typically search for policies that can maximize the agent’s
expected sum of future rewards.
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The IL problem is typically formulated using an MDP without a specified re-
ward function, i.e.,M\R. Instead of reward, the agent is provided with demon-
stration trajectories—typically assumed to have been generated by an expert—
that specifies the desired behavior, i.e., τE = (s0, a0, s1, a1, ...). Imitation from
observation (IfO) is a sub-problem of IL in which the agent does not have access
to the actions taken during the demonstration trajectories, i.e., τE = (s0, s1, ...).
Techniques designed to solve the IL problem seek to use observed demonstrations
to find policies that an imitating agent can use to imitate the demonstrator.

Adversarial imitation learning (AIL) is a particular way to perform IL that
has recently come to the fore (Figure 1). AIL leverages the adversarial training
technique popularized by GANs [6], in that both involve the same min-max game
with discriminators and generator networks. The discriminator, D, is trained to
distinguish between the demonstration trajectories and trajectories generated
by the imitator. In particular, the goal of updating D is to drive Eo∼τE [D(o)]
toward 1 and Eo∼τ [D(o)] toward 0, where o is a segment of the trajectory, τ
represents trajectories recently generated by the imitator, and τE is a dataset of
demonstration trajectories. In the seminal AIL algorithm GAIL [10] and more
recent AIL algorithms ASAF [2] and ValueDICE [14], o = (st, at), whereas in
GAIfO [20] and OPOLO [22], o = (st, st+1). The generator, which in AIL algo-
rithms is the imitator’s policy π, is trained to induce behavior that elicits large
output from D, i.e., to “fool” D into thinking that the imitator’s trajectories
came from the demonstrator. By iteratively updating D and π as described,
AIL approaches are able to find imitator policies that successfully mimic the
demonstrated behavior.

3 RAIL: Reinforcement-learning-based Adversarial
Imitation Learning

In this work, we focus on a specific slice of AIL that we term RAIL: Reinforcement-
learning-based Adversarial Imitation Learning. As suggested by the name, we
include in RAIL all AIL algorithms that optimize the policy by using an RL algo-
rithm where the reward is given by the discriminator. Thus, GAIL and GAIfO are
RAIL algorithms, as are OPOLO and DAC [13]. On the other hand, ValueDICE
is not a RAIL algorithm since it optimizes the policy by backpropagating directly
into the discriminator, and ASAF is not a RAIL algorithm since it optimizes the
policy by simply copying over the weight values from the discriminator.

We characterize RAIL techniques using a modular framework consisting of
the following two modules (color coded according to the corresponding design
decisions in Figure 1):

– the RL backbone
– the discriminator’s input representation

The first module is the RL algorithm used by a RAIL algorithm to optimize
the learner’s policy. Early RAIL algorithms like GAIL or GAIfO, used on-policy
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Fig. 1. Schematic diagram explaining the work-flow in AIL algorithms

RL algorithms such as TRPO [17] or PPO [18]. More recent RAIL algorithms
OPOLO and DAC [13] radically reduced their sample complexity by using off-
policy RL algorithms such as TD3 [5] or AlgaeDICE [15].

The second module is the input representation used by the discriminator.
This module controls whether the discriminator gets access to state-action pairs
(st, at), state-next state pairs (st, st+1), or any arbitrary subsequence of the tra-
jectory. For example, (st, st+3). It is worth pointing out here that most RAIL
algorithms either use (st, at), or (st, st+1) as the input to the discriminator. This
last module that we just introduced is an especially powerful one as it allows
an RL researcher to seamlessly create an IfO algorithm out of any RAIL algo-
rithm by changing the input representation to the discriminator. For example,
by changing (st, at) to (st, st+1), as was done to create GAIfO from GAIL (Table
1).

Table 1. Recent RAIL algorithms arranged according to our modular characterization
of RAIL. Off policy algorithms are denoted by green-colored names. T is the affine
transform that is learned by SILEM.

RAIL Algorithm RL Backbone Discriminator Input

GAIL TRPO [17] (st, at)

DAC TD3 [5] (st, at)

GAIfO TRPO [17] (st, st+1)

OPOLO AlgaeDICE [15] (st, st+1)

DACfO [22] TD3 [5] (st, st+1)

SAIfO SAC [8] (st, st+1)

SILEM [11] PPO [18] T (st, st+1, st+2, st+3)
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Apart from the two modules defined above, RAIL algorithms also typically
incorporate miscellaneous tricks to improve performance such as absorbing states
in DAC, and regularization with a dynamics model in OPOLO. We disregard
them in our modular characterization due to questions that have arisen regard-
ing their value. The authors of the OPOLO paper observe that the regularization
only adds marginal improvements in performance [22], and our own experience
has indicated that absorbing states are not necessary for state of the art perfor-
mance.

4 SAIfO

Given our modular characterization of RAIL algorithms, a natural way to try
to obtain a state-of-the-art RAIL algorithm would be to try to maximize the
performance of each module independently of one another. Inspired by a recent
IfO algorithm, OPOLO [22], we develop a state-of-the-art IfO algorithm by max-
imizing the performance of the RL backbone. We could also attempt to improve
performance by choosing a different form of input to the discriminator that does
not include action information, but we leave that to future work.

We maximize performance of the RL backbone by choosing a state-of-the-art
off-policy RL algorithm, Soft Actor Critic (SAC) [8], and we term the resulting
RAIL algorithm SAC-based Adversarial Imitation from Observation (SAIfO).

5 Experiments and Results

We run experiments on locomotion tasks provided by OpenAI gym in the Mujoco
environment. Our implementation of SAIfO is built on the SAC implementation
provided by Spinning Up OpenAI [1]. Every other algorithm we use is based
on the implementation provided by the authors of OPOLO [22]. The appendix
contains details on the hyperparameters we use in each algorithm along with the
neural network architectures we use.

Our main goal with the experiments is to show that our proposed RAIL
algorithm, SAIfO, outperforms other RAIL algorithms that perform IfO. We
compare SAIfO against GAIfO, OPOLO and DACfO, and find that it indeed
does better than the three prior RAIL algorithms (Figure 2). Note that our
OPOLO and DACfO results are much better than those reported by Zhu et
al. [22] since we strongly optimized all three of our baselines to provide a fair
comparison with SAIfO. Refer to the appendix for specific details on how we
optimized their implementations of GAIfO, OPOLO and DACfO.

6 SILEM

SAIfO leverages our modular characterization of RAIL to merely accelerate IfO.
In SILEM (Skeletal Feature Compensation for Imitation Learning with Embod-
iment Mismatch) [11], we go a step further and enable IfO to work even in the
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Fig. 2. Results comparing SAIfO to RAIL algorithms that perform IfO. The horizon-
tal black lines show expert level performance in each domain. The x-axis shows the
number of interactions with the environment. Results shown are the mean, minimum
and maximum over 10 independent trials.

presence of embodiment mismatch. In SILEM, we process the discriminator’s
input using a learnable affine transform before inputting it to the discriminator.
We train the affine transform to compensate for embodiment mismatch between
the learner’s trajectories and demonstration trajectories. In Hudson et. al. [11],
we evaluate SILEM on a suite of challenging environments involving learning
from human demonstrations, and we show that SILEM far outperforms the al-
ternatives.

7 Conclusion

In this work, we introduced a modular characterization of a sub-area in Ad-
versarial Imitation Learning that we term RAIL: Reinforcement-learning-based
Adversarial Imitation Learning. We describe the modules apparent in RAIL and
show how recent AIL algorithms fit within the modular framework. Using the
modularity of the framework as a basis, we develop a new off-policy IfO algo-
rithm (SAIfO) that is faster than prior RAIL algorithms that perform IfO, thus
also showing the benefits of the modular characterization.

While developing SAIfO, we only focused on improving performance of the
RL backbone. Exploring different formats of the discriminator input is an in-
teresting avenue of future work. For example, rather than using (st, st+1) as an
input, using (st, st+4) or (st, st+1−st). We also wish to perform more experiments
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to figure out why SAC makes a much better RL backbone than the alternatives,
TD3 and AlgaeDICE. We suspect that the stochastic update afforded by the
kernel trick plays an important role [8].

Lastly, we also showcased how our modular characterization of RAIL even
allowed us to develop an algorithm capable of performing IfO in the presence of
embodiment mismatch. We did this by outlining a recent algorithm we created
called SILEM [11].
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15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 1582–1591. PMLR
(2018), http://proceedings.mlr.press/v80/fujimoto18a.html

6. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A.C., Bengio, Y.: Generative adversarial networks. CoRR
abs/1406.2661 (2014), http://arxiv.org/abs/1406.2661

7. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
Conference on Machine Learning. pp. 1861–1870. PMLR (2018)

8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In: Pro-
ceedings of the 35th International Conference on Machine Learning, ICML
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8 Appendix

8.1 Ensuring a fair comparison with baselines

We spent a considerable amount of time optimizing our baselines to ensure a
fair comparison. We first added a warmup phase to the code provided by the
authors of OPOLO where we trained the discriminator and Q function for a con-
figurable number of iterations before using them to train the policy with DACfO
or OPOLO. We also applied multiple grid searches to find the best configuration
of hyperparameters for our three baselines. We found hyperparameter configu-
rations that resulted in a better performance than the default hyperparameters
provided by the OPOLO authors.

8.2 Hyperparameters used for each algorithm

For every experiment, we used a grid search to find the best set of hyper-
parameters. Specifically, for every configuration of hyper-parameters in the ex-
periment, we ran 10 independent trials. Within each trial, we trained a policy,
measured the average reward obtained by that policy over the last 10 tests
(with each test run in intervals of 4000 interactions with the environment), and
assigned the resulting number as the score for that particular trial. The score
for each configuration of hyper-parameters is the average score over the 10 trials
corresponding to that configuration. The best configuration of hyper-parameters
is then that which maximizes this score. We usually ran multiple successive grid
searches to more strongly optimize performance instead of just running one single
grid search for experiment.

SAIfO We list below the hyperparameter values we used for our implementa-
tion of SAIfO. We only list hyperparameter values that we either introduced or
changed from the default value.

Table 2. Hyperparameter settings for HalfCheetah-v2

Hyperparameter
name

Value

Discriminator learning rate 6 × 10−5

Entropy coefficient for discriminator 0

Batch size (SAC) 400

No. steps of warm up for Q function 5000

No. steps of warm up for Discriminator 500

Update discriminator every X iterations 100

SAC alpha 0.02

Gradient penalty for Discriminator 0.0006

Update policy X times every Y iterations 674, 100
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Table 3. Hyperparameter settings for Hopper-v2

Hyperparameter
name

Value

Discriminator learning rate 1 × 10−4

Entropy coefficient for discriminator 0

Batch size (SAC) 400

No. steps of warm up for Q function 5000

No. steps of warm up for Discriminator 1000

Update discriminator every X iterations 10

SAC alpha 0.15

Gradient penalty for Discriminator 0.002

Update policy X times every Y iterations 674, 100

DACfO We list below the hyperparameter values we used for the implemen-
tation of DACfO by the OPOLO authors. We only list hyperparameter values
that we either introduced or changed from the default value.

Table 4. Hyperparameter settings for HalfCheetah-v2

Hyperparameter
name

Value

No. steps of warm up for Q function 5000

No. steps of warm up for Discriminator 200

Update discriminator every X iterations 15

Update policy X times every Y iterations 7000, 1000

Table 5. Hyperparameter settings for Hopper-v2

Hyperparameter
name

Value

No. steps of warm up for Q function 5000

No. steps of warm up for Discriminator 100

Update discriminator every X iterations 300

Update policy X times every Y iterations 700, 100

Batch size 50
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OPOLO We list below the hyperparameter values we used for the implemen-
tation of OPOLO by the OPOLO authors. We only list hyperparameter values
that we either introduced or changed from the default value.

Table 6. Hyperparameter settings for HalfCheetah-v2

Hyperparameter
name

Value

No. steps of warm up for Q function 5000

No. steps of warm up for Discriminator 200

Update policy X times every Y iterations 2000, 1000

Table 7. Hyperparameter settings for Hopper-v2

Hyperparameter
name

Value

No. steps of warm up for Q function 1000

No. steps of warm up for Discriminator 100

Update policy X times every Y iterations 700, 100

Batch size 400

Update Discriminator every X iterations 200

GAIfO We list below the hyperparameter values we used for the implementa-
tion of GAIfO by the OPOLO authors. We only list hyperparameter values that
we either introduced or changed from the default value.

Table 8. Hyperparameter settings for HalfCheetah-v2

Hyperparameter
name

Value

No. steps of Conjugate gradient descent 10

No. training steps for value function 5

8.3 Neural network architectures

For every algorithm but SAIfO, we used the default network architecture pro-
vided by the authors of OPOLO. For SAIfO, all the deep networks that we used
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Table 9. Hyperparameter settings for Hopper-v2

Hyperparameter
name

Value

No. steps of Conjugate gradient descent 7

No. training steps for value function 3

were (multi layer perceptrons) MLPs with two hidden layers and tanh nonlin-
earities. The discriminator contained 128 units in each hidden layer, while all
the other MLPs contained 256 units each.


