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ABSTRACT
Evolutionary algorithms are sensitive to the mutation rate (MR);

no single value of this parameter works well across domains. Self-

adaptive MR approaches have been proposed but they tend to be

brittle: Sometimes they decay the MR to zero, thus halting evo-

lution. To make self-adaptive MR robust, this paper introduces

the Group Elite Selection of Mutation Rates (GESMR) algorithm.

GESMR co-evolves a population of solutions and a population of

MRs, such that each MR is assigned to a group of solutions. The

resulting best mutational change in the group, instead of average

mutational change, is used for MR selection during evolution, thus

avoiding the vanishing MR problem. With the same number of

function evaluations and with almost no overhead, GESMR con-

verges faster and to better solutions than previous approaches on

a wide range of continuous test optimization problems. GESMR

also scales well to high-dimensional neuroevolution for supervised

image-classification tasks and for reinforcement learning control

tasks. Remarkably, GESMR produces MRs that are optimal in the
long-term, as demonstrated through a comprehensive look-ahead

grid search. Thus, GESMR and its theoretical and empirical analy-

sis demonstrate how self-adaptation can be harnessed to improve

performance in several applications of evolutionary computation.
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1 INTRODUCTION
Biological evolution has produced an incredible diversity of life

that is seen everywhere. In this process, the solutions and the

mechanisms co-evolve end-to-end, including the mutation rate

[MR; 24]. Self-adaptation of MRs (SAMR) is a technique common in

the literature of genetic algorithms (GA) that encapsulates this idea

of end-to-end evolution of the MR along with the individuals [2, 8,

25, 33]. The idea is to assign each individual its own MR, creating

a pair. The pairs are then evolved end-to-end using the assigned

MR for mutating the individual and a “meta" MR for mutating the

assigned MR.

However, this approach often runs into the problem that the

MRs produced decay to zero, causing evolution to stop at a sub-

optimal value. If instead the MR were fixed at some moderate value,

evolution would continue and find a better function value [7, 12, 29].

This premature convergence can be attributed to the fact that most

mutations hurt the fitness of an individual [7], and thus an effective

way for an individual to preserve its fitness into the next generation

is to have no mutation. Thus, SAMR ignores the long-term goal of

evolution to explore the fitness landscape and find better solutions

in future generations [7].

To counteract this effect, this paper proposes a novel GA based

on supportive co-evolution [13] of solutions and MRs, entitled

Group Elite Selection of Mutation Rates (GESMR). After assigning

each MR to a group of solutions, the solutions are evolved using

that MR, and the MRs are evolved according to the best change
in function value from the MR’s solution group, defined as the

“group elite". By targeting the MR that produces the best change in
function value, given many mutation samples, GESMR can mitigate

the vanishing MR problem. Additionally, GESMR is straightforward

to implement and requires nomore function evaluations than a fixed

MR GA, and thus can be applied to a wide range of GA problems.

In prior work, a related approach using the idea of group elites

was formulated as a multi-armed bandit problem and applied to
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entire genetic operators in an ad-hoc manner [11, 38]. In contrast,

this paper demonstrates that the approach is most effective when

focused on MRs, and it also makes it possible to understand this

result both empirically and theoretically.

Evaluation of GESMR is performed on common benchmark test

optimization problems from the GA literature. To show that the

method scales well to harder problems, it is also evaluated on neu-

roevolution for image classification in the MNIST/Fashion-MNIST

domain and on reinforcement learning for control in the CartPole,

Pendulum, Acrobot, and MountainCar domains. For comparison,

results of several adaptive MR algorithms including an oracle op-

timal fixed MR, an oracle look-ahead MR (that uses foresight to

determine MR), self-adaptive MR, the multi-armed bandit method

[11], and some common heuristic methods [28] are also reported.

GESMR outperforms other algorithms in most tasks. Even when

SAMR prematurely converges, like in problems with especially

rugged fitness landscapes [7], GESMR does not. As a matter of fact,

GESMR performs as well as the oracle look-ahead MR in function

value and even matches the MR to the empirically estimated long-
term optimal MR. To explain why, the statistical distribution of the

change in function value for a spectrum of MRs for different func-

tion landscapes is empirically analyzed and visualized. This analysis

shows that SAMR is minimizing an MR objective whose optimal

MR is zero in rugged landscapes, while GESMR is minimizing an

objective whose optimal MR is nonzero.

2 RELATEDWORK
Research on mutation rates (MRs) is one of the most studied sub-

fields of genetic algorithms [1, 3, 10, 17–19].

Fixed MRs: Lots of theoretical and empirical work has been done

on finding the optimal fixed MR for specific problems [4, 15], find-

ing heuristics like the MR should be proportional to 1/𝐿 where 𝐿 is

the length of the genotype [9, 26]. Evolutionary bilevel optimiza-

tion tries to find the optimal evolutionary parameters, including

MR, by running an inner evolution with an outer loop searching

over parameters [21, 32]. However, it is commonly known that the

optimal MR is constantly changing during evolution [27].

Deterministic MRs: Deterministic MRs are common but these are

ad hoc functions to change the MR as a function of the number

of generations, and may not generalize to unseen problems with

different landscapes [1].

Adaptive MRs: Adaptive MRs are also common [9, 27, 31, 34, 37]

but these rely on another ad hoc system to determine how to alter

the MR given feedback from the evolution. A common technique is

to maintain a MR that produces mutations of which only one-fifth

are beneficial [18, 28], by increasing MR when the percentage of

successful mutations is greater than 1/5 (and vice versa). Although

this technique is based on empirical findings, it is ad-hoc, does not

generalize to different landscapes, requires a hardcoded threshold,

and has been shown to lead to premature convergence when elitism

is employed [29].

Self-Adaptive MRs: Perhaps the most promising and evolution-

arily plausible class of adapting MRs is that of self-adapting MRs

[1, 2, 14, 19, 37]. This technique concatenates an MR to each in-

dividual and evolves the MRs and individuals in one end-to-end

evolutionary process. However, many previous works have shown

this process to be brittle and lead to premature convergence of evo-

lution as the MRs decay and vanish [7, 12, 25, 29]. In the instances

where self-adapting MRs succeed, the authors attribute the cause to

be from a relatively smooth fitness landscape [7, 12], or high selec-

tion pressure [23]. The cause of general premature convergence in

rugged landscapes is attributed to the fact that most mutations are

deleterious, causing self-adaptation to prefer solutions that mutate

less and preserve the fitness of each individual [7, 12]. Clune et al.

[7] mention that, in this way, evolution is short-sighted: it cannot

adapt MRs to be optimal for the long-term, only optimizing for

short-term performance.

Outlier-Based MRs: Some works have proposed looking at the

best mutation produced by a certain mutation operator to judge the

quality of the operator [11, 38], with the motivation that an operator

that produces infrequent large fitness gains is preferred to one

that produces frequent small fitness gains. However, these works

model the operator selection as a multi-armed bandit problem. This

technique is not only unnatural to evolution, it is also limited by

the expressiveness of the arms used and assumes independent arms,

thus failing to capture the continuous spectrum that the MR exists

in.

CMA-ES:. One of the most successful forms of adapting the

spread of a population during an evolutionary search is with Co-

variance Matrix Adaptation Evolution Strategy (CMA-ES) [16]. It

relies on maintaining a covariance matrix, which requires quadratic

time and space in the solution vector length. Thus, CMA-ES does

not scale to larger problems like deep neuroevolution with millions

of parameters [35]. In contrast, GESMR and GAs in general are

linear wrt. solution length.

3 METHOD
This section first provides the formal problem definition, a discus-

sion of the general class of genetic algorithms, and then briefly

describes a previous adaptive mutation rate (MR) method and its

associated vanishing MR problem. Finally this section proposes

the Group Elite Selection of Mutation Rates (GESMR) algorithm

that addresses this problem with better performance and almost no

extra overhead.

3.1 Problem Formulation
Consider the general optimization problem where the goal is to

find the best decision variable 𝑥∗ ∈ R𝑑 that minimizes a target

function 𝑓 (e.g. the negative fitness function in the genetic algorithm

literature). The objective is therefore

argmin

𝑥 ∈R𝑑
𝑓 (𝑥). (1)

3.2 Genetic Algorithms and the Mutation Rate
A genetic algorithm (GA) evolves a population of 𝑁 + 1 candidate
solutions/individuals 𝑥0, . . . , 𝑥𝑁 over time that progressively mini-

mize the objective in Eq. 1. At each evolution time step 𝑡 , the current

population is {𝑥 (𝑡 )
𝑖
}𝑁
𝑖=0

.
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Figure 1: Comparison of GESMR against a fixed MR GA and SAMR. Fixed MR GA only evolves the solution with a given MR.
SAMR evolves pairs of solutions and MRs. GESMR co-evolves a population of solutions and a population of MRs separately.
Each MR is assigned a group and the MRs are evolved using the best function value gain in the MR’s corresponding group.

To produce the next generation, a GA consists of 1) selection of

individuals, 2) mutation of individuals, and 3) crossover of individ-

uals.

The common truncation selection method with one elite is used

in this paper. Truncation selection creates a new set of 𝑁 + 1 solu-
tions by keeping the single best “elite" solution from the population

(known as elitism) and uniformly sampling the rest of the 𝑁 solu-

tions from the top 𝜂𝑥 portion of the population with replacement

(better solution has lower 𝑓 (𝑥) value) [35].
Since it is a common way to mutate a continuous genotype 𝑥

[35], the Gaussian mutation operator𝑀 : R𝑑 → R𝑑 is used, which

produces 𝑥 ′ with

𝑥 ′ ∼ 𝑀 (𝑥 ;𝜎) ≜ 𝑥 + 𝜎𝜖, and 𝜖 ∼ N(0, 𝐼 ). (2)

where N(0, 𝐼 ) denotes a standard multi-variate normal distribu-

tion in R𝑑 . 𝜎 ∈ R≥0 represents the mutation rate (MR), which

constrains how different 𝑥 ′ could be from 𝑥 .

Crossover is used to mix information between solutions, essen-

tially allowing traits to be transferred to another solution. For the

sake of simplicity and to isolate the mutation operator, which is

the main focus of this work, no crossover operator is used since

crossover is not a necessary mechanism in GAs [35].

For conventional GA algorithms, a fixed MR is chosen a priori

based on the user’s preference or prior knowledge. Clearly, a too

small 𝜎 will slow down evolution and a too large 𝜎 will tend towards

random search, a tuned 𝜎 is needed. It has also been shown that

the optimal 𝜎 changes over the course of evolution, e.g. a small 𝜎

is often needed to “fine tune" the solutions at the end of evolution

[6]. As a result, the adaptive MR field studies how to dynamically

adapt this 𝜎 for faster learning and better convergence. Among

previous adaptive MR methods, a well-known and commonly used

method is the self-adaptation of MR (SAMR) [1, 2, 14, 19, 37]. This

method attaches to each solution 𝑥𝑖 its own MR, 𝜎𝑖 . These pairs

{(𝑥𝑖 , 𝜎𝑖 )} are then evolved, by selection on the pairs and mutating

the 𝑥𝑖 using 𝜎𝑖 and mutating 𝜎𝑖 using an external fixed meta MR 𝜏 .

In practice, a well-known drawback of SAMR is that the MRs

produced could prematurely converge to zero over time [7, 12,

Algorithm 1 One step of GESMR

Input: current solutions {𝑥 (𝑡 )
𝑖
}𝑁
𝑖=0

, current mutation rates

{𝜎 (𝑡 )
𝑘
}𝐾
𝑘=1

, the selection rates 𝜂𝑥 , 𝜂𝜎 , and the meta mutation rate, 𝜏 .

Output: next generation of solutions {𝑥 (𝑡+1)
𝑖
}𝑁
𝑖=0

and mutation

rates {𝜎 (𝑡+1)
𝑘

}𝐾
𝑘=1

.

1: // 1. Evolve the solutions

2: {𝑥 (𝑡 )
𝑖
}𝑁
𝑖=0
← sort {𝑥 (𝑡 )

𝑖
}𝑁
𝑖=0

with ascending 𝑓 (𝑥 (𝑡 )
𝑖
)

3: Generate {𝑥 (𝑡 )
𝑖
}𝑁
𝑖=0

according to Eq. 3 {Selection}

4: Generate {𝑥 (𝑡+1)
𝑖
}𝑁
𝑖=0

according to Eq. 4{Mutation}

5: // 2. Evolve the mutation rates

6: Calculate Δ
(𝑡 )
𝑘

according to Eq. 5 {MR worth}

7: {�̂� (𝑡 )
𝑘
}𝐾
𝑘=1
← sort {𝜎 (𝑡 )

𝑘
}𝐾
𝑘=1

with ascending Δ
(𝑡 )
𝑘

8: Generate {�̃� (𝑡 )
𝑘
}𝐾
𝑘=1

according to Eq. 6 {Selection}

9: Generate {𝜎 (𝑡+1)
𝑘

}𝐾
𝑘=1

according to Eq. 7{Mutation}

10: return {𝑥 (𝑡+1)
𝑖
}𝑁
𝑖=1

and {𝜎 (𝑡+1)
𝑗
}𝐾
𝑗=1

29], which is referred to here as the vanishing mutation rate
problem (VMRP). One might try to simply clip the MR to a lower

bound, but a single lower bound that maintains exploration early on

while still allowing for fine tuning later may not exist [6]. Therefore,

there exists a need for a better adaptive MR strategy.

3.3 Group Elite Selection of Mutation Rates
This section presents Group Elite Selection of Mutation Rates

(GESMR), to adapt MRs on the fly, along with empirical evidence

that GESMR mitigates the VMRP and outperforms previous adap-

tive MR methods. For visualization of GESMR, refer to Fig. 1.

GESMR keeps a set of 𝐾 positive scalar MRs {𝜎𝑘 }𝐾𝑘=1, where
𝑁 ≡ 0 (mod 𝐾), and co-evolves them with the 𝑁 + 1 candidate

solutions, so that the 𝜎s do not decay to zero.
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At each optimization step 𝑡 , the current population, {𝑥 (𝑡 )
𝑖
}𝑁
𝑖=0

is

first sorted in ascending order of 𝑓 (𝑥 (𝑡 )
𝑖
), giving {𝑥 (𝑡 )

𝑖
}𝑁
𝑖=0

. Trunca-

tion selection with one elite is applied to get the next generation

parents, {𝑥 (𝑡 )
𝑖
}𝑁
𝑖=0

, with

𝑥
(𝑡 )
𝑖

=

{
𝑥
(𝑡 )
0

𝑖 = 0

∼ U{𝑥 (𝑡 )
0
, . . . , 𝑥

(𝑡 )
𝑚−1} 𝑖 = 1, . . . , 𝑁

(3)

and𝑚 = 𝜂𝑥𝑁 (number of solutions for parent selection).

Then, the non-elite solutions, {𝑥 (𝑡 )
1
}𝑁
𝑖=1

are split into 𝐾 groups

of equal size (i.e. each group has 𝑁 /𝐾 solutions) and each group is

assigned a different 𝜎𝑘 . Without loss of generality, 𝜎𝑘 corresponds

to {𝑥 (𝑡 )(𝑘−1)𝑁 /𝐾+1, . . . , {𝑥
(𝑡 )
𝑘𝑁 /𝐾 }. To form the next generation, each

𝑥
(𝑡 )
𝑖

is then mutated according to its corresponding 𝜎𝑘 , while the

elite is unaltered:

𝑥
(𝑡+1)
𝑖

=

{
𝑥
(𝑡 )
0

𝑖 = 0

∼ 𝑀 (𝑥 (𝑡 )
𝑖

;𝜎 ⌊𝑖𝐾/𝑁 ⌋ ) 𝑖 = 1, . . . , 𝑁
(4)

After the next generation of {𝑥 (𝑡+1)
𝑖
}𝑁
𝑖=0

are found, GESMR

evolves the MRs, {𝜎𝑘 }𝐾𝑘=1 using another separate but similar GA

with one elite, truncation selection, and a different mutation opera-

tor.

For each 𝜎𝑘 , its negative fitness is calculated by considering the

best change in function value it has produced:

Δ
(𝑡 )
𝑘

≜ Δ(𝜎 (𝑡 )
𝑘
) =

𝑘𝑁 /𝐾
min

𝑖=(𝑘−1)𝑁 /𝐾+1

(
𝑓 (𝑥 (𝑡+1)

𝑖
) − 𝑓 (𝑥 (𝑡 )

𝑖
)
)
. (5)

First the MR population is sorted by this Δ
(𝑡 )
𝑘

, producing {�̂�𝐾
𝑘=1
}.

Truncation selection with one elite is applied to get the next gener-

ation parent MRs {𝜎𝑘 }𝐾𝑘=1 with

�̃�
(𝑡 )
𝑘

=

{
�̂�
(𝑡 )
1

𝑘 = 1

∼ U{�̂� (𝑡 )
1
, . . . , �̂�

(𝑡 )
𝑙
} 𝑘 = 2, . . . , 𝐾

(6)

and 𝑙 = 𝜂𝜎𝐾 (number of MRs for parent selection). The mutation

operator associated with the 𝜎s is

𝜎 ′ ∼ 𝑀𝜎 (𝜎 ;𝜏) ≜ 𝜎𝜏𝜖 and 𝜖 ∼ U(−1, 1)

whereU(−1, 1) represents a continuous uniform distribution on R
and 𝜏 represents a fixed meta mutation rate.

The next generation of MRs is produced by mutating the parent

MRs, while the elite parent is unaltered:

𝜎
(𝑡+1)
𝑖

=

{
�̃�
(𝑡 )
1

𝑖 = 1

∼ 𝑀𝜎 (�̃� (𝑡 )𝑖 ;𝜏) 𝑖 = 2, . . . , 𝐾
(7)

One full step of GESMR is described in Alg. 1.

The performance of GESMR depends on the number of groups,

𝐾 . When 𝐾 = 1, GESMR recovers the fixed-MR method. When

𝐾 = 𝑁 , each solution aside from the elite is assigned a different

MR, a method reminiscent of the SAMR method. The experiment

section shows that in practice the optimal 𝐾 lies between 1 and 𝑁 ,

and uncovers a heuristic on how to choose such a 𝐾 .

4 EXPERIMENT
The experiments in this section are designed to answer the follow-

ing questions:

(1) How does GESMR compare to other methods in terms of

the quality of function values found and how quickly it

converges to those values?

(2) Does SAMR suffer from the Vanishing Mutation Rate Prob-

lem (VMRP)? Does GESMR solve this problem, and can it

produce MRs that are optimal in a long-term sense?

(3) What parts of GESMR are vital to its success?

(4) Why is GESMR more successful than SAMR?

(5) What is the optimal group size in GESMR and how much

does this parameter matter?

(6) Does GESMR generalize to the high-dimensional loss land-

scapes of neuroevolution?

(7) Does GESMR generalize to neuroevolution for reinforcement

learning control tasks?

4.1 Comparison Algorithms
For comparison, the following MR selection and adaptation algo-

rithms are evaluated in various optimization problems:

• †OFMR: Optimal fixed MR found with a grid search;

• †LAMR-𝐺 : MR determined at every 𝐺 generations by

“looking ahead," that is, by running a grid search multiple

times and picking the MR that produces the best elite in an-

other evolution run (initialized with the current population

and run for 𝐺 generations);

• FMR: A fixed MR of 𝜎 = 0.01;

• 1CMR A fixed MR of 𝜎 = 1/𝑑 [26];

• 15MR: MR is doubled if the percentage of beneficial muta-

tions is above 1/5 in the current generation and cut in half if

not [28];

• UCB/𝑅: The adaptive MR method proposed by Fialho et al.

[11], implemented with a multi-armed bandit with 𝑅 arms

(each corresponding to a different MR), and sampling an

arm every generation using the upper confidence bound

algorithm [11];

• SAMR: Self-adaptation of MR, where each solution is as-

signed its own MR and evolved end-to-end;

• GESMR: The method of Algorithm 1;

• GESMR-AVG: The method of Algorithm 1 with the min in

Eq. 5 replaced with the mean;

• GESMR-FIX: The method of Algorithm 1 with the MRs

fixed to the initial population and not evolved further.

Details for the parameters of these algorithms are provided in Ap-

pendix A. The †represents that the algorithm is an oracle using

foresight (looking ahead of the current evolution step) to determine

the MR and should not be compared against directly. Note that

LAMR-𝐺 specifically uses foresight to determine the best MR for

the next𝐺 generations. With sufficiently large𝐺 , its MRs thus serve

as an empirical estimate of the optimal long-term MRs at any point

during evolution.
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Figure 2: Elite function value and average mutation rate
(MR) over generations of evolution by different adaptiveMR
methods, applied to four test optimization problems. Notice
GESMR outperforms other methods in function value and
is able to match its MR to the one from LAMR-100.

4.2 Test Optimization Functions
All algorithms are evaluated on common test functions: Ackley,

Griewank, Rastrigin, Rosenbrock, Sphere, and Linear [36]. Defini-

tions of these test functions are provided in Appendix B.1. Each

function is evaluated for dimension 𝑑 ∈ {2, 10, 100, 1000}, with the

initial population sampled fromN(0, I) andN(0, 102I) (referenced
in table as std with values 1 and 10). These functions were chosen

because they are common in the GA literature and they span a di-

verse range of ruggedness for function landscapes [22]. All results

are averaged over five seeds.

Fig. 2 shows selected runs from this experiment, displaying the

elite function value and the average MR over generations. The

full list of final elite function values are reported in Table 1 in

Appendix B.2, serving as a statistic on how good the final solution

is. The full list of average elite function values over all evolution

iterations are reported in Table 2 in Appendix B.2, serving as a

statistic on how quickly the algorithm converges to a good solution.

Mean squared error between the log MR of an algorithm and the

log MR of LAMR-100 (averaged over generations) are reported

in Table 3 in Appendix B.2, serving as a statistic on how close

to optimal the MRs are. Additionally, all of the tables bold the

statistically significant results which are computed by a t-test.

To answer Question 1, GESMR outperforms other methods, ex-

cluding the oracles, in almost all domains both in terms of the final

function value and in terms of quickness of convergence to good

values.

To answer Question 2, SAMR only succeeds and matches the per-

formance of LAMR when the function landscape is relatively non-

rugged, like in the Rosenbrock and Sphere functions. In the rugged

functions, SAMR consistently produces MRs that are sub-optimal

and smaller than those produced by even OFMR, and thus also lags

behind in elite function value during evolution. Thus, SAMR strug-

gles with the VMRP, as shown in previous work [7, 25, 29]. However,

GESMR overcomes this phenomenon and surprisingly consistently

matches its average MR to the long-term optimal MR produced by

LAMR-100 (i.e. red and black lines match in Fig. 2, and GESMR has

consistently the lowest error in Table 3 in Appendix B.2).

The limitations of of all methods except 15MR, SAMR, and

GESMR can be seen in the linear test function. The optimal MR for

this case is 𝜎 →∞, but other methods are unable to approximate

this result because they limit themselves to an upper bound (ex.

UCB-𝑅 is limited by the largest MR in its arms). On the other hand,

GESMR quickly keeps scaling up the MR until reaching a very large

MR. GESMR is also arbitrarily precise, fine tuning MRs with an evo-

lutionary process. In contrast, UCB-𝑅 and the grid search methods

constrain the MRs to a quantized range.

To answer Question 3, GESMR-AVG and GESMR-FIX were run

as an ablation of GESMR, with the results shown in Fig. 2 and

Tables 1, 2, 3 in Appendix B.2. GESMR outperforms both of them,

suggesting that the use of the best mutation statistic and the evolu-

tion of MRs are both vital to its success.

4.3 Empirical Analysis of GESMR vs. SAMR
To answer Question 4, two objectives for 𝜎 are defined based on

a change of function value, and these objectives are shown to be

related to the GESMR-AVG, GESMR, and SAMR methods. These

objectives are then analyzed empirically (in this section) and theo-

retically (in Section 4.4 to explain the behavior of the algorithms.

Consider the change in function value of a mutation given a

solution and an MR:

Δ(𝑥, 𝜎) ∼ 𝑓 (𝑀 (𝑥 ;𝜎)) − 𝑓 (𝑥) . (8)

For simplicity, this variable will be denoted as Δ. Let
{
Δ𝑞

}𝑁 /𝐾
𝑞=1

represent independently and identically distributed instances of Δ
where 𝑞 indexes an individual within its group. To minimize 𝑓 (𝑥) in
evolution, a 𝜎 must be chosen to minimize Δ(𝑥, 𝜎) in some capacity

(denoted as an “MR objective"). Consider two MR objectives

• mean objective, 𝜎∗𝜇 = argmin𝜎 E𝑥,𝜖 [Δ(𝑥, 𝜎)] and
• outlier objective, 𝜎∗

min
= argmin𝜎 E𝑥,𝜖 [min𝑞 Δ𝑞 (𝑥, 𝜎)].

The expectations in the objectives are over 𝑥 sampled from the cur-

rent population and the noise in the mutation operator, 𝜖 . For sim-

plicity, these objectives are denoted as argmin𝜎 E[Δ] and

argmin𝜎 E[min𝑞 Δ𝑞], respectively. The mean objective

corresponds to the algorithm GESMR-AVG, which selects 𝜎s di-

rectly to minimize a sample average of Δ. The outlier objective

corresponds to the algorithm GESMR, which selects 𝜎s directly

to minimize the best (lowest-value) sample of

{
Δ𝑞

}
. SAMR does

not select 𝜎s directly, but rather selects (𝑥𝑖 , 𝜎𝑖 ) pairs to minimize

𝑓 (𝑥𝑖 ). However, because 𝑥𝑖 is produced using the parent of 𝜎𝑖 ,

SAMR also selects pairs (𝑥𝑖 , 𝜎𝑖 ) indirectly based on 𝜎𝑖s that pro-

duce non-deleterious mutations over generations consistently. This

mechanism is intuitively associated with the mean objective.
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Figure 3: Visualization of mutations and the distribution of
the change in function value from themutations, Δ(𝑥, 𝜎) (de-
fined in Eq. 8), for nine labeled mutation rates, 𝜎 , at one
point, 𝑥 , on the 2-D Ackley function. The left plots show an
image representation of the 2-D function landscape where
lighter colors are higher values and annotates the original
solution and some mutated solutions. The right plots show
the empirical histogram of Δ(𝑥, 𝜎) and annotates the mean
and minimum samples of this histogram. Only moderate 𝜎s
are able to mutate to the global minimum.

Figure 4: A representation of 𝜎 versus Δ(𝑥, 𝜎) (defined in
Eq. 8) colored by the empirical probability density function,
𝑝Δ (𝛿 ;𝜎) and the respective log distribution for the 2-D Ack-
ley function. Many samples of Δ(𝑥, 𝜎) are generated from
𝑥 ∼ N(0, 𝐼 ), and a logarithmic range of 𝜎s, and put into
bins of a 𝜎-Δ grid, colored by the number of samples the
bin has. Annotated are the 𝜎 versus E[Δ;𝜎] (mean of Δs) and
E[min𝑞 Δ𝑞 ;𝜎] (min of Δs) curves, and the 𝜎s that minimize
them. Importantly, notice that 𝜎∗𝜇 = 0 and 𝜎∗min > 0.

To analyze general function landscapes outside of evolution,

𝑥 is either fixed to a point or sampled from a distribution, and

many more samples for

{
Δ𝑞

}
are used. Fig. 3 shows a histogram

of samples from Δ and visualizes their respective mutations across

values of 𝜎 for a single 𝑥 in the Ackley 2-D function, highlighting

that the best mutation comes from a 𝜎 that is not too small and

not too large. Fig. 4 represents this same information, but sampling

𝑥 ∼ N(0, 𝐼 ), for a continuous range of 𝜎 as a visualization of the

probability density function (PDF), 𝑝Δ (𝛿 ;𝜎). The sigma versus the

mean objective and the outlier objective curves as well as their

optimal 𝜎 solutions, 𝜎∗𝜇 and 𝜎∗
min

are shown over the PDF. Fig. 5

displays this same plot for several other test optimization problems.

As Fig. 5 shows E[Δ] often increases monotonically with 𝜎 . As a

result, the optimal MR tends to go to zero, i.e. 𝜎∗𝜇 → 0. Interestingly,

Figure 5: A representation of the 𝜎 versus Δ(𝑥, 𝜎)(defined in
Eq. 8) colored by the empirical probability density function
𝑝Δ (𝛿 ;𝜎), and the respective log distribution for several differ-
ent test optimization functions of different dimensionality.
Many samples of Δ(𝑥, 𝜎) are generated from 𝑥 ∼ N(0, 𝐼 ) and
a logarithmic range of 𝜎s and put into bins of a 𝜎 versus Δ
2-D grid, colored by the number of samples the bin has. An-
notated are the 𝜎 versus E[Δ;𝜎] (mean of Δs), E[min𝑞 Δ𝑞 ;𝜎]
(min of Δs), and E[max𝑞 Δ𝑞 ;𝜎] (max of Δs) curves, and the op-
timal 𝜎 that minimizes the first two curves. All curves show
that 𝜎∗𝜇 → 0 and 𝜎∗min > 0.

E[min𝑞 Δ𝑞] is zero for 𝜎 = 0, and decreases monotonically as 𝜎

increases until 𝜎 = 𝜎∗
min

, and then increases monotonically with 𝜎 ,

leading to 𝜎∗
min
̸→ 0. These behaviors hold true for all landscapes

tested, except for the non-rugged linear landscape.

These results answer Question 4 by showing empirically that

GESMR targets higher MRs than SAMR in many problems, demon-

strating that it has the capacity to mitigate the VMRP. Theoretical

analysis of GESMR and SAMR further grounds this empirical find-

ing to prove that GESMR will always avoid a fully vanishing MR.

4.4 Theoretical Analysis of GESMR vs. SAMR
In this section, the behavior of the mean and outlier MR objectives

are analyzed as 𝜎 → 0 and 𝜎 →∞ during evolution. The current

population of 𝑥 is assumed to be already partially optimized, i.e., bet-

ter than those of random search (which is the initialization). Partial
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optimization also means that the evolution has not yet converged,

and thus the gradient of the function at the solutions, ∇𝑓 (𝑥), is
nonzero.

Assume 𝜎 →∞, fully and randomly exploring the solution space

without exploiting the current solutions. Then,

E[Δ] = E𝑥 ′ [𝑓 (𝑥 ′)] − E𝑥 [𝑓 (𝑥)] (first expectation is over all mu-

tants, 𝑥 ′) becomes a constant only based on the function landscape

and the distribution of 𝑥 . E[min𝑞 Δ𝑞] becomes, by definition, ran-

dom search of the function landscape. Since 𝑥 is already partially

optimized, random search must yield a strictly worse expected

solution than 𝑥 . So, E[Δ] > E[min𝑞 Δ𝑞] > 0, and thus both MR
objectives are positive.

Assume 𝜎 = 0 (i.e. no mutation), fully exploiting the current solu-

tion without exploring the solution space. Then, both MR objectives
vanish as E[Δ] = E[min𝑞 Δ𝑞] = 0.

The most interesting case is when 𝜎 is small but not zero, i.e.

0 < 𝜎 < 𝜎𝑐 . For a sufficiently small 𝜎𝑐 the function landscape can be

approximated as linear with 𝑓 (𝑀 (𝑥 ;𝜎)) ≈ 𝑓 (𝑥) +𝜎𝜖𝑇∇𝑓 (𝑥). Then,
Δ(𝑥, 𝜎) = 𝑓 (𝑀 (𝑥 ;𝜎)) − 𝑓 (𝑥) = 𝜎𝜖𝑇∇𝑓 (𝑥). Since 𝜖 ∼ N(0, 𝐼 ), it
follows that Δ(𝑥, 𝜎) ∼ N (0, 𝜎2∥∇𝑓 (𝑥)∥2), which leads to E[Δ] = 0.

A further useful constraint is provided by Theorem 1:

Theorem 1. Let 𝑍 (1)𝜎 , . . . , 𝑍
(𝑞)
𝜎 ∼ iid N(0, 𝜎2).

If 𝑌𝜎 = min(𝑍 (1)𝜎 , . . . , 𝑍
(𝑞)
𝜎 ), then E[𝑌𝜎 ] = 𝜎 E[𝑌𝜎=1] with

E[𝑌𝜎=1] < 0.

Proof. By definition, 𝑓𝑧 (𝑧) = 𝜙 (𝑧/𝜎) and 𝐹𝑧 (𝑧) = Φ(𝑧/𝜎). Then,
𝑃 (𝑌𝜎 ≤ 𝑦) = 1 − 𝑃 (𝑌𝜎 ≥ 𝑦) = 1 − 𝑃 (𝑍 (1)𝜎 ≥ 𝑦, . . . , 𝑍 (𝑞)𝜎 ≥ 𝑦)

= 1 − (1 − Φ(𝑦/𝜎))𝑞

𝑓𝑌𝜎 (𝑦) =
1

𝜎
𝑞(1 − Φ(𝑦/𝜎))𝑞−1𝜙 (𝑦/𝜎)

E[𝑌𝜎 ] =
∫
𝑦

𝑦

𝜎
𝑞(1 − Φ(𝑦/𝜎))𝑞−1𝜙 (𝑦/𝜎)

= 𝜎

∫
𝑦

𝑦𝑞(1 − Φ(𝑦))𝑞−1𝜙 (𝑦)

= 𝜎 E[𝑌𝜎=1] .
In addition, E[𝑌𝜎=1] < 0 because 𝑌𝜎=1 is the minimum of 𝑞 > 1

zero-mean standard normal random variables. □

By Theorem 1, E[min𝑞 Δ𝑞] ∝ 𝜎 ∥∇𝑓 (𝑥)∥ < 0. Thus, in this range

of 𝜎 , the outlier objective decreases linearly as 𝜎 increases, while the
mean objective still vanishes.

Using these three cases, consider the MR objectives as 𝜎 varies

from 0 to∞. E[Δ] starts at 0 and takes a theoretically unknown (but
empirically monotonic) path to a positive value. E[min𝑞 Δ𝑞] starts
at 0, decreases to below 0 until a certain 𝜎𝑐 , then takes a theoretically

unknown (but empirically monotonic) path to a positive value. This

theoretical analysis guarantees that 𝜎∗
min

> 0, a condition that

cannot be put on 𝜎∗𝜇 .
Thus, this section and Section 4.3 empirically and theoretically

answer Question 4, i.e. explain why GESMR-AVG and SAMR often

suffer from the VMRP in rugged landscapes, and how GESMR over-

comes this limitation. In short, GESMR-AVG and SAMR assume that

𝜎 produce non-deleterious mutations consistently, whereas most

mutations are actually deleterious [7]. This condition is possible

only if 𝜎 → 0, which GESMR incorporates into the algorithm itself.

Figure 6: Elite final function value of GESMR versus the
number of groups, 𝐾 , as the population size, 𝑁 increases in
the Ackley 100-D function. As 𝑁 → ∞, the optimal 𝐾 →
𝑁 3/4, suggesting 𝐾 does not need tuning.

Figure 7: Elite function value and average mutation rate
(for different mutation rate control strategies) versus gen-
erations of neuroevolution applied to image classification
in MNIST and Fashion-MNIST. GESMR outperforms most
methods except 15MR, which appears to be an especially
good fit for this problem.

4.5 Ablation on the Group Size Parameter
To answer Question 5, and to evaluate the optimal number of

groups, 𝐾 , evolution was run on the Ackley, Griewank, Rosenbrock,

and Sphere functions with 𝑑 = 100 and 𝐾 equal to all factors of 𝑁

for various values of 𝑁 . It turns out that if the number of groups

is too small, i.e. 𝐾 → 1, or too big, i.e. 𝐾 → 𝑁 , the performance

drops very fast (Fig. 6). In general, 𝐾 =
√
𝑁 is a reasonable value,

but as 𝑁 →∞, the optimal 𝐾 → 𝑁 3/4
. This finding suggests that

the number-of-groups hyperparameter can be set according to 𝑁

and does not need tuning.

4.6 Neuroevolution for Image Classification
To answer Question 6, the algorithms were run on the high dimen-

sional loss landscapes of neuroevolution for image classification

with the commonMNIST and Fashion-MNIST datasets [20, 39]. The
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details of the datasets, the NN architecture evolved, and the experi-

mental setup are provided in Appendix C. Each algorithm was run

independently five times and the mean loss and the standard error

measured.

GESMR outperforms all other methods, including FMR and

SAMR, but does not beat 15MR (Fig. 7). Presumably, 15MR’s hyper-

parameter of 1/5 is especially suited to the MNIST loss landscapes

but might have trouble generalizing to other problems, like the

test optimization problems and the reinforcement learning control

problems.

4.7 Neuroevolution for Reinforcement
Learning

Reinforcement learning (RL) tasks are amenable to the neuroevo-

lution approach because the approach tolerates long time-horizon

rewards well [30, 35]. To answer Question 7, the algorithms were

evaluated on four common RL control tasks: CartPole, Pendulum,

Acrobot, and MountainCar [5]. In all these tasks, a controller maps

the robot’s input observations to either continuous or discrete ac-

tions to maximize a cumulative reward. The details of these environ-

ments, the neural architecture evolved, and the experimental setup

are provided in the Appendix D. Each algorithm was run indepen-

dently five times and the mean and standard error of performance

was measured.

The results are shown in Fig. 9 in the Appendix D. GESMR

generally outperformed other methods including the baseline fixed

MR and SAMR. Presumably, GESMR fails in MountainCar because

the reward signal is very sparse (zero rewards provide no way to

appropriately select for MRs).

4.8 Comparison against CMA-ES
CMA-ES is not a pure adaptive MR GA method: It stores a co-

variance matrix to control the spread of the population, rather

than storing a single MR [16]. This matrix grows quadratically

with the solution vector length. However, CMA-ES still provides

an interesting comparison given a fixed computational budget.

Fig. 8 shows that GESMR outperforms CMA-ES significantly in

four of the most challenging test optimization problems, even

though CMA-ES uses muchmore memory (quadratic in the solution

space). Thus, not only does GESMR scale to higher dimensional

problems, it also outperforms CMA-ES when both are given the

same running time.

5 CONCLUSION
In this paper, a novel and simple adaptive mutation rate (MR)

method, group elite selection mutation rate (GESMR), was pro-

posed to mitigate the vanishing mutation rate problem (VMRP),

along with empirical analysis that grounds its success over self-

adaptation of mutation rates (SAMR). Comprehensive experiment

results showed that GESMR outperforms previous adaptive MR

methods in final value and convergence speed. GESMR also con-

sistently matches its MRs to the empirically estimated long-term

optimal MR. Thus, this work provides the next step in designing

self-adaptive machine learning algorithms.

Figure 8: Elite final function values of GESMR and CMA-ES
on four challenging problems in the 100-D solution space
with a fixed computational budget.Whereas CMA-ES is only
able to complete 50 generations, GESMR is completes ap-
proximately 1000, resulting in an order of magnitude better
values.
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A GENERAL EXPERIMENT SETUP
All algorithms for all experiments (except the group size ablation

experiment) are run with a population size of 𝑁 + 1 = 101. The

test optimization problems are run for 𝑇 ∈ {100, 300, 1000, 2500}
generations with problem dimensionality 𝑑 ∈ {2, 30, 100, 1000},
respectively. The Linear function is always only run for 𝑇 = 100

generations. The MNIST/Fashion-MNIST experiments are run for

𝑇 = 1000 generations. All reinforcement learning experiments are

run for 𝑇 = 100 generations.

OFMR finds the optimal fixed MR using a grid search over a

logarithmic range of ten MRs ranging from 1 × 10−3 to 1. For each
MR in the grid search, an entire evolution is run to evaluate it. The

MR whose evolution provides the best final elite function value is

picked as the optimal fixed MR, and another fixed MR evolution is

run with this MR value.

LAMR-𝐺 changes the MR every 𝐺 generations, and picks the

MR according to a grid search over a logarithmic range of 10 MRs

ranging from 1 × 10−3 to 1. For each MR in the grid search, the

current population is used to initialize another evolution run that

ooks ahead for𝐺 generations. The MR whose evolution provides

the best final elite is used for the next 𝐺 generations in the main

evolution run. In this way, LAMR-𝐺 is able to adapt MRs for the

long-term by directly looking ahead 𝐺 generations and picking an

that MR performs the best.

FMR sets the MR to a fixed 1 × 10−2, as is commonly done when

the user is left to define an MR.

1CMR sets the MR to a fixed 1/𝑑 where 𝑑 is the dimensionality

of the solution space [26]. The goal is to search carefully in problems

with high dimensionality and explore more in problems with low

dimensionality.

15MR starts with theMR equal to 1 × 10−2 and adaptsMRs based

on the percentage of beneficial mutations in the current generation

(i.e. those that result in a negative function value change) If the

percentage is greater than 1/5, the MR is doubled, else it is cut

in half. This factor of two is chosen to match the meta-MRs in

SAMR and GESMR in order to compare adaptability fairly between

methods.

UCB/𝑅 creates a multi-armed bandit problem with 𝑅 arms corre-

sponding to MRs that are spaced logarithmically between

1 × 10−3 and 1. The upper confidence bound (UCB) algorithm is

utilized to solve the problem. At each generation, an MR is sam-

pled from UCB; the reward that is reported back is the best (lowest)
change in function value from mutations for the current generation.

With SAMR, solutions are paired up with MRs spaced logarith-

mically between 1 × 10−3 and 1 × 103. The solutions are mutated

according to their assigned MR and the MRs are mutated with the

same equation as with GESMR, using the meta-MR 𝜏 = 2.

With GESMR, the population of MRs are initialized by spac-

ing them logarithmically between 1 × 10−3 and 1 × 103. They are

mutated using the meta-MR 𝜏 = 2.

B DETAILS OF THE FUNCTION
OPTIMIZATION EXPERIMENT

Detailed definitions of the test functions are given in this Appendix,

followed by detailed results.

B.1 Test Function Definitions
Ackley:

𝑓 (𝑥) = − 𝑎 exp
©«−𝑏

√√√
1

𝑑

𝑑∑︁
𝑖=1

𝑥2
𝑖

ª®®¬ (9)

− exp
(
1

𝑑

𝑑∑︁
𝑖=1

cos (𝑐𝑥𝑖 )
)
+ 𝑎 + exp (1), (10)

with 𝑎 = 20, 𝑏 = 0.2, 𝑐 = 2𝜋 .

Griewank:

𝑓 (𝑥) =
𝑑∑︁
𝑖=1

𝑥2
𝑖

4000

−
𝑑∏
𝑖=1

cos

(
𝑥𝑖√
𝑖

)
+ 1. (11)

Rastrigin:

𝑓 (𝑥) =10𝑑 +
𝑑∑︁
𝑖=1

[
𝑥2𝑖 − 10 cos (2𝜋𝑥𝑖 )

]
. (12)

Rosenbrock:

𝑓 (𝑥) =
𝑑−1∑︁
𝑖=1

[
100(𝑥𝑖+1 − 𝑥2𝑖 )

2 + (𝑥𝑖 − 1)2
]
. (13)

Sphere:

𝑓 (𝑥) =
𝑑∑︁
𝑖=1

𝑥2𝑖 . (14)

Linear:

𝑓 (𝑥) =
𝑑∑︁
𝑖=1

𝑥𝑖 . (15)

B.2 Function Optimization Results
The full results of the test optimization functions are shown in

Tables 1, 2, 3. Table 1 summarizes the final elite function value

achieved by each algorithm in all the test function optimization

runs. Table 2 summarizes the average elite function value over gen-

erations from each algorithm in all the test function optimization

runs. Table 3 summarizes the mean squared error between the aver-

age log MR of a given algorithm with the log MR of LAMR-100 (the

oracle long-term MR). These result show that GESMR outperforms

other methods in the high dimensional and rugged function land-

scapes. GESMR also produces MRs that match the oracle long-term

optimal MR, showing that GESMR empirically produces MRs suited

for the long-term. GESMR also scales well to the high dimensions

of neuroevolution.
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Dim Std
†OFMR †LAMR-100 FMR 1CMR 15MR UCB/5 UCB/10 SAMR GESMR GESMR-AVG GESMR-FIX

A
c
k
l
e
y

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.5 0.5 1.5 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

30

1 1.2 0.0 2.8 2.7 0.2 2.2 2.7 2.4 0.8 3.2 3.0

10 2.7 1.4 15.2 15.3 3.1 4.9 3.5 11.0 *1.0 15.6 6.6

100

1 3.0 2.5 3.1 3.1 2.4 3.1 2.9 2.9 2.7 3.9 3.5

10 4.1 2.3 16.3 16.3 *2.8 6.2 4.0 16.3 3.6 17.2 12.0

1000

1 3.6 3.5 3.7 4.6 3.5 3.9 4.0 3.6 3.5 4.9 4.6

10 12.0 15.9 17.4 18.2 17.6 17.8 17.3 17.3 17.1 18.3 18.1

G
r
i
e
w
a
n
k

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30

1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 *0.0 0.2 0.1

10 0.1 0.0 1.3 1.2 0.2 0.2 0.2 0.0 0.0 1.1 0.7

100

1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 *0.0 0.3 0.2

10 0.2 0.0 2.3 2.3 0.0 0.3 0.3 0.0 *0.0 1.5 1.0

1000

1 0.2 0.2 0.2 1.0 0.2 0.6 0.6 0.3 *0.2 0.9 0.8

10 2.4 1.8 19.3 22.8 2.4 6.5 5.2 2.6 *2.2 20.3 10.5

R
a
s
t
r
i
g
i
n

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.2 6.2 0.1 1.0 0.2 0.1 1.3 0.2 2.8 0.2

30

1 27.8 26.3 27.6 34.7 27.3 173.2 166.3 26.9 28.3 90.4 62.2

10 210.4 113.5 1544.5 1539.1 320.9 302.1 306.3 1108.8 *150.0 1517.0 368.3

100

1 109.1 104.0 113.7 113.3 118.3 782.9 760.4 94.0 111.1 348.6 263.8

10 984.0 839.7 6949.1 6934.4 1612.9 1793.1 1229.1 4918.4 1149.7 7240.4 2590.7

1000

1 2001.4 1689.2 2781.4 6748.2 2113.8 4798.8 9735.7 2153.1 *1878.5 7107.0 6576.5

10 2.6e+04 2.9e+04 8.9e+04 9.5e+04 4.1e+04 7.8e+04 4.8e+04 8.9e+04 6.0e+04 9.6e+04 9.3e+04

R
o
s
e
n
b
r
o
c
k

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

10 0.0 0.0 1.0 0.0 0.1 0.0 0.0 0.2 0.0 1.4 0.0

30

1 40.5 39.0 157.2 43.3 30.2 1027.3 1485.6 28.1 39.5 589.2 303.3

10 383.3 183.9 1.2e+07 4.4e+06 813.3 4371.1 742.3 581.5 199.0 1.6e+06 3.9e+04

100

1 146.8 113.1 179.6 184.9 112.9 191.0 6830.5 157.2 117.9 2817.8 1484.5

10 3171.6 290.3 6.5e+07 6.5e+07 517.8 6.2e+05 9.7e+04 945.9 943.1 1.5e+07 3.5e+05

1000

1 1.2e+04 8931.6 1.2e+04 2.1e+05 1.1e+04 2.9e+04 2.1e+04 1.3e+04 9698.8 1.7e+05 1.3e+05

10 2.0e+07 1.1e+07 1.4e+09 2.2e+09 1.8e+07 2.5e+08 9.6e+07 3.1e+07 1.4e+07 1.0e+09 4.9e+08

S
p
h
e
r
e

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30

1 0.0 0.0 0.7 0.0 0.0 0.3 4.6 0.0 0.0 4.2 1.6

10 2.1 0.0 1297.7 797.9 0.3 35.8 15.4 0.0 0.0 500.6 30.9

100

1 0.1 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.0 17.6 7.7

10 9.6 0.0 5234.4 5234.5 0.2 409.6 37.2 0.2 0.0 1610.9 222.3

1000

1 57.1 31.8 74.8 731.6 55.3 93.5 86.1 65.9 45.1 665.5 555.1

10 5484.4 3158.5 7.3e+04 8.7e+04 5481.0 5.2e+04 2.4e+04 6540.3 4459.2 6.7e+04 3.8e+04

L
i
n
e
a
r

2

1 -1614.0 -1654.6 -53.4 -842.3 -3.1e+29 -1547.5 -1497.4 -2.7e+16 -8.7e+18 -1.6e+08 -6.9e+05

10 -1930.6 -1969.2 -393.6 -1172.9 -3.1e+29 -1887.1 -1837.6 -1.7e+16 -8.7e+18 -1.6e+08 -6.9e+05

30

1 -6173.2 -6274.7 -202.7 -343.7 -1.2e+30 -5995.3 -5620.6 -1.8e+18 -2.8e+19 -1.1e+08 -2.7e+06

10 -7389.3 -7446.0 -1485.7 -1626.6 -1.2e+30 -7277.5 -6903.6 -1.3e+18 -2.8e+19 -1.1e+08 -2.7e+06

100

1 -1.1e+04 -1.1e+04 -332.1 -330.2 -2.5e+30 -1.1e+04 -1.0e+04 -8.2e+17 -1.2e+20 -1.1e+10 -4.9e+06

10 -1.3e+04 -1.3e+04 -2346.8 -2345.0 -2.5e+30 -1.3e+04 -1.2e+04 -6.9e+18 -1.2e+20 -1.1e+10 -5.0e+06

1000

1 -2.6e+04 -2.5e+04 -759.0 -536.5 -4.7e+30 -2.4e+04 -2.4e+04 -2.2e+18 -2.0e+20 -1.2e+11 -1.1e+07

10 -3.0e+04 -2.9e+04 -5369.0 -5146.5 -4.7e+30 -2.9e+04 -2.8e+04 -2.4e+18 -2.0e+20 -1.2e+11 -1.1e+07

Table 1: A genetic algorithm’s final elite function value, on various functions and population initializations using different
mutation rate control strategies. This metric quantifies good the final solution found by the GA is. The results are averaged
over 40 seeds. The best value is shown in bold. A statistical t-test is performed on the best method and if the resulting p-value
is less than 0.05 versus all other methods, the result is considered significant and shown with an asterisk (*) in front of it.
Methods marked with † are oracles for benchmark and are not compared against because they use foresight during evolution.
GESMR outperforms previous methods on most tasks, often significantly.
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Dim Std
†OFMR †LAMR-100 FMR 1CMR 15MR UCB/5 UCB/10 SAMR GESMR GESMR-AVG GESMR-FIX

A
c
k
l
e
y

2

1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 1.2 1.2 2.2 0.2 0.3 0.3 0.4 0.3 0.5 0.3 0.4

30

1 1.9 1.3 3.1 2.9 1.7 2.6 3.1 2.7 1.7 3.6 3.5

10 8.7 5.9 15.7 15.4 7.4 8.2 7.8 12.4 *4.9 16.0 10.8

100

1 3.3 2.8 3.4 3.4 2.8 3.4 3.5 3.1 2.9 4.1 3.9

10 8.5 5.8 16.5 16.6 7.9 9.5 9.0 16.5 *6.8 17.4 14.3

1000

1 4.2 4.0 4.1 4.9 4.1 4.4 4.5 4.2 4.0 5.0 4.8

10 15.3 17.0 17.7 18.5 18.1 18.2 18.1 17.7 *17.6 18.4 18.3

G
r
i
e
w
a
n
k

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30

1 0.1 0.1 0.3 0.1 0.1 0.2 0.2 0.1 0.1 0.4 0.3

10 0.7 0.5 1.4 1.3 0.8 0.7 0.8 0.6 0.5 1.2 1.0

100

1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.5 0.4

10 1.3 0.6 2.5 2.5 0.7 0.9 1.0 0.8 *0.6 1.9 1.4

1000

1 0.5 0.5 0.6 1.1 0.6 0.8 0.8 0.6 *0.5 1.0 1.0

10 7.8 7.5 21.2 23.0 8.5 12.9 11.0 9.1 8.2 21.2 15.9

R
a
s
t
r
i
g
i
n

2

1 0.3 0.3 0.0 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.1

10 0.6 0.9 6.9 0.5 1.8 1.0 1.6 1.8 0.8 3.2 1.1

30

1 71.3 47.9 59.1 50.9 67.0 178.1 168.9 52.6 60.0 130.1 116.2

10 597.1 358.2 1606.6 1566.1 548.3 436.8 458.0 1204.7 *356.6 1575.0 677.7

100

1 301.5 182.1 218.9 215.0 227.6 796.5 772.1 181.3 198.4 543.1 483.8

10 2199.1 1500.1 7090.7 7080.6 2341.7 2303.2 1911.9 5164.7 1748.6 7433.1 3636.0

1000

1 4864.2 3918.3 4507.4 8541.2 4501.6 6713.5 9800.1 4520.6 *4187.1 8215.6 7901.7

10 4.5e+04 4.6e+04 9.1e+04 9.7e+04 5.7e+04 8.6e+04 6.4e+04 9.2e+04 6.7e+04 9.6e+04 9.4e+04

R
o
s
e
n
b
r
o
c
k

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

10 0.9 1.1 5.8 0.5 1.1 1.3 2.0 1.7 0.7 2.0 1.0

30

1 485.7 262.3 977.9 386.4 323.8 1179.8 1643.0 339.9 243.9 1325.0 1064.5

10 2.1e+06 1.1e+06 1.5e+07 1.0e+07 1.1e+06 8.8e+05 1.2e+06 1.6e+06 9.1e+05 7.3e+06 2.2e+06

100

1 2685.3 1206.5 3769.2 3735.7 1390.2 1590.9 8349.1 1686.2 1360.1 7236.0 5483.7

10 1.9e+07 5.3e+06 9.3e+07 9.3e+07 6.4e+06 6.1e+06 5.6e+06 7.7e+06 5.8e+06 4.6e+07 1.7e+07

1000

1 6.2e+04 6.0e+04 8.9e+04 2.6e+05 7.3e+04 1.1e+05 8.8e+04 7.8e+04 6.6e+04 2.2e+05 2.0e+05

10 3.7e+08 3.7e+08 1.8e+09 2.2e+09 4.3e+08 1.2e+09 7.3e+08 4.7e+08 4.0e+08 1.5e+09 1.1e+09

S
p
h
e
r
e

2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30

1 3.2 1.8 6.3 2.2 1.8 3.1 5.9 1.8 1.5 8.6 5.9

10 318.7 180.9 1420.8 1153.4 182.3 162.9 163.5 212.7 142.9 1027.2 327.3

100

1 18.9 5.1 18.8 18.7 6.3 9.7 15.9 7.0 6.3 37.4 27.2

10 1892.3 512.6 6089.4 6088.1 668.8 1019.9 779.4 755.9 604.3 3600.2 1758.3

1000

1 270.4 259.4 382.4 809.3 304.2 314.0 319.9 327.1 286.3 772.1 711.8

10 2.7e+04 2.6e+04 8.1e+04 8.8e+04 3.0e+04 6.8e+04 4.6e+04 3.3e+04 2.9e+04 7.8e+04 6.0e+04

L
i
n
e
a
r

2

1 -836.1 -835.5 -45.4 -434.1 -6.0e+27 -766.9 -710.5 -1.2e+15 -3.0e+17 -1.2e+07 -3.5e+05

10 -1153.3 -1150.8 -385.6 -764.9 -6.0e+27 -1106.6 -1050.8 -7.8e+14 -3.0e+17 -1.2e+07 -3.5e+05

30

1 -3190.9 -3238.2 -171.9 -240.2 -2.4e+28 -2967.6 -2671.8 -5.5e+16 -9.5e+17 -1.1e+07 -1.4e+06

10 -4409.1 -4413.7 -1454.9 -1523.2 -2.4e+28 -4249.9 -3954.8 -3.9e+16 -9.5e+17 -1.2e+07 -1.4e+06

100

1 -5758.9 -5665.5 -277.3 -275.9 -4.7e+28 -5314.8 -4956.6 -2.9e+16 -5.0e+18 -1.4e+09 -2.6e+06

10 -7593.1 -7473.6 -2292.1 -2290.6 -4.7e+28 -7323.8 -6971.4 -2.2e+17 -5.0e+18 -1.4e+09 -2.6e+06

1000

1 -1.3e+04 -1.3e+04 -634.3 -524.3 -9.3e+28 -1.2e+04 -1.1e+04 -7.4e+16 -6.3e+18 -1.8e+10 -5.7e+06

10 -1.7e+04 -1.7e+04 -5244.2 -5134.2 -9.3e+28 -1.7e+04 -1.6e+04 -8.7e+16 -6.3e+18 -1.8e+10 -5.7e+06

Table 2: A genetic algorithm’s average (over generations) elite function value, on various functions and population initializa-
tions using different mutation rate control strategies. This metric quantifies how quickly the GA converged to good solutions.
The results are averaged over 40 seeds. The best value is shown in bold. A statistical t-test is performed on the best method
and if the resulting p-value is less than 0.05 versus all other methods, the result is considered significant and shown with
an asterisk (*) in front of it. Methods marked with † are oracles for benchmark and are not compared against because they
use foresight during evolution. GESMR outperforms previous methods on most tasks, often significantly. 15MR outperforms
GESMR in the Linear function landscapes because 15MR directly doubles the MR every generation while GESMR relies on a
mutation that may double the MRs every generation.
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Dim Std
†OFMR †LAMR-100 FMR 1CMR 15MR UCB/5 UCB/10 SAMR GESMR GESMR-AVG GESMR-FIX

A
c
k
l
e
y

2

1 0.2 0.0 *5.3 38.6 29.0 31.5 44.2 44.8 15.5 65.1 47.3

10 0.7 0.0 *1.4 9.5 20.0 13.7 12.0 61.0 10.2 95.3 14.0

30

1 4.1 0.0 2.3 1.9 1.9 9.9 8.6 4.4 1.2 14.2 16.3

10 1.1 0.0 8.3 3.2 2.3 7.0 6.3 12.6 1.4 29.4 4.5

100

1 9.4 0.0 3.2 3.2 4.8 9.9 12.7 1.4 0.9 29.1 34.1

10 7.1 0.0 6.0 6.0 3.7 9.0 8.5 13.9 *0.4 77.1 14.7

1000

1 0.5 0.0 1.0 3.0 0.5 3.2 4.1 0.7 *0.2 105.4 28.7

10 11.7 0.0 3.1 9.0 14.5 16.5 11.7 5.1 3.0 89.9 23.1

G
r
i
e
w
a
n
k

2

1 0.0 0.0 5.3 38.6 58.5 17.3 16.4 16.0 20.3 15.5 47.6

10 0.5 0.0 7.9 2.8 8.1 9.5 7.9 76.5 5.1 76.0 5.0

30

1 1.2 0.0 1.3 1.7 3.1 7.9 7.7 0.8 0.6 8.4 18.6

10 2.2 0.0 6.9 2.8 4.1 8.6 7.7 0.9 *0.5 8.8 6.8

100

1 1.9 0.0 1.5 1.5 0.8 8.9 8.1 0.7 *0.2 9.0 23.1

10 2.6 0.0 5.6 5.6 0.9 7.8 8.0 0.7 *0.2 6.3 10.2

1000

1 0.3 0.0 0.4 7.4 0.4 4.2 3.7 1.0 0.2 37.1 18.0

10 0.4 0.0 8.0 26.0 0.5 7.7 7.3 0.7 *0.2 151.9 3.7

R
a
s
t
r
i
g
i
n

2

1 0.0 0.0 *5.3 38.6 39.7 30.1 44.2 21.9 12.6 25.4 47.5

10 0.8 0.0 9.7 0.9 11.7 3.2 3.1 80.6 6.0 99.4 2.6

30

1 2.1 0.0 2.4 6.0 2.8 22.1 24.4 1.4 1.2 7.0 31.9

10 8.6 0.0 6.4 4.7 16.9 16.0 16.2 6.1 *0.8 19.2 15.6

100

1 1.6 0.0 3.1 3.1 0.9 22.5 22.0 1.6 0.8 6.9 36.5

10 15.8 0.0 5.8 5.8 25.6 28.0 23.2 4.0 *0.9 27.4 27.9

1000

1 0.4 0.0 1.1 2.6 0.5 3.3 18.5 0.7 0.2 32.4 29.9

10 6.1 0.0 5.4 17.2 8.4 13.6 10.0 9.5 *2.9 118.7 13.5

R
o
s
e
n
b
r
o
c
k

2

1 0.5 0.0 1.9 19.6 19.8 10.2 24.0 5.7 12.2 36.4 25.8

10 1.6 0.0 8.8 3.7 16.3 7.9 10.5 19.2 12.6 54.5 6.0

30

1 2.2 0.0 2.0 2.5 2.3 12.7 17.1 1.0 0.6 10.0 19.3

10 1.5 0.0 8.2 3.3 2.5 5.5 4.7 1.3 0.8 10.3 5.3

100

1 2.3 0.0 1.8 1.8 0.8 3.2 13.8 0.8 0.5 8.5 23.5

10 2.2 0.0 5.5 5.5 0.9 9.3 4.2 0.7 *0.3 10.3 9.4

1000

1 0.5 0.0 0.4 7.2 0.4 1.0 0.9 0.7 0.2 35.0 18.6

10 0.4 0.0 7.6 25.3 0.4 2.5 1.5 0.8 *0.2 15.0 3.8

S
p
h
e
r
e

2

1 0.5 0.0 *4.1 35.0 35.9 31.1 17.8 65.9 11.0 205.5 43.3

10 0.4 0.0 *0.4 12.1 19.0 14.0 7.9 53.7 9.7 106.2 17.2

30

1 3.0 0.0 2.2 4.0 2.6 7.0 15.7 0.6 0.7 8.8 24.6

10 2.7 0.0 6.8 3.0 2.1 8.0 6.9 1.0 0.7 10.2 7.7

100

1 3.2 0.0 3.2 3.2 1.2 2.5 4.7 0.6 *0.5 7.2 30.8

10 4.8 0.0 5.7 5.7 1.5 14.6 5.5 0.6 0.5 7.5 14.4

1000

1 0.4 0.0 0.5 7.9 0.4 1.0 1.0 0.7 0.2 54.6 17.4

10 0.4 0.0 8.1 26.2 0.4 3.5 1.8 0.7 0.2 61.1 3.6

Table 3: A genetic algorithm’smean squared error logMR compared to empirical estimate of the long-termoptimal logMR (the
log MR from LAMR-100), on various functions and population initializations using different mutation rate control strategies.
This metric quantifies how optimal (lower is better) the MRs produced are for the long-term. The results are averaged over
40 seeds. The best value is shown in bold. A statistical t-test is performed on the best method and if the resulting p-value
is less than 0.05 versus all other methods, the result is considered significant and shown with an asterisk (*) in front of it.
Methods marked with † are oracles for benchmark and are not compared against because they use foresight during evolution.
GESMR consistently outperforms other methods, showing that GESMR is producing MRs optimal for the long-term. The
Linear function is not shown because LAMR-100 is not able to produce the true optimal MR (goes to infinity), so comparisons
to LAMR-100 in a Linear function does not make sense.
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Figure 9: Elite function value and average mutation rate
(MR) over generations of neuroevolution using differentMR
control strategies applied to the reinforcement learning con-
trol tasks of CartPole, Pendulum, Acrobot, and Mountain-
Car. GESMR outperforms most other methods in CartPole,
Pendulum, and Acrobot, but fails in MountainCar.

C DETAILS OF THE IMAGE CLASSIFICATION
EXPERIMENT

MNIST and Fashion-MNIST are common image classification

datasets of hand written digits and clothes, respectively [20, 39].

The inputs are 28×x28 grayscale images and the output is one of

ten classification labels. Both datasets consists of 60,000 training im-

ages 10,000 evaluation images. For these problems, 𝑓 is the negative

log-likelihood function (i.e. the cross-entropy loss) as is common

in supervised learning.

The evolved neural-network architecture contains three 3×3
Conv2D layers with 10 channels, each one followed by a 2×2 Max-

Pooling layer and a ReLU nonlinearity. The resulting feature maps

are collapsed into a vector and fed into a 10×10 Dense layer fol-
lowed by a ReLU and another 10×10 Dense layer. after which they

are fed into a Softmax function to output ten class probabilities.

D DETAILS OF THE REINFORCEMENT
LEARNING EXPERIMENT

CartPole, Pendulum, Acrobot, and MountainCar are common re-

inforcement learning control tasks. In each of these tasks, the per-

formance of a robot controller is evaluated in a simulated environ-

ment [5]. CartPole consists of balancing a single pole on a one-

dimensional cart for as long as possible or until 200 timesteps have

passed, rewarded for how long the pole stays up. Pendulum consists

of a robot trying to swing up a pendulum, rewarded for maintaining

as much of an upward angle as possible. Acrobot consists of moving

a joint with two links such that the bottom link swings to as high

as possible. MountainCar consists of a car with a weak engine in

valley between two hills; it must be moved back and forth between

the hills to gain enough energy to reach the top of the target hill. In

all environments, 𝑓 is the negative cumulative reward of an episode

(averaged over five episodes).

The evolved neural-network architecture contains a dense layer

to map the number of observations to 128 hidden neurons with a

ReLU activation function, and another dense layer mapping the 128

neurons to the number of actions. If the action space is discrete, a

Softmax function is applied to output action probabilities.

The detailed results are shown in Figure 9.
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