
In The European Conference on Machine Learning & Principles and Pratice of Knowledge Discovery in Databases (ECML PKDD 2008),
Antwerp, Belgium, September 2008.

Transferring Instances for Model-Based

Reinforcement Learning

Matthew E. Taylor, Nicholas K. Jong, and Peter Stone

Department of Computer Sciences, The University of Texas at Austin
{mtaylor, nkj, pstone}@cs.utexas.edu

Abstract. Reinforcement learning agents typically require a significant
amount of data before performing well on complex tasks. Transfer learn-

ing methods have made progress reducing sample complexity, but they
have primarily been applied to model-free learning methods, not more
data-efficient model-based learning methods. This paper introduces tim-

brel, a novel method capable of transferring information effectively into
a model-based reinforcement learning algorithm. We demonstrate that
timbrel can significantly improve the sample efficiency and asymptotic
performance of a model-based algorithm when learning in a continuous
state space. Additionally, we conduct experiments to test the limits of
timbrel’s effectiveness.

1 Introduction

In many situations, an agent must learn to execute a series of sequential ac-
tions, which is typically framed as a reinforcement learning (RL) [1] problem.
Although RL approaches have enjoyed past successes (e.g., TDGammon [2], in-
verted Helicopter control [3], and robot locomotion [4]), they frequently take
substantial amounts of data to learn a reasonable control policy. In many do-
mains, collecting such data may be slow, expensive, or infeasible, motivating the
need for sample-efficient learning methods.

One recent approach to speeding up RL so that it can be applied to difficult
problems with large, continuous state spaces is transfer learning (TL). TL is a
machine learning paradigm that reuses knowledge gathered in a previous source
task to better learn a novel, but related, target task. Recent empirical successes
in a variety of RL domains [5–7] have shown that transfer can significantly
increase an agent’s ability to learn quickly, even if agents in the two tasks have
different available sensors or actions. Note that TL is related to, but distinct
from, the concept drift [8] and multi-task learning [9, 10] paradigms. Concept
drift assumes that the environment is non-stationary: at certain points in time,
the environment may change arbitrarily and the change is unannounced. Multi-
task learning assumes that the agent experiences many problems and that they
are all drawn from the same distribution (and thus all tasks have the same
actions and state variables). In contrast, TL methods generally assume that the
agent is notified when the task changes and generally do not assume that source
and target tasks are drawn from the same distribution.

2

Model-free algorithms such as Q-Learning [11] and Sarsa [12] learn to pre-
dict the utility of each action in different situations, but they do not learn the
effects of actions. In contrast, model-based (or model-learning) methods, such
as PEGASUS [13], R-max [14], and Fitted R-max [15], use their experience to
learn an internal model of how the actions affect the agent and its environment,
an approach empirically shown to often be more sample efficient. Such a model
can be used in conjunction with dynamic programming [16] to perform off-line
planning, often enabling superior action selection without requiring additional
environmental samples. Building these models may be computationally inten-
sive, but using CPU cycles to reduce data collection time is a highly favorable
tradeoff in many domains (such as physically embodied agents). In order to fur-
ther reduce sample complexity and ultimately allow RL to be applicable in more
complex domains, this paper introduces Transferring Instances for Model-Based

REinforcement Learning (timbrel), a novel approach to combining TL with
model-based RL.

The key insight behind timbrel is that data gathered in a source task can
be used to build beneficial models in a target task. Data is first recorded in a
source task, transformed so that it applies to a target task, and then used by the
target task learner as it builds its model. In this paper we utilize Fitted R-max,
an instance-based model-learning algorithm, and show how timbrel can help
construct a target task model by using source task data. timbrel combines
the benefits of transfer with those of model-based learning to reduce sample
complexity. We fully implement and test our method in a set of mountain car
tasks, demonstrating that transfer can significantly reduce the sample complexity
of learning.

In principle, the core timbrel algorithm (Section 3.1) could be used with
other model-learning algorithms, but we leave such extensions to future work.
The experiments in this paper use timbrel by applying it to Fitted R-max

(detailed in Section 5), as it can both learn in continuous state spaces and has
had significant empirical success [15]. This paper’s results thus demonstrate that
timbrel works in continuous state spaces, as well as between tasks with different
state variables and action spaces.

The rest of this paper is organized as follows. Section 2 provides a brief
background of RL and Fitted R-max, as well as discussing a selection of related
TL methods. Section 3 introduces timbrel and the experimental domain is
detailed in Section 4. Results are presented in Section 6. Section 7 discusses
possible future directions and concludes.

2 Background and Related Work

In this paper we use the notation of Markov decision processes (MDPs) [17]. At
every time step the agent observes its state s ∈ S as a vector of k state variables

such that s = 〈x1, x2, . . . , xk〉. In episodic tasks there is a starting state sinitial

and often a goal state sgoal, which terminates the episode if reached by the agent.
The agent selects an action from the set of available actions A at every time step.
The start and goal states may be generalized to sets of states. A task also defines
the reward function R : S × A 7→ R, and the transition function T : S × A 7→ S

3

fully describes the dynamics of the system. The agent will attempt to maximize
the long-term reward determined by the (initially unknown) reward function R

and the (initially unknown) transition function T .
A learner chooses which action to take in a state via a policy, π : S 7→ A. π

is modified by the learner over time to improve performance, which is defined as
the expected total reward. Instead of learning π directly, many RL algorithms
instead approximate the action-value function, Q : S×A 7→ R, which maps state-
action pairs to the expected real-valued return [17]. If the agent has learned the
optimal action-value function, it can select the optimal action from any state by
executing the action with the highest action-value.

In this paper, we introduce and utilize timbrel to improve the performance
of Fitted R-max [15], an algorithm that approximates the action-value function
Q for large or infinite state spaces by constructing an MDP over a small (finite)
sample of states X ⊂ S. For each sample state x ∈ X and action a ∈ A,
Fitted R-max estimates the dynamics T (x, a) using all the available data for
action a and for states s near x.1 Some generalization from nearby states is
necessary because we cannot expect the agent to be able to visit x enough times
to try every action. As a result of this generalization process, Fitted R-max

first approximates T (x, a) as a probability distribution over predicted successor
states in S. A value approximation step then approximates this distribution of
states in S with a distribution of states in X . The result is a stochastic MDP
over a finite state space X , with transition and reward functions derived from
data in S. Applying dynamic programming to this MDP yields an action-value
function over X × A that can be used to approximate the desired action-value
function Q. Past work [15] empirically shows that Fitted R-max learns policies
using less data than many existing model-free algorithms.

Fitted R-max is summarized in Algorithm 1. sopt is a dummy state that
represents unexplored states (where V (sopt) is set to Rmax). sterm is a dummy
absorbing state that all discovered terminal states get mapped to. D is a data
structure that holds all observed instances. φSa

is an averaging object that ap-
proximates the effect of action a at state s using nearby sample transitions
d ∈ Da. φX is an averaging object that approximates the value of each predicted
successor state using nearby sample states x ∈ X . The reader is referred to [15]
for detailed descriptions of the update rules (lines 16 and 17).

Most similar to timbrel are methods that transfer between model-free RL
algorithms with different state and action spaces. Torrey et. al [5] show how to
automatically extract advice from a source task by identifying actions which have
higher Q-values than other available actions; this advice is then mapped by a
human to the target task as initial preferences given to the target task learner. In
past work [6], an agent learns an action-value function in a source task, translates
the function into a target task via a hand-coded inter-task mapping, and then
uses the transferred function to initialize the target task agent. Other recent

1 Fitted R-max is an instance-based learning method; our implementation currently
retains all observed data to compute the model. It could, in principle, be enhanced
to automatically discard instances without significantly decreasing model accuracy.

4

Algorithm 1 Fitted R-max (Rmax, r, b, minFraction, explorationThreshold)

1: X ← {sopt, sterm} # Initialize state sample
2: X.InitializeUniformGrid(r)
3: for all a ∈ A do # Initialize experience sample
4: Da ← {〈sopt, a, V max, sterm〉}
5: loop
6: s← initial state # Begin a trajectory
7: a← argmaxa

ˆ

R(s) +
P

x′∈X
P (x′|s, a)V (x′)

˜

8: repeat
9: Execute a

10: Observe r and s′

11: if s′ is terminal then
12: s′ ← sterm

13: else
14: a′ ← argmaxa

ˆ

R(s) +
P

x′∈X
P (x′|s, a)V (x′)

˜

15: Da ← Da ∪ {〈s, a, r, s′〉} # Update experience sample
16: Update φX and φSa

via 〈experience, minFraction, and explorationThreshold〉
17: Update estimates of R and P based on φX and φSa

18: Compute V (x) for x ∈ X via dynamic programming
19: s← s′

20: a← a′

21: until s is a terminal state # the episode ends

work by Lazaric et. al [7] demonstrates that source task instances (that is, observed
〈s, a, r, s′〉 tuples) can be usefully transferred between tasks for a batch value-function
learning algorithm. In all three cases the transferred knowledge is effectively used to
improve learning in the target task, but only for model-free learning methods.

Atkeson and Santamaria [18] show that if only the reward function changed between
tasks, a locally weighted regression model can be directly applied from a source task
in a novel task. Tanaka and Yamamura [19] consider multi-task learning in a discrete
state space. By recording the average and deviation of Q-values for all (s, a) pairs,
agents in the n + 1th task can initialize their Q-values to the previously seen average
to learn faster. Additionally, agents can order their prioritized sweeping [20] updates
based on the average and deviation of each (s, a) pair to gain additional learning speed
advantages.

Lastly, two works consider multi-task learning in a Bayesian model-based RL [21]
setting. First, Sunmola and Wyatt [22] introduce two methods that use instances from
previous tasks to set priors in a Bayesian learner. Initial experiments show that given
an accurate estimation of the prior distributions, an agent may learn a novel task
faster. Second, Wilson et. al [10] consider learning in a hierarchical Bayesian RL setting
over multiple MDP distributions. By setting priors based on previously learned tasks,
a new task in a particular distribution can be learned significantly faster. A simple
parameterized reward function and the location of an absorbing goal state may change
between the different tasks.

timbrel differs from previous work along a number of dimensions. Most important,
inter-task mappings allow timbrel to transfer knowledge suitable for model-learning
RL agents, even when transfer is between MDPs with different state variables and
actions. Additionally, timbrel can run on-line, is not limited to discrete domains, and
is designed for transfer (as opposed to multi-task learning).

5

3 Model Transfer

Model-based algorithms learn to estimate the transition model of an MDP, predicting
the effects of actions. The goal of transfer for model-based RL algorithms is to allow
the agent to build such a model from data gathered both in a previous task, as well as
in the current task. To help frame the exposition, we note that transfer methods must
typically perform the following three steps:

1. Use the source task agent to record some information during, after, or about,
learning. Successful TL approaches include recording learned action-value functions
or higher-level advice about high-value policies.

2. Transform the saved source task information so that it applies to the target task.
This step is most often necessary if the states and actions in the two tasks are
different, as considered in this paper.

3. Utilize the transformed information in the target task. Successful approaches in-
clude using source task information to initialize the learner’s action-value function,
giving advice about actions, and suggesting potentially useful sequences of actions
(i.e., options).

The following section introduces timbrel, a novel transfer method, which accom-
plishes these steps. Later, in Section 5, we detail how timbrel is used in our test
domain with Fitted R-max, our chosen model-based RL algorithm.

3.1 Instance-Based Model Transfer

This section provides an overview of timbrel. In order to transfer a model, our method
takes the novel approach of transferring observed instances from the source task. The
tuples, in the form (s, a, r, s′), describe experience the source task agent gathered while
interacting with its environment (Step 1). One advantage of this approach as com-
pared to transferring an action-value function or a full environmental model (e.g., the
transition function) is that the source task agent is not tied to a particular learning
algorithm or representation: whatever RL algorithm that learns will necessarily have
to interact with the task and collect experience. This flexibility allows a source task
algorithm to be selected based on characteristics of the task, rather than on demands
of the transfer algorithm.

To translate a source task tuple into an appropriate target task tuple (Step 2)
we utilize inter-task mappings [6], which have been successfully used in past transfer
learning research to specify how pairs of tasks are related via an action mapping and
a state variable mapping. This pair of mappings identifies source task actions which
have similar effects as target task actions, and allows a mapping of target task state
variables into source task state variables.

When learning in the target task, timbrel specifies when to use source task in-
stances to help construct a model of the target task (Step 3). Briefly, when insufficient
target task data exists to estimate the effect of a particular (x, a) pair, instances from
the source task are transformed via an action-dependant inter-task mapping, and are
then treated as a previously observed transition in the target task model. The timbrel

method is summarized in Algorithm 2.
Notice that timbrel performs the translation of data from the source task to the

target task (line 10) on-line while learning the target task. Transfer algorithms more
commonly performed such translations off-line, before training in the target task, but
this just-in-time approach is justified because of how the source data are utilized. In

6

Algorithm 2 timbrel Overview

1: Learn in the source task, recording (s, a, r, s′) transitions.
2: Provide recorded transitions to the target task agent.
3: while training in the target task do
4: if the model-based RL algorithm is unable to accurately estimate some T (x, a)

or R(x, a) then
5: while T (x, a) or R(x, a) does not have sufficient data do
6: Locate 1 or more saved instances that, according to the inter-task mappings,

are near the current 〈x, a〉 to be estimated.
7: if no such unused source task instances exist then
8: exit the inner while loop
9: Use 〈x, a〉, the saved source task instance, and the mappings to translate

the saved instance into one appropriate to the target task.
10: Add the transformed instance to the current model for 〈x, a〉.

Section 5, we detail how the current state, x, will affect how the source task sample
is translated in our particular task domain. Only transferring instances that will be
immediately used in the target task helps to limit computational costs. Furthermore,
this method will minimize the number of source instances that must be reasoned over
in the target task model by only transferring necessary source task data.

4 Generalized Mountain Car

This section introduces our experimental domain, a generalized version of the standard
RL benchmark mountain car task [12]. Mountain car is an appropriate testbed for
timbrel with Fitted R-max because it is among the simplest continuous domains
that can benefit from model-based learning, and it is easily generalizable to enable TL
experiments.

In mountain car, the agent must generalize across continuous state variables in
order to drive an underpowered car up a mountain to a goal state. We also discuss 3D
mountain car [23], an extension of the 2D task. In both tasks the transition and reward
functions are initially unknown. The agent begins at rest at the bottom of the hill.2

The reward for each time step is −1. The episode ends, and the agent is reset to the
start state, after 500 time steps or if it reaches the goal state.

4.1 Two Dimensional Mountain Car

In the two dimensional mountain car task, two continuous variables fully describe the
agent’s state (see Figure 1). The horizontal position (x) and velocity (ẋ) are restricted
to the ranges [−1.2, 0.6] and [−0.07, 0.07] respectively. The agent may select one of
three actions on every timestep; {Left, Neutral, Right} change the velocity

2 Both mountain car tasks are deterministic, and Fitted R-max’s exploration uses
a fixed random seed. To introduce randomness and allow multiple learning trials,
when each domain is initialized, x (and y in 3D) in the start state is perturbed by
a random number in [−0.005, 0.005].

7

by -0.0007, 0, and 0.0007 respectively.3 Additionally, −0.025(cos(3x)) is added to ẋ on
every timestep to account for the x-component of the force of gravity on the car, which
depends on the local slope of the mountain. The start state is (x = −π

6
, ẋ = 0), and

the goal states are those where x ≥ 0.5. We use the publicly available4 version of this
code for our experiments.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

m
o

u
n

ta
in

 h
e

ig
h

t

x

2D Mountain Car

Start

Goal

Fig. 1. In the standard 2D mountain car the agent
must travel along a curve (mountain).

The transfer experiments
in this paper (Section 6)
use three variants of the 2D
mountain car task. The first,
which we will call the Stan-

dard 2D task is described in
the previous paragraph. The
No Goal 2D task is the same
as the standard task, except
that goal state has been re-
moved. This task will be used
to show how the effectiveness
of transfer changes when the
reward function changes. The
third variant, the High Power

2D task, changes the car so
that the velocity is changed by
±0.0015: the car has more than twice the acceleration of the Standard 2D task car.
This variant will be used to show how transfer efficacy changes when the source task
transition function changes.

4.2 Three Dimensional Mountain Car

The 3D task [23] extends the mountain’s curve into a surface (see Figure 2).5 The state
is composed of four continuous state variables: x, ẋ, y, ẏ. The positions and velocities
have ranges of [−1.2, 0.6] and [−0.07, 0.07], respectively. The agent selects from five
actions at each timestep: {Neutral, West, East, South, North}. West and East modify
ẋ by -0.0007 and +0.0007 respectively, while South and North modify ẏ by -0.0007 and
+0.0007 respectively.6 The force of gravity adds −0.025(cos(3x)) and −0.025(cos(3y))
on each time step to ẋ and ẏ, respectively. The goal region is defined by x ≥ 0.5 and
y ≥ 0.5.

This task is more difficult than the 2D task because of the increased state space
size and additional actions. Furthermore, since the agent can affect its acceleration in
only one of the two spatial dimensions at any given time, one cannot simply “factor”
this problem into the simpler 2D task. While data gathered from the 2D task should
be able to help an agent learn the 3D task, we do expect that some amount of learning
will be required after transfer.

3 In the original formulation, the velocity was changed by ±0.001 due to acceleration.
We have reduced the power of the car to make the task more challenging.

4 Available at http://rlai.cs.ualberta.ca/RLR/MountainCarBestSeller.html
5 An animation of a trajectory from a trained policy can be found at http://www.cs.
utexas.edu/~mtaylor/3dMtnCar.html.

6 Although we call the agent’s vehicle a “car,” it does not turn but simply accelerates
in the four cardinal directions.

8

4.3 Learning Mountain Car

Fig. 2. In 3D mountain car the 2D curve becomes a 3D surface.
The agent starts at the bottom of the hill with no kinetic energy
and attempts to reach the goal area in the Northeast corner.

Our experiments used
Fitted R-max to learn
policies in the moun-
tain car tasks. We
began by replicating
the methods and re-
sult of applying Fit-
ted R-max to 2D
mountain car task as
reported in the lit-
erature [15]. To ap-
ply Fitted R-max to
3D mountain car, we
first scaled the state
space so that each di-
mension ranges over
the unit interval, ef-
fectively scaling the
state space to a unit
hypercube. We sampled a finite state space from this hypercube by applying a grid
where each position state variable can be one of 8 values, and each velocity state vari-
able can be one of 9 values. The 3D version of mountain car has 2 of each type of
state variable; we obtained a sample X of 82 × 92 = 5184 states that approximated
the original state space state S (which determines the model’s resolution). For any
state x ∈ X and action a ∈ A, Fitted R-max estimates T (x, a) using a probability dis-
tribution over instances (si, a, ri, s

′

i) in the data available for action a. Each instance
i is given a weight wi depending on the Euclidean distance from x to si and on the

model breadth parameter b, according to the following formula: wi ∝ e
−

“

|x−si|
b

”

2

. In-
tuitively, b controls the degree of generalization used to estimate T (x, a) from nearby
data. In 3D mountain car experiments, we used a parameter of b = 0.4. In theory,
all instances that share the action a could be used to help approximate x, where each
instance i’s contribution is modified by wi (i.e., a Gaussian weighting that exponen-
tially penalizes distance from x). To reduce the computational cost of the algorithm,
for a given state x we computed the weights for the nearest instances first. Once an
instance’s weight failed to increase the cumulative weight by at least 10%, we ignored
the remaining instances’ contribution as negligible (the minFraction parameter in Al-
gorithm 1). Finally, when the accumulated weight failed to reach a threshold of 1.0,
we used Fitted R-max’s exploration strategy of assuming an optimistic transition to a
maximum-reward absorbing state.

Changing the learning parameters for Fitted R-max outlined above affects three
primary aspects of learning:

– How accurately the optimal policy can be approximated.
– How many samples are needed to accurately approximate the best policy, given

the representation.
– How much computation is required when performing dynamic programming.

For this work, it was most important to find settings which allowed the agent to
learn a reasonably good policy in relatively few episodes so that we could demonstrate

9

-500

-450

-400

-350

-300

-250

 10 100 1000 10000

A
v
e
ra

g
e
 R

e
w

a
rd

Training Episodes

3D Mountain Car: Fitted R-MAX and Sarsa

-500

-450

-400

-350

-300

-250

 10 100 1000 10000

A
v
e
ra

g
e
 R

e
w

a
rd

Training Episodes

3D Mountain Car: Fitted R-MAX and Sarsa

Fitted R−Max

Sarsa with Tile Coding

Fig. 3. Average learning curves for Fitted R-max and Sarsa show the significant speed
advantage of model-based RL on the 3D mountain car task (note the log scale). Fitted
R-max parameters where chosen for relatively low sample and computational complex-
ity requirements at the expense of asymptotic performance.

the effectiveness of timbrel on sample complexity. We do not argue that the above
parameters are optimal. They could be tuned to emphasize any of the above goals,
such as achieving higher performance in the limit.

Figure 3 compares the average performance of 12 Fitted R-max trials with 12 Sarsa
trials in the 3D mountain car task. The ǫ-greedy Sarsa(λ) agent uses a CMAC [24]
function approximator with 14 4-dimensional linear tilings, which is analogous to how
Singh and Sutton [12] used 14 2-d dimensional linear tile codings for their 2D task.7 This
result demonstrates that Fitted R-max can be tuned so that it learns with significantly
less data (finding a path to the goal in roughly 50 episodes instead of 10,000 episodes),
but does not necessarily achieve optimal performance. Learning with Fitted R-max

takes substantially more computational resources than Sarsa in this domain; the Fitted
R-max learning curves were terminated once their performance plateaued (and thus
are run for fewer episodes than Sarsa).

5 TIMBREL Implementation for Mountain Car

In this section we detail how timbrel is used to transfer between tasks in the moun-
tain car domain when using Fitted R-max as the underlying RL algorithm. Although
timbrel is a domain-independent transfer method which is designed to be compatible
with multiple model-learning RL algorithms, we will ground our exposition in the con-
text of Fitted R-max and mountain car. Throughout this section we use the subscript
S to denote actions, states, and state variables in the source task, and the subscript T

for the target task.
The core result of this paper is to demonstrate transfer between the Standard 2D

mountain car task and the 3D mountain car task. After learning the 2D task, timbrel

must be provided an inter-task mapping between the two tasks. The action mapping,

7 We achieved the best performance on this task by setting the learning rate to α = 0.5,
the exploration rate to ǫ = 0.1, λ = 0.95, not decaying α, and decaying ǫ at the end
of every episode by 0.1%.

10

χA, maps a target task action into a source task action: χA(aT) = aS, and χS maps a
target task state variable into a source task state variable: χS(s(i,T)) = s(j,S). In this
work we assume that the inter-task mapping in Table 1 is provided to the agent, but
our past work [23] has demonstrated that a mapping between the 2D and 3D mountain
car tasks may be learned autonomously. Note that the state variable mapping is defined
so that either the target task state variables (x and ẋ) or (y and ẏ) are mapped into
the source task. As we will discuss, the unmapped target task state variables will be
set by the state variables’ values in the state x that we wish to approximate.

Inter-task Mapping for Mountain Car

Action Mapping State Variable Mapping
χA(Neutral) = Neutral χS(x) = x
χA(North) = Right χS(ẋ) = ẋ
χA(East) = Right or
χA(South) = Left χS(y) = x
χA(West) = Left χS(ẏ) = ẋ

Table 1. This table describes the mapping used by
timbrel to construct target task instances from
source task data.

As discussed in Section 2, Fit-
ted R-max approximates transi-
tions from a set of sample states
x ∈ X for all actions. When the
agent initially encounters the tar-
get task, no target task instances
are available to approximate T .
Without transfer, Fitted R-max

would be unable to approximate
T (xT, aT) for any x and would set
the value of Q(sT, aT) to an opti-
mistic value (Rmax) to encourage
exploration. Instead, timbrel is used to generate target instances to help approximate
T (xT, aT).

timbrel provides a set of source task instances, as well as the inter-task mappings,
and must construct one or more target task tuples, (sT, aT, r, s′T), to help approximate
T (xT, aT). The goal of transfer is to find some source task tuple (sS, aS, r, s

′

S) where
aS = χA(aT) and sS is “near” sT (line 6 in Algorithm 2). Once we identify such a source
task tuple, we can then use χ−1 to convert the tuple into a transition appropriate for
the target task (line 9), and add it to the data approximating T (line 10).

As an illustrative example, consider the case when the agent wants to approximate
T (xT, aT), where xT = 〈xT, yT, ẋT, ẏT〉 = 〈−0.6,−0.2, 0, 0.1〉 and aT = East. timbrel

considers source task transitions that contain the action Right. χS is defined so that
either the x or y state variables can be mapped from the target task to the source task,
which means that we should consider two transitions selected from the source task
instances. The first tuple is selected to minimize the Euclidean distances D(xT, xS) and
D(ẋT, ẋS), where each distance is scaled by the range of the state variable. The second
tuple is chosen to minimize D(yT, xS) and D(ẏT, ẋS).

Continuing the example, suppose that the first source task tuple selected was

(〈−0.61, 0.01〉, Right,−1, 〈−0.59, 0.02〉).

If the inter-task mapping defined mappings for the x and y state variables simultane-
ously, the inverse inter-task mapping could be used to convert the tuple into

(〈−0.61,−0.61, 0.01, 0.01〉, East,−1, 〈−0.59,−0.59, 0.02, 0.02〉).

However, this point is not near the current xT we wish to approximate. Instead, we
recognize that this sample was selected from the source task to be near to xT and
ẋT, and transform the tuple, assuming that yT and ẏT are kept constant. With this
assumption, we form the target task tuple

(〈−0.61, yT, 0.01, ẏT〉, East,−1, 〈−0.59, yT, 0.2, ẏT〉) =

(〈−0.61,−0.2, 0.01, 0.1〉, East,−1, 〈−0.59,−0.2, 0.02, 0.1〉).

11

The analogous step is then performed for the second selected source task tuple: the
source task tuple is transformed with χ, and xT and ẋT are held constant. Finally, both
transferred instances are added to the T (x, a) approximation.

timbrel thus transfers pairs of source task instances to help approximate the tran-
sition function. Other model-learning methods may need constructed trajectories in-
stead of individual instances, but timbrel is able to generate trajectories as well. Over
time, the learner will approximate T (xT, aT) for different values of (x, a) in order to
construct a model for the target task environment. Any model produced via this trans-
fer may be incorrect, depending on how representative the saved source task instances
are of the target task (as modified by χ). However, our experiments demonstrate that
using transferred data may allow a model learner to produce a model that is more
accurate than if the source data were ignored.

As discussed in Section 4.3, Fitted R-max uses the distance between instances
and x to calculate instance weights. When an instance is used to approximate x, that
instance’s weight is added to the total weight of the approximation. If the total weight
for an approximation does not reach a threshold value of 1.0, an optimistic value
(Rmax) is used because not enough data exists for an accurate approximation. When
using timbrel, the same calculation is performed, but now instances from both the
source task and target task can be used.

As the agent interacts with the target task, more transitions are recorded and the
approximations of the transition function at different (x, a) pairs need to be recalculated
based on the new information. Each time an approximation needs to be recomputed,
Fitted R-max first attempts to use only target task data. If the number of instances
available (where instances are weighted by their distance from x) does not exceed the
total weight threshold, source task data is transferred to allow an approximation of
T (xT, aT). This process is equivalent to removing transferred source task data from the
model as more target task data is observed and therefore allows the model’s accuracy
to improve over time. Again, if the total weight from source task and target tasks
instances for an approximated x does not reach 1.0, Rmax is assigned to the model for
x.

As a final implementation note, consider what happens when some x maps to an sS

that is not near any experienced source task data. If there are no source task transitions
near sS, it is possible that using all available source task data will not produce an
accurate approximation (recall that instance weights are proportional to the square of
the distance from the instance to x). To avoid a significant reduction in performance
with limited improvement in approximating T , we imposed a limit of 20 source task
tuples when approximating a particular point (line 5). This threshold serves a similar
purpose as the 10% cumulative weight threshold discussed in Section 4.3.

6 Transfer Experiments

To test the efficacy of timbrel, we first conducted an experiment to measure the learn-
ing speed of Fitted R-max in the mountain car domain with and without timbrel.
Roughly 50 different sets of Fitted R-max parameters were used in preliminary experi-
ments to select the best settings for learning the 3D task without transfer (as discussed
in Section 4.3). We ran 12 trials for 4,000 episodes and found that 10 out of 12 trials
were able to converge to a policy that found the goal area. Recall that Fitted R-max is
not guaranteed to converge to an optimal policy because it depends on approximation
in a continuous state space.

12

To transfer from the Standard 2D mountain car task into the more complex 3D
mountain car, we first allow 12 Fitted R-max agents to train for 100 episodes each in
the 2D task while recording all observed (s, a, r, s′) transitions.8 We then used timbrel

to train agents in the target task for 1,000 episodes. 12 out of 12 trials converged to a
policy that found the goal area.

After learning, we averaged over all trials for the non-transfer and transfer learning
trials. For clarity, we also smoothed the curves by averaging over a 10 episode window.
Figure 4(a) shows the first 1000 episodes of training (running the experiments longer
than 1,000 episodes did not significantly improve the policy, as suggested by Figure 3).
T-tests determined that all the differences in the averages were statistically significant
(p < 0.05), with the exception of the initial average at episode 9. This result confirms
that transfer can significantly improve the performance of agents in the 3D mountain
car task.

We hypothesize that the U-shaped transfer learning curve is caused by a group of
agents that find an initial path to the goal, spend some number of episodes exploring
to find a faster path to the goal, and ultimately return to the original policy (see
Figure 4(b)). In addition to improved initial performance, the asymptotic performance
is improved, in part because some of the non-transfer tasks failed to successfully locate
the goal. The difference in success rates (10 of 12 trials reaching the goal vs. 12 of 12)
suggest that transfer may make difficult problems more tractable.

timbrel, and its implementation, were designed to minimize sample complexity.
However, it is worth noting that there is a significant difference in the computational
complexity of the transfer and non-transfer methods. Every time the transfer agent
needs to use source task data to estimate T , it must locate the most relevant data
and then insert it into the model. Additionally, the transfer agent has much more
data available initially, and thus its dynamic programming step is significantly slower
than the non-transfer agent.9 These factors cause the transfer learning trials to take
roughly twice as much wall clock time as the non-transfer trials. While our code could
be better optimized, using the additional transferred data will always slow down the
agent, relative to an agent that is not using transfer, but is running for the same
number of episodes. However, in many domains a tradeoff of increasing computational
requirements and reducing sample complexity is highly advantageous, and is one of the
benefits inherent to model-based reinforcement learning.

Our second experiment examines how the amount of recorded source task data
affects transfer. One hypothesis was that more tuples in the source task would equate
to higher performance in the target task, because the target task agent would have
more data to draw from, and thus would be better able to approximate any given
T (x, a).

We first ran experiments in the Standard 2D task for 5, 10, and 20 episodes, where
the average number of steps per episode was 422, 298, 238, respectively.10 Figure 5(a)

8 We experimented with roughly 10 different parameter settings for Fitted R-max in
the Standard 2D task. Every episode lasts 500 time steps if the goal is not found
and the 2D goal state can be reached in roughly 150 time steps. When learning 2D
Mountain car, the agent experienced an average of 24,480 source task transitions
during the 100 source task episodes.

9 An analysis of the increase in computational complexity depends on the amount of
data transferred into a target task, which in turn depends on the pair of tasks used.

10 The average number of steps per episode decreases for longer trials because the agent
quickly learns to find the goal.

13

-480

-460

-440

-420

-400

-380

-360

-340

-320

 0 100 200 300 400 500 600

A
v
e
ra

g
e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

-480

-460

-440

-420

-400

-380

-360

-340

-320

 0 100 200 300 400 500 600

A
v
e
ra

g
e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

-480

-460

-440

-420

-400

-380

-360

-340

-320

 0 100 200 300 400 500 600

A
v
e
ra

g
e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

-480

-460

-440

-420

-400

-380

-360

-340

-320

 0 100 200 300 400 500 600

A
v
e
ra

g
e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

Transfer from standard 2D task

No Transfer

-500

-450

-400

-350

-300

-250

 0 100 200 300 400 500

R
e
w

a
rd

Training Episodes

Example Transfer Trials in 3D Mountain Car

-500

-450

-400

-350

-300

-250

 0 100 200 300 400 500

R
e
w

a
rd

Training Episodes

Example Transfer Trials in 3D Mountain Car

(a) (b)
Fig. 4. (a) timbrel significantly improves the speed of Fitted R-max on the 3D moun-
tain car. The average performance is plotted every 10 episodes along with the standard
error. (b) As Fitted R-max explores, the performance can vary significantly, sometimes
resulting in a U-shaped learning curve.

shows that transfer from 20 source task episodes is similar to using 100 source task
episodes and performs statistically better than no transfer at the 95% level for 98 of the
100 points graphed. While transfer performance degrades for trials that use 10 and 5
source task episodes, both trials do show a statistically significant boost to the agents’
initial learning performance. This result demonstrates that a significant amount of
information can be learned in just a few source task episodes; the source task is less
complex than the target and thus a short amount of time spent learning in the source
may have a large impact on the target task performance.

Recall the mountain car has a reward of −1 on each time step. The agent learns to
reach the goal area because transitioning into this area ends the episode and the steady
stream of negative reward. The third experiment uses the No Goal 2D task as a source
task to examine how changing the reward function in the source task affects transfer.
When training in the source task, every episode lasted 500 time steps (the maximum
number of steps). After learning for 100 episodes in the source task, we transferred
into the target task and found that 9 of the 12 trials successfully discovered policies
to reach the goal area. Figure 5(b) suggests that transfer from a source task policy
with a different reward structure can be initially useful (t-tests confirm that transfer
outperforms non-transfer for four of the first five points graphed), but the relative
performance of the non-transfer trials soon outperform that of learning with transfer.

Our fourth experiment uses the High Power 2D task as a source task. We again
record 100 episodes worth of data for source task learners and use timbrel to transfer
into 3D mountain car. Because the source task uses a car with a motor more than
twice as powerful as in the 3D task, the transition function learned in the source task
is less useful to the agent in the target task. 9 of the 12 target task trials successfully
converged to a policy that reached the goal. Transferring from the High Power 2D task
(Figure 5(b)) is not as useful as transferring from the Standard 2D Task (Figure 5(a))
due to differences in the transition functions. Although t-tests show that there is a
statistically significant improvement at the beginning of learning, the transfer and
non-transfer curves in Figure 5(b) quickly become statistically indistinct with more
target task training.

14

-400

-390

-380

-370

-360

-350

-340

-330

-320

 0 200 400 600 800 1000

A
v
e

ra
g

e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

-400

-390

-380

-370

-360

-350

-340

-330

-320

 0 200 400 600 800 1000

A
v
e

ra
g

e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

-400

-390

-380

-370

-360

-350

-340

-330

-320

 0 200 400 600 800 1000

A
v
e

ra
g

e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

-400

-390

-380

-370

-360

-350

-340

-330

-320

 0 200 400 600 800 1000

A
v
e

ra
g

e
 R

e
w

a
rd

Training Episodes

Transfer into 3D Mountain Car

No Transfer

Transfer: 5 source task episodes

Transfer: 10 source task episodes

Transfer: 20 source task episodes

-400

-390

-380

-370

-360

-350

 0 200 400 600 800 1000

A
v
e

ra
g

e
 R

e
w

a
rd

Training Episodes

Supplemental Source Tasks

-400

-390

-380

-370

-360

-350

 0 200 400 600 800 1000

A
v
e

ra
g

e
 R

e
w

a
rd

Training Episodes

Supplemental Source Tasks

-400

-390

-380

-370

-360

-350

 0 200 400 600 800 1000

A
v
e

ra
g

e
 R

e
w

a
rd

Training Episodes

Supplemental Source Tasks

No Transfer

Transfer: High Power 2D

Transfer: No Goal 2D

(a) (b)
Fig. 5. (a) This graph shows the effect of different amounts of source task training.
Each learning curve is the average of 12 independent trials. (b) Transfer from a 2D
mountain car task that has no goal state or from a 2D mountain car with significantly
stronger acceleration produces statistically significant improvements at the beginning
of learning when compare to learning without transfer. However, this relative advantage
is lost as the target task agents gain more experience.

Figure 5(b) highlights an important drawback of transfer learning. Transfer efficacy
is often affected by the similarity of source tasks and target tasks, and in some cir-
cumstances transfer may not help the learner. Indeed, other experiments (not shown)
confirm that if T or R in the source and target tasks are too dissimilar, transfer may
actually cause the learner to learn more slowly than if it had not used transfer. While
there is not yet a general solution to avoiding negative transfer, our recent results [23]
suggest that the “relatedness” of tasks may be possible to measure empirically, and
may guide learners when deciding whether or not to transfer.

7 Conclusion and Future Work

In this paper we have introduced timbrel, a transfer method fully compatible with
model-based reinforcement learning. We demonstrate that when learning 3D mountain
car with Fitted R-max, timbrel can significantly reduce the sample complexity and
demonstrated how transfer is affected by changes to the source task’s reward and
transfer functions.

There are a number of future research directions suggested by this work. It would
be informative to study how transfer efficacy changes when the amount of exploration
is changed in the source task. Put differently, if the agent has 100 episodes to learn the
source task, can it intelligently set its parameters to maximize transfer efficacy? In our
experiments we used the default threshold value of 1.0 to determine if a particular ap-
proximation of T (xT, aT) has enough data. This is related to the amount of exploration

15

and its value may impact the efficacy of transfer, but tuning this parameter is left to
future work.

All parameters for Fitted R-max were tuned when learning without transfer. It is
possible that the model breadth parameter, b, may change the efficacy of transfer. Sec-
tion 5 specified that a maximum of 20 source task instances were used to approximate
a single target task transition. This parameter was set during initial experimentation,
but further tuning could improve transfer performance. Lastly, none of the experi-
ments using Fitted R-max attained an asymptotic performance equivalent to Sarsa
(Figure 3). It may be worth re-tuning the base learning algorithm’s parameters to
maximize asymptotic performance (at the expense of computational and sample com-
plexity), and then determine if timbrel can compensate so that learning experiments
terminate in a reasonable amount of time.

We predict that timbrel will work, possibly with minor modifications, in other
model-based RL algorithms. For instance, timbrel could be directly used in the plan-
ning phase of Dyna-Q [1] as a source of simulated experience when the agent’s model
is poor (such as at the beginning of learning a target task). timbrel should also be
useful, without modification, in R-max.

Lastly, we intend to apply timbrel in more complex domains with continuous
state spaces (which may show relatively more benefit from transfer than the simple
tasks discussed in Section 6 [6]). Although this paper focuses on tasks in the mountain
car domain, Algorithm 2 is applicable in many settings. Future work to empirically
determine how well timbrel functions in other domains, and when applied to pairs
of tasks with qualitative differences not explored in this paper, will help to better
understand and quantify the benefits that instance transfer provides.

Acknowledgments

We would like to thank Lilyana Mihalkova, Joseph Reisinger, Raymond J. Mooney,
and the anonymous reviewers for helpful comments and suggestions. This research
was supported in part by DARPA grant HR0011-04-1-0035, NSF CAREER award
IIS-0237699, and NSF award EIA-0303609.

References

1. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press
(1998)

2. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation 6(2) (1994) 215–219

3. Ng, A.Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,
Liang, E.: Inverted autonomous helicopter flight via reinforcement learning. In:
International Symposium on Experimental Robotics. (2004)

4. Kohl, N., Stone, P.: Machine learning for fast quadrupedal locomotion. In: The
Nineteenth National Conference on Artificial Intelligence. (July 2004) 611–616

5. Torrey, L., Walker, T., Shavlik, J., Maclin, R.: Using advice to transfer knowledge
acquired in one reinforcement learning task to another. In: Proceedings of the
Sixteenth European Conference on Machine Learning. (2005)

6. Taylor, M.E., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for
temporal difference learning. Journal of Machine Learning Research 8(1) (2007)
2125–2167

16

7. Lazaric, A., Restelli, M., Bonarini, A.: Transfer of samples in batch reinforcement
learning. In: Proceedings of the 25th Annual ICML. (2008) 544–551

8. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine Learning 23(1) (1996) 69–101

9. Caruana, R.: Multitask learning. Machine Learning 28 (1997) 41–75
10. Wilson, A., Fern, A., Ray, S., Tadepalli, P.: Multi-task reinforcement learning: a

hierarchical bayesian approach. In: ICML ’07: Proceedings of the 24th international
conference on Machine learning, New York, NY, USA, ACM Press (2007) 1015–
1022

11. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, UK (1989)

12. Singh, S., Sutton, R.S.: Reinforcement learning with replacing eligibility traces.
Machine Learning 22 (1996) 123–158

13. Ng, A.Y., Jordan, M.: PEGASUS: A policy search method for large MDPs and
POMDPs. In: Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence. (2000)

14. Brafman, R.I., Tennenholtz, M.: R-Max – a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research 3
(2002) 213–231

15. Jong, N.K., Stone, P.: Model-based exploration in continuous state spaces. In: The
Seventh Symposium on Abstraction, Reformulation, and Approximation. (July
2007)

16. Bellman, R.E.: Dynamic Programming. Princeton University Press (1957)
17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc. (1994)
18. Atkeson, C.G., Santamaria, J.C.: A comparison of direct and model-based re-

inforcement learning. In: Proceedings of the 1997 International Conference on
Robotics and Automation. (1997)

19. Tanaka, F., Yamamura, M.: Multitask reinforcement learning on the distribution
of MDPs. Transactions of the Institute of Electrical Engineers of Japan. C 123(5)
(2003) 1004–1011

20. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with
less data and less time. Machine Learning 13 (1993) 103–130

21. Dearden, R., Friedman, N., Andre, D.: Model based bayesian exploration. In:
Proceedings of the 1999 conference on Uncertainty in AI. (1999) 150–159

22. Sunmola, F.T., Wyatt, J.L.: Model transfer for Markov decision tasks via param-
eter matching. In: Proceedings of the 25th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG 2006). (December 2006)

23. Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforcement
learning. In: The Seventh International Joint Conference on Autonomous Agents
and Multiagent Systems. (May 2008)

24. Albus, J.S.: Brains, Behavior, and Robotics. Byte Books, Peterborough, NH (1981)

