
Dynamic Behaviors on the NAO Robot With Closed-Loop Whole Body
Operational Space Control

Donghyun Kim, Steven Jens Jorgensen, Peter Stone, and Luis Sentis

Abstract— Exploiting full-body dynamics in feedback control
can enhance the balancing capability of a legged system using
various techniques such as Whole-Body Control (WBC) or
Centroidal Momentum control. However, motion control of
the NAO robot based on full-body dynamics has not been
extensively studied due to its limited computation power, limited
sensors, and restricted access to its low-level controllers.

Whole-Body Operational Space Control (WBOSC) is a
promising WBC approach for NAO, since its closed form
solution provides computational efficiency. But, users need to
provide the velocity map (Jacobian) between operational space
and configuration space to add the balancing control task. Thus,
in this paper, we formulate the Jacobians incorporating the
Capture Point (CP) technique [1] and the Centroidal Angular
Momentum (CAM) [2], [3], and demonstrate the enhancement
of balancing capability in a physics-based simulation.

While WBOSC reduces the computational load, implement-
ing WBC in the real system with limited sensing capability and
built-in joint position control is challenging. We show that the
combination of a virtual model as an interface to the real robot
and an Extended Kalman-filter based orientation estimator
results in a stable implementation of a closed-loop WBOSC.
We demonstrate the validity of our approach by performing a
dynamic kicking motion on the physical NAO robot.

Overall, the contributions of this paper are: (1) to extend
WBOSC by adding CAM and CP control tasks, and (2) to
implement WBOSC in a restricted physical system by utilizing
a virtual model and an orientation estimator.

I. INTRODUCTION

The capabilities of Whole-Body Controllers (WBC),
which exploit full body dynamic models to accomplish
dynamic tasks, are increasingly used in humanoid robots
[4]. More recently, prominent demonstrations of WBC were
shown by teams such as MIT [5] and IHMC [6] during
the DARPA Robotics Challenge (DRC). While impressive,
the ATLAS robot was limited to fairly slow whole body
motions. Understandably, testing fast moving behaviors in
large humanoid robots has the risk of damaging the expensive
equipment.

In the Standard Platform League of RoboCup, NAOs,
which are small commercial humanoid robots, play soccer
while making dynamic motions such as passing, kicking,
and even physical charging. However, to the best of our
knowledge, there have not been previous demonstrations of
closed-loop whole-body dynamic control on NAO robots.
The current state of the art uses inverse kinematics [7], [8]
or joint-space control [9], [10].

There are various reasons why there have been a lack of
studies of WBC on low-end commercial robots such as the
NAO. First, most WBCs rely on computationally expensive
optimization techniques [11], [12]. Since the NAO robot

has limited CPU power, implementing such an algorithm on
a feedback-based real-time control loop becomes difficult.
Second, dynamic motion control normally requires high-
quality hardware and system requirements. For instance, the
performance of IMUs (Inertial Measurement Unit) used in
most DRC humanoid robots is superior to the NAO robot.
Especially, the IMU of the NAO we used does not provide
an angular velocity in yaw direction. (Although we note that
the latest version of NAO equips the IMU with full sensing
capability.) Its lack of torque sensing is another serious
drawback. Third, some commercial robots like the NAO do
not allow access to the embedded controllers. NAO has a
built-in joint position control as the only option to control
its joints. The closed loop bandwidth performance of whole-
body controllers greatly depends on tuning the embedded
controllers [13] and this is not possible to do in the NAO.

To handle some of these limitations, our approach extends
and implements a version of the Whole-Body Operational
Space Control (WBOSC) framework [14]. Since WBOSC
has a closed-form solution, it is well suited for controlling a
robot with low computational power. To add the task in the
closed form solution, users need to find the Jacobian between
the task space and the configuration space. To enhance the
balancing capability, we formulate Capture Point (CP) and
Centroidal Angular Momentum (CAM) based control into
the WBOSC framework. We show in a physics-based simu-
lation that while CP balances the robot, balancing capability
is enhanced with the incorporation of the CAM task.

Although we circumvent the low-computation power prob-
lem by utilizing WBOSC, overcoming limited sensing capa-
bility is another challenging issue. Considering the computed
command of WBOSC is torque, the lack of torque sensor
in the NAO and its built-in joint position controller are
implementation bottlenecks. To bypass the limitation, we put
a virtual robot model between the actual robot and WBOSC.
By using whole-body dynamics, the desired torque command
from WBOSC are converted into desired joint accelerations,
and through integration, the desired joint state position and
velocity can be obtained. We also focus on creating a clean
velocity signal to achieve feedback control stability. Then,
the computed joint position is sent to NAO’s built-in joint
position controllers. By doing so, we synchronize the virtual
robot model’s joint and the actual robot’s joint position.

To synchronize the remaining body orientation configu-
ration, we designed an Extended Kalman-filter orientation
estimator and used it for closed-loop balance control. The
estimator also uses the foot contact sensor to adjust the
uncertainty covariance.

In our experiments and simulations, NAO balances on a
single foot while demonstrating dynamic kicking behaviors
using closed-loop WBOSC. Overall, our contributions are
on incorporating new balance tasks on WBOSC, and porting
methods suitable for high-end robots into low-end commer-
cial robots.

II. WHOLE BODY OPERATIONAL SPACE CONTROL
(WBOSC)

WBOSC was described in [14], but a summary is provided
here. A humanoid robot can be represented as a combination
of its 6-dimensional floating base dynamics and its joint
states. Concatenating both states into a single vector, the
robot’s state is represented as q ∈ Rndofs where ndofs
is the number of under-actuated and actuated degrees of
freedom of the robot Since a humanoid cannot directly
control its floating base dynamics, an under-actuation matrix,
U ∈ R(ndofs−6)×ndofs , is used to map the global state vector,
q, to the subspace of actuated joints, qact.

qact = Uq. (1)

Using the generalized state vector, q, the dynamics of the
robot can now be represented as the following linear differ-
ential equation.

Aq̈ + b+ g + JTs Fr = UT τcontrol, (2)

where A is the inertia matrix, b is the centrifugal and Coriolis
forces, g is the gravitational forces, and τcontrol is the output
torque command on the actuated joints of the robot. When
single (or dual) foot contact is considered, the contact can
be described by the support Jacobian Js ∈ R3 (or Js ∈ R6)
which maps the state vector velocity to the constrained foot
(or feet) in Cartesian space. Since this is constrained, the
acceleration of the foot must be 0. Substituting the constraint
Jsq̈+J̇sq̇ = ẍfoot(orfeet) = 0 and the corresponding reaction
forces, Fr the dynamics become:

Aq̈ +NT
s (b+ g) + JTs ΛsJ̇sq̇ = (UNs)

T τcontrol, (3)

where Ns = I − JsJs is the null space projector of Js
under dynamically consistent inversion, Js = A−1JTs Λs and
Λs = (JsA

−1JTs)−1.
An operational task, ptask, is defined by the constrained

kinematic mapping

ṗtask = J∗taskq̇act, (4)

where J∗task = JtaskUNs ∈ Rntask×nacts is the contact
consistent task Jacobian and Jtask ∈ Rntask×ndofs is the
unconstrained task Jacobian, which users need to define
whenever adding a new task. Note that nacts and ntask are
the number of actuated joints and the number of dimensions
controlled in the task space respectively. The torque com-
mands can be compactly represented as

τcontrol = J∗TtaskFtask, (5)

where Ftask is the operational space impedance control law,

Ftask = Λ∗taskutask + µ∗task + p∗task, (6)

where Λ∗task, µ∗task, p∗task, and utask are the operational
space inertia matrix, velocity-based forces, gravity-based
forces, and desired acceleration forces respectively.

III. FORMULATION OF CENTROIDAL MOMENTUM TASK

The Centroidal Momentum of a robot is the aggregate
momentum on the robot’s CoM. The robot’s Centroidal
Momentum vector, hG, is related to its joint velocity vector
as hG = AGq̇. Alternatively, this can be expressed as the
product of the robot’s Centroidal inertia, IG, and its average
velocity vG:

hG = IGvG = AGq̇. (7)

Using an adjoint operator to change the reference coordinate,
and defining the inertia of each link as Ii, IG and AG can
be expressed as

IG =
∑
i

Ad∗
T−1
i
IiAdT−1

i
, (8)

AG =
∑
i

Ad∗
T−1
i
IiJi, (9)

where Ti is the SE(3) of the local frame of each link seen
from the center of mass frame, consisting of a rotational
representation (Ri) and linear position (pi),

Ti =

[
Ri pi
0 1

]
, (10)

and AdTi and Ad∗Ti
are the Adjoint and dual Adjoint

mapping, defined as

AdTi =

[
Ri 0

[pi]
×Ri Ri

]
, (11)

Ad∗Ti
=

[
Ri 0

[pi]
×Ri Ri

]T
, (12)

where [p]× is the function which changes a vector to a skew
symmetric matrix. From the above equations, we can easily
identify the Jacobian with the following equation,

JCM = I−1
G AG. (13)

Eq (13) represents the velocity mapping between the Cen-
troidal Momentum (CM) space (operational space) and con-
figuration space. We newly incorporate this mapping for
creating CM tasks in the WBOSC framework.

In this paper, we only utilize the angular momentum
components, which we refer to as the Centroidal Angular
Momentum (CAM), by taking the last three rows of the
above Jacobian matrix and specify them as a lower priority
operational task. In doing so, the controller reduces the
average angular velocity while maintaining a higher priority
Capture Point (CP) task, which controls the linear compo-
nents of the robot’s CM.

Fig. 1: CoM and thin foot Model A single supported
legged system can be modeled as a flat foot connected with
rotational joint (ankle) and prismatic joint (leg).

IV. FORMULATION OF CAPTURE POINT TASK

In [1], Capture point (CP) is defined as follows: For a
biped in state x, a Capture point, p, is a point on the ground
where if a biped either covers p with its stance foot or steps
onto p and then maintains its Center of Pressure (CoP) on
p, then there is a safe feasible trajectory that the robot will
end in a Captured State. Therefore, the first objective of the
balance controller is to move the CoP to the CP of a given
state and then add feedback to move the CP to the desired
CP location. [15] and [16] explain how to design a biped’s
balance controller by manipulating the CoP (or ZMP). How-
ever, it is not trivial to define the Jacobian for a CoP control
task since there is no direct velocity relationship between
the CoP space and the configuration space. Additionally, the
CoP can only be changed by moving the CoM. Therefore,
we propose the simplified model (Fig. 1) to design a CP
controller in the WBOSC framework. Intuitively speaking,
the following process finds the relationship between the CoM
acceleration (WBOSC input) and the CoP dynamics, which
will be used to manipulate the CP.

The dynamics of the robot’s CoM are

mg = F cos θ, (14)

mẍ =
τ

h
+ F sin θ. (15)

Dividing the two equations and substituting tan θ = x
h results

into
mẍ− τ

h

mg
=
x

h
, (16)

g

h
x+

τ

mh
= ẍ. (17)

Ignoring horizontal forces on the foot, the force/moment
balance equations on the supporting foot are

f1 + f2 = mg, (18)

−f1d+ τ + f2d = 0, (19)

−f1(d+ r) + f2(d− r) = 0. (20)

From those equations, we can identify the relationship be-
tween torque and CoP position (r).

(f2 − f1)d

f1 + f2
= r, (21)

− τ

mg
= r. (22)

Plugging Eq (22) into Eq (17) results in a linear ODE

ẍ =
g

h
(x− r). (23)

This equation implies that the ankle torque does not change
the linear inverted pendulum dynamics above and influences
only the CoP position. From the original CP formulation,
xCP = x+

√
h
g ẋ. The CP dynamics are defined as

ẋCP =

√
g

h
(xCP − r). (24)

Then, a suitable control law of the CoP to let the current CP
converge to desired CP is

r = xCP +K(xCP − xdCP), (25)

where xdCP is the desired CP location and K is the gain.
Inserting the above equation (25) into Eq. (23) and consid-
ering an operational task associated with the robot’s center
of mass, ẋ = JCoMq̇, the desired CoM acceleration input to
control the CP in WBOSC is

ẍ = u =
g

h
(x− xCP) +K ′(xdCP − xCP) (26)

=
g

h
(x− x−

√
h

g
ẋ) +K ′(xdCP − xCP) (27)

= −
√
g

h
ẋ+K ′(xdCP − xCP), (28)

where K ′ = K g
h and JCoM is the Jacobian of the robot’s

Center of Mass. y directional capture point control is done
in the same way.

V. ORIENTATION ESTIMATOR

There have been several studies to use kinematic informa-
tion to estimate the orientation of a floating body. Since the
MEMS-based IMU suffers from significant drift, estimation
techniques to avoid inherent noise and bias are required to
control legged systems. Our approach is based on [17], [18],
but a key difference is that we fix the error related to intrinsic
and extrinsic rotation. In addition to the ordinary Kalman
filter, we utilize the foot force sensor data to manipulate the
covariance of the state transition model.

To avoid the confusion related with the quaternion con-
vention, we clarify the definition of quaternion used in our
estimator. Rotation is represented by a rotation axis (v) and
with a rotation amount (θ) about the axis. In this paper, we
construct a quaternion as

q =[qw, qx, qy, qz]

=[cos(
θ

2
),

v

|v|
sin(

θ

2
)]. (29)

(a) q1 (b) q1 ⊗ q2 (c) q2 ⊗ q1

Fig. 2: Intrinsic and Extrinsic Rotation. The figures shows
the difference between intrinsic (b) and extrinsic (c) rotation.
Here, q1 is the 45o rotation about z axis and q2 is the 63o

rotation about y axis.

The rotation matrix according to the same rotation is defined
by

R[q] = 1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqz 1− 2q2

x − 2q2
z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y

 .

(30)

With the definition, we obtain the relationship q⊗Q[v]⊗q∗ =
Q[R[q]v], where ⊗ is the Hamiltonian multiplication and
Q[x] represents the mapping from a three dimensional vector
to a pure imaginary quaternion.

Due to limited computational power and poor signal
quality in the accelerometer data, our estimator has a smaller
number of states than [17], [18].

In previous estimator designs, there is confusion regarding
intrinsic and extrinsic rotations. Additionally, further con-
fusion comes from competing quaternion conventions. To
clarify our approach, we present our convention in Fig. 2.
Since the Kalman filter update process occurs in the global
frame, this update must be done in an extrinsic manner.
However, the IMU data from the robot should be added to
the estimated orientation in an intrinsic manner since the
IMU data is the angular velocity from the local frame (body
orientation). Therefore, the Kalman filter prediction rules are

q̂−k+1 = q̂+
k ⊗ exp([ŵk]×∆t), (31)

ẑ−k+1 = ẑ+
k , (32)

b̂w,k+1 = b̂+w,k (33)

and the observations are

s1,k = q̂−k ⊗ (ẑ−k)−1, (34)

s2,k = ẑ−k , (35)

where s1,k is the orientation difference between the IMU
and the stance foot, and s2,k is the global orientation of the
stance foot.

For the orientation estimator, we use the Extended Kalman
Filter, which requires linearized update matrices and they are

Fig. 3: Balance Control with Capture Point Task. NAO’s
balance is disturbed by a constant 20N push force for 0.1 s.
By manipulating the capture point with whole-body motion,
NAO recovers and continues to balance on its left foot

defined as

Fk =

 I 0 R[q̂k]∆t
0 I 0
0 0 I

 , (36)

Hk =

(
I −R[q̂k ⊗ ẑ−1

k] 0
0 I 0

)
. (37)

Detailed derivations are presented in the Appendix.
The covariance matrix in prediction is given by

the equation, Qk = FkLcQcL
T
c F

T
k ∆t, where Lc =

diag{R[q̂k], I, I}, and the update matrix is Rk = Rc/∆t.
Note that the orientation observation in Eq (35) is assumed

to be constant since the stance foot in the global frame is
expected to be flat on the ground. If more than one of the
four force sensors’ signal in the foot is zero, this implies that
the foot is not completely flat on the ground. To handle this
scenario, the estimator adjusts the uncertainty covariances
for the z term in both the prediction (Qc) and update (Rc)
process to be very high. This results to the Kalman-filter
relying more on the IMU data over the kinematics.

VI. DYNAMIC SIMULATION

In the simulation, we assume that the NAO robot is a fully
torque controllable humanoid. This assumption provides an
environment to test highly dynamic motions and verify that
our task extensions to WBOSC function as intended. Namely,
the CP task balances the robot and the addition of CAM task
further enhances the balancing capability.

A. Balance Control Test

To test the balance controller in the simulation, we induce
a disturbance by pushing the NAO robot on its torso with
a constant force for 0.1 seconds while NAO balances on its
left foot.

First, we test a CP-based balance controller which only
uses the CP criteria. This test is performed to verify the
proposed control law in Eq (28). As seen in Fig. 3, we push
the torso with 20N of force for 0.1 seconds. The simulation
showed that the NAO robot successfully maintains its balance
on its left foot.

Second, we test how much the CAM task helps with
maintaining balance. In this test, we add an additional 15N
of constant force perpendicular to the first force. As before,
these two forces are induced for 0.1 seconds. Fig. 4 shows

Fig. 4: Comparison of Balance Controllers. In these two trials, we push the NAO with 15N and 20N on the lateral and
sagittal direction respectively for 0.1 seconds. The first row is the combined CP + CAM balance controller and the second
row only uses a CP-based balance controller. The images boxed in red shows the tracking performance of the actual (orange
line) CP and CAM trajectory to the desired (blue line) trajectories for the CP + CAM balance control test. The simulation
shows that under these forces, the CP + CAM balance controller successfully balances the robot, but fails with only a
CP-based controller.

Fig. 5: Kick Motion. NAO kicks the 70g weighted ball. The
ball travels around 2.5m in the simulation.

two tests being performed: (1) with CP + CAM Control, and
(2) with CP Control only. Note that when performing the
combined CP + CAM balance controller, we place the CP
criteria as a higher priority task than the CAM task. This is
because the CAM task acts as a supplement, which attempts
to minimize the centroidal angular velocity of the robot.

As Fig. 4 shows, when the combined CP + CAM Con-
troller is used, the NAO robot uses its limbs more actively
and successfully balances. Otherwise, using only a CP-based
controller under these forces fail. Thus, the inclusion of CAM
control contributes significantly to balance control.

B. Dynamic Kick

In performing a dynamic kicking motion, we use the
complete balance controller including both CP and CAM
tasks. Initially the robot starts from a double support posture.
To begin the kicking motion, the CP is first moved to the left
foot using WBOSC and the constraint setup is also changed
from dual to single contact. The NAO performs a wind up
motion using foot pose control and makes a dynamic kick
by swinging the right foot forward by 27cm in 0.1sec. The
resulting motion is presented in Fig 5.

VII. HARDWARE EXPERIMENTS

A. WBOSC Challenges in the NAO

Implementation of WBOSC on the NAO robot is challeng-
ing since it is not designed for real-time feedback control.
There are four major difficulties. The NAO platform has (1)
low computational power, (2) low-quality sensing capability,

Fig. 6: Total Control Scheme. The virtual robot model plays an important role in the feedback control. In the figure, ω is
the angular velocity data from the IMU, q is the orientation of the IMU, z is the orientation of a stance foot, Q is the full
state of the dynamic model including virtual joints, and τ is the torque command from the WBOSC. In the virtual robot
model, the forward dynamics convert the torque command to joint accelerations, and through integrations using dt as the
time step, Q is delivered to the real robot after checking hardware constraints. Note that dt is 1

7 ms since it runs 70 times
in one system control loop from the Real robot to the WBOSC.

(3) limited embedded controller access, and (4) particular
hardware deficiencies.

First the CPU in the NAO robot is a dual core Intel
Atom(TM) @ 1.60Ghz. This is a low-end computer com-
pared to other humanoid robots that utilize computationally
expensive whole-body controllers. The low computational
power limits the types of estimation techniques that can be
utilized. For example high dimensional Kalman filters are
not possible.

Second, NAO’s low sensing capability gives low quality
velocity data. It is delayed, biased, and noisy. Moreover, the
slow control servo rate (10ms) significantly reduce the phase
margin and limit the bandwidth of the feedback controller.
Furthermore, the quality of the velocity data is critical
with stabilizing a feedback system since velocity feedback
can be used to damp the system dynamics and provide
passivity [19].

Third, in a cascaded control structure, having the ability
to manipulate the joint-level controller is crucial to tuning
the WBOSC feedback controller. Since NAO only provides
a joint position controller that accepts only two parameters
(desired joint position and stiffness), this tuning flexibility is
no longer available. Additionally other types of low-level
controllers such as a joint-level torque controller are not
possible. It is important to remember that WBOSC returns
joint torque outputs to accomplish the specified tasks. Thus,
we must convert joint torque commands to appropriate joint
position commands.

Finally, while it is possible to imitate a torque controller by
reverse-engineering the joint-position controllers and identi-
fying the appropriate inverse function to create a mapping
between desired torque outputs and joint position commands,
this is not possible due to the limited information on the em-
bedded controllers and NAO’s hardware deficiencies. NAO’s
spur gears in the drive train are not appropriate for torque
control due to inherent friction, stiction, and backlash.

B. Implementing WBOSC on the NAO

To address the above hardware limitations, we provide
the following methodologies to lower computational burden,
obtain clean velocity data, and send the appropriate joint
position commands from the WBOSC torque commands.

To lower computational burden, we first note that us-
ing our WBOSC framework is computationally faster due
to its projection-based methods and closed-form solution.
Secondly, on the NAO system itself, while the WBOSC
is computed on the main control loop, the mass matrix is
computed on a different thread and is only occasionally
updated. Note that while the configuration-dependent mass
matrix is slightly behind temporally to the true mass matrix,
our empirical tests have shown that this difference is small
and negligible even with a 10ms system control loop.

To obtain clean velocity data and send appropriate joint
position commands, we create a virtual robot model which
simulates the joint accelerations the NAO robot will expe-
rience if the links exert the desired torque commands from
the WBOSC. The virtual robot model takes the joint accel-
erations and through integration, gives the joint velocities
and positions, which are sent to the joint position controllers
and the orientations are sent to the orientation estimator.
Clean velocity data is obtained from the joint velocity data
in the virtual robot model and is used to stabilize the system
dynamics.

C. WBOSC Control Scheme for the NAO Robot

The virtual robot model consist of forward dynamics
and numerical integration (Fig. 6). Note that this virtual
model is what the WBOSC controls. The virtual robot model
is synchronized with the actual robot via two methods.
First commanding the desired joint positions of the virtual
robot model to the the built-in joint position controllers
synchronize the joint states. Second, the orientation estimator
estimates the real robot’s body orientation by combining the

Fig. 7: Experiment Result. x, y, and z mean saggittal, lateral, and vertical direction, respectively. In (a) the NAO performs
a dynamic kick from the half-way line of the field in which the ball traveled 5m away. In (b) and (c), the blue lines are the
desired CP and foot trajectories and the orange lines are the measured trajectories. In (d), the joint position data shows that
the real robot’s configuration (orange) is well matched with the virtual model configuration (blue)

measured angular velocity data and its kinematics. Finally,
using another Kalman-filter, we also estimate the robot’s yaw
velocity. In this way, WBOSC performs closed-loop control
with the actual robot.

The numerical integration process requires small step sizes
to avoid truncation errors. With a 10 ms system control loop
rate, the numeric integrator is not stable on its own. Since
this process is not computationally expensive, we run the
integration step 70 times in one system control loop to further
reduce the step size. By doing so, we enhance the accuracy
of numeric integration.

To enhance the computational efficiency, we do not include
gravity and Coriolis terms in both the WBOSC and forward
dynamics. Specifically, these terms are canceled out when
performing inverse dynamics in the WBOSC and forward
dynamics in the virtual robot model. We also remove the
neck joints and elbow joints in the virtual model since they
are not actively used in the kicking demonstration. Instead,
the joint position commands for these joints are fixed and
WBOSC sees them as fixed masses.

D. Dynamic Kick Demonstration

To test the proposed controller’s performance, we demon-
strate a dynamic kicking behavior in the NAO robot. The
WBOSC tasks involved in the kicking motion, in order of
priority from high to low, are to: (i) maintain the CoM
height, (ii) perform CP control, and (iii) do pose control
on the swing foot. The desired CoM height is set to the
starting height of the NAO robot after it performs its boot
up routine, and the CP and foot trajectories are designed with
a sinusoidal function. The ball used is the 2016 black and
white competition ball used in SPL, which is 45g.

The result is presented in Fig. 7. The ball traveled 5m
away. Empirical tests show that a similar performance is
obtained in multiple trials. We note that due to the slow
update rate of the NAO robot (10 ms), we cannot use high

stiffness gains in the balance controller. The lack of high-
stiffness control causes the lateral direction of the capture
point to have noticeable error. However, the controller still
manages to follow the desired trajectories. Overall, Fig. 7
shows that we have successful performed a dynamic motion
using approach described in Sections VII-B and VII-C.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we formulate Centroidal Moment Control
and Capture Point Control in WBOSC framework. We verify
that we can control CAM and CP tasks in simulation by
performing disturbance rejection tests, and we also demon-
strate that we can perform a dynamic kicking motion both
in simulation and hardware.

To utilize WBOSC for performing dynamic behaviors in
a low-end commercial robot such as the NAO, we provide
the following methodology. We first create an Extended
Kalman-filter based orientation estimator which includes
the robot’s kinematic models, foot sensor data, and IMU
data. Second, to be compatible with NAO’s embedded joint-
position controllers, we create a virtual robot model that acts
as an interface between the WBOSC and the real robot.

In the future, we are gearing toward fast locomotion with
the techniques presented in this paper. Fast walking is one of
the most desirable capability in soccer competition, and we
expect that we can achieve much higher speed locomotion
provided large stable region thanks to the current study.

IX. ACKNOWLEDGEMENTS

The work was partially supported by an Office of the
Naval Research (ONR) and a NASA Space Technology
Research Fellowship (NSTRF) under the grant number
NNX15AQ42H.

APPENDIX

In this section, we describe how the matrices in the ori-
entation estimator are derived. First we derive the prediction

process for the IMU orientation.

q = δq ⊗ q̄ (38)

bω = b̄ω + δbω (39)

where q is the actual orientation of IMU, q̄ is the estimated
value, δq is the orientation adjustment, and similarly, bω
is the bias, b̄ω is the estimated value, and δbω is the bias
adjustment. Since the adjustment is done in the global
coordinate system, we apply an explicit rotation.

q̇ = q ⊗ 1

2

[
ω + wω + bω

0

]
(40)

= q ⊗ 1

2

[
ω̃ + bω

0

]
(41)

˙̄q = q̄ ⊗ 1

2

[
ω + bω

0,

]
(42)

where ω is the angular velocity measurement, and wω is the
angular velocity noise. Next,

q̇ =
d

dt
(δq ⊗ q̄) (43)

q ⊗ 1

2

[
ω̃ + bω

0

]
= δ̇q ⊗ q̄ + δq ⊗ q̄ ⊗ 1

2

[
ω + bω

0

]
(44)

q ⊗ 1

2

[
ω̃ + bω

0

]
⊗ q̄−1 = δ̇q + δq ⊗ q̄ ⊗ 1

2

[
ω + b̄ω

0

]
⊗ q̄−1

(45)

Since q ⊗
[
v
0

]
⊗ q−1 = R[q]v, we simplify the equation to

δ̇q = −δq ⊗
(1

2
R[q̄](ω + b̄ω)

)
+ q ⊗ q̄−1 ⊗

(1

2
R[q̄](ω̃ + bω)

)
(46)

= −δq ⊗
(1

2
R[q̄](ω + b̄ω)

)
+ δq ⊗

(1

2
R[q̄](ω̃ + bω)

)
(47)

= δq ⊗ 1

2
R[q̄](δbω + wω) (48)

=
1

2

[
[R[q̄](δbω + wω)]× R[q̄](δbω + wω)
−R[q̄](δbω + wω) 0

] [
1
2δφ
1

]
,

(49)

where δq = [1
2δφ, 1]T . From Eq (48) to Eq (49) we apply

the matrix transformation from Hamiltonian multiplication.
Since the multiplication of small numbers is small enough
to ignore,

δ̇q = R[q̄](δbω + wω). (50)

Eq (50) is substituted into the Fc matrix in the linearized sys-
tem written as ˙δx = Fcδx+ Lcw, where δx = [δq, δz, δb]T

Therefore,

Fc =

0 0 R[q̄]
0 0 0
0 0 0

 , (51)

and Fk = eFc∆t. As for the orientation difference between
the IMU and the stance foot, it is same as the process
described in [18].

REFERENCES

[1] J. E. Pratt and R. Tedrake, “Velocity-Based Stability Margins for Fast
Bipedal Walking,” in Fast Motions in Biomechanics and Robotics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 299–324.

[2] S.-H. Lee and A. Goswami, “Reaction Mass Pendulum (RMP): An
explicit model for centroidal angular momentum of humanoid robots.”
ICRA, pp. 4667–4672, 2007.

[3] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176,
2013.

[4] F. L. Moro, M. Gienger, A. Goswami, N. G. Tsagarakis, and D. G.
Caldwell, “An attractor-based whole-body motion control (wbmc)
system for humanoid robots,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2013, pp. 42–49.

[5] S. Kuindersma, R. Deits, M. Fallon, and A. Valenzuela, “Optimization-
based locomotion planning, estimation, and control design for the
ATLAS humanoid robot,” Autonomous Robots, vol. 40, no. 3, pp. 429–
455, 2015.

[6] S. Bertrand, J. Pratt, et al., “Momentum-based control framework:
Application to the humanoid robots atlas and valkyrie,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Worshop
Slides, 2014.

[7] J. J. Alcaraz-Jiménez, D. H. Pérez, and H. M. Barberá, “Robust
feedback control of ZMP-based gait for the humanoid robot Nao.”
I. J. Robotic Res. (), vol. 32, no. 9-10, pp. 1074–1088, 2013.

[8] J. J. Alcaraz-Jiménez and M. Missura, “Lateral disturbance rejection
for the nao robot,” RoboCup 2012: Robot . . . , vol. 7500, no. Chapter
1, pp. 1–12, 2013.

[9] I. Becht, M. de Jonge, and R. Pronk, “A Dynamic Kick for the Nao
Robot,” Project Report, 2012.

[10] A. D. Ames, E. A. Cousineau, and M. J. Powell, “Dynamically stable
bipedal robotic walking with NAO via human-inspired hybrid zero
dynamics,” in the 15th ACM international conference. New York,
New York, USA: ACM Press, 2012, p. 135.

[11] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation.” I. J.
Robotic Res. (), vol. 33, no. 7, pp. 1006–1028, 2014.

[12] T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff, N. Mertins,
D. Stephen, P. Abeles, J. Englsberger, S. McCrory, J. van Egmond,
M. Griffioen, M. Floyd, S. Kobus, N. Manor, S. Alsheikh, D. Duran,
L. Bunch, E. Morphis, L. Colasanto, K.-L. H. Hoang, B. Layton,
P. Neuhaus, M. Johnson, and J. Pratt, “Summary of Team IHMC’s
virtual robotics challenge entry,” 2013 13th IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2013), pp. 307–314,
2013.

[13] Y. Zhao, N. Paine, K. S. Kim, and L. Sentis, “Stability and perfor-
mance limits of latency-prone distributed feedback controllers,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7151–7162,
2015, In Press.

[14] L. Sentis, “Synthesis and control of whole-body behaviors in hu-
manoid systems,” Ph.D. dissertation, Stanford, 2007.

[15] J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schaffer, and G. Hirzinger,
“Bipedal walking control based on Capture Point dynamics,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2011). IEEE, Sept. 2011, pp. 4420–4427.

[16] T. Sugihara, “Standing stabilizability and stepping maneuver in planar
bipedalism based on the best COM-ZMP regulator,” in Robotics and
Automation (ICRA). Kobe: IEEE, 2009, pp. 1966–1971.

[17] M. Blosch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring,
C. D. Remy, and R. Siegwart, “State Estimation for Legged Robots
- Consistent Fusion of Leg Kinematics and IMU.” Robotics Science
and Systems 2012, 2012.

[18] N. Rotella, M. Bloesch, L. Righetti, and S. Schaal, “State estimation
for a humanoid robot,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2014). IEEE, 2014, pp.
952–958.

[19] C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, “On the Passivity-
Based Impedance Control of Flexible Joint Robots,” Robotics, IEEE
Transactions on, vol. 24, no. 2, pp. 416–429, 2008.

