
To appear in The IEEE Ninth International Conference on Control, Automation, Robotics and Vision (ICARCV 06),
Singapore, December 2006.

Autonomous Planned Color Learning on a Mobile
Robot Without Labeled Data

Mohan Sridharan
Electrical and Computer Engineering

The University of Texas at Austin, USA

smohan@ece.utexas.edu

Peter Stone
Department of Computer Sciences

The University of Texas at Austin, USA

pstone@cs.utexas.edu

Abstract— Color segmentation is a challenging yet integral
subtask of mobile robot systems that use visual sensors, especially
since such systems typically have limited computational and
memory resources. We present an online approach for a mobile
robot to autonomously learn the colors in its environment without
any explicitly labeled training data, thereby making it robust to
re-colorings in the environment. The robot plans its motion and
extracts structure from a color-coded environment to learn colors
autonomously and incrementally, with the knowledge acquired
at any stage of the learning process being used as a bootstrap
mechanism to aid the robot in planning its motion during
subsequent stages. With our novel representation, the robot is
able to use the same algorithm both within the constrained
setting of our lab and in much more uncontrolled settings such as
indoor corridors. The segmentation and localization accuracies
are comparable to that obtained by a time-consuming offline
training process. The algorithm is fully implemented and tested
on SONY Aibo robots. Keywords: Color Learning, Robot Vision.

I. MOTIVATION

Integrated robotic systems need to sense the world they

operate in. One way to do that is through vision, a rich source

of information. A principal subtask of visual processing is

color segmentation: mapping each image pixel to a color label.

Though significant advances have been made in this field [4],

[7], most of the algorithms are computationally expensive

and/or involve a time consuming off-line preprocessing phase.

In addition, the resulting segmentation is typically quite sensi-

tive to illumination variations: a change in illumination causes

a nonlinear shift in the mapping, which could necessitate a

repetition of the entire training phase.

This paper presents an efficient online algorithm for color

segmentation with limited computational resources. A key

defining feature of the algorithm is that there is no labeled

training data or apriori bias regarding the labels of points in

color space. This makes the algorithm suitable for use under

different lighting conditions and even changes of entire colors

(e.g. repainting all red objects as blue and vice versa).

The problem of color segmentation takes as input the color-

coded model of the world with a representation of the size,

shape, position and color labels of objects of interest. A stream

of input images are provided and the robot’s initial position

(and its joint angles over time) are known. The desired output

is a Color Map that assigns a Color Label to each point in the

color space. This problem is challenging because the process is

constrained to work within the limited memory and processing

resources of the robot. Furthermore, it should be able to cope

with the rapid motion of the limited-field-of-view camera, and

with the associated noise and image distortions.

We build on our previous work [15], where the robot learned

colors within the controlled lab setting with solid colors and

constant, uniform illumination conditions, executing a motion

sequence provided by a human observer. Vision research on

mobile robots is often conducted in such settings, which makes

algorithm development easier but typically makes assumptions

that are not true of the real world. Here we enable the robot

to work outside the controlled lab setting, which required

algorithmic changes to deal with the non-uniformity of the

surroundings, such as with textured surfaces. The robot is

able to autonomously plan its motion sequence for any given

configuration of objects, based on environmental knowledge

and heuristic constraints on its motion sequence.

This paper makes two main contributions. First, it presents

a novel hybrid generalization of our previous color repre-

sentation scheme such that the robot is able to learn colors

efficiently and effectively both in the controlled lab setting and

in uncontrolled indoor settings. Second, it enables the robot to

autonomously plan a motion sequence that puts it in positions

suitable to learn the desired colors. The robot simultaneously

learns colors and localizes, and incrementally performs better

at both these tasks.

II. PROBLEM DESCRIPTION

In this section, we formally describe the problem, our

proposed hybrid color learning model, and the robot platform.

A. Color Representation

To be able to recognize objects and operate in a color-coded

world, a robot typically needs to recognize a certain discrete

number of colors (! 2 [0; N � 1℄). A complete mapping

identifies a color label for each point in the color space:8p; q; r 2 [0; 255℄; fC1;p; C2;q; C3;rg 7! !j!2[0;N�1℄ (1)

where C1; C2; C3 are the color channels (e.g. RGB, YCbCr),

with the corresponding values ranging from 0� 255.

In our previous color learning approach [15], each color was

modeled as a three-dimensional (3D) Gaussian with mutually

independent color channels, i.e. no correlation among the

values along the color channels. Using empirical data and the

statistical technique of bootstrapping [6], we determined that

this representation closely approximates reality. In addition

1–4244–0342–1/06/$20.00 c 2006 IEEE ICARCV 2006

to simplifying calculations, the Gaussian model requires us

to store just the mean and variance as the statistics for each

color. This reduces the memory requirements and also makes

the learning process feasible to execute on mobile robots with

constrained processing power.
For this 3D Gaussian model, the apriori probability density

functions (color ! 2 [0; N � 1℄) are given by:p(1; 2; 3j!) � 1p2�Q3i=1 �Ci � exp�12 3Xi=1 �i � �Ci�Ci �2
(2)

where, i 2 [Cimin = 0; Cimax = 255℄ represents the value at

a pixel along a color channel Ci while �Ci and �Ci represent

the corresponding means and standard deviations.
Assuming equal priors, each color’s aposteriori probability

is then given by:p(!j1; 2; 3) / p(1; 2; 3j!) (3)

The Gaussian model for color distributions works inside the

lab. In addition, it generalizes well with limited samples

when the color distributions are actually unimodal; it is able

to handle minor illumination changes. However, in settings

outside the lab, factors such as shadows and larger illumination

changes cause the color distributions to be multi-modal. The

robot is now unable to model colors properly using Gaussians.
Color histograms provide an excellent alternative when

colors have multi-modal distributions in the color space [16].

Here, the possible color values (0–255 along each channel) are

discretized into a specific number of bins that store the count

of pixels that map into that bin. The 3D histogram of a color

can be normalized (values in the bins sum to 1) to provide the

equivalent of the probability density function (Equation 2):p(1; 2; 3j!) � Hist!(b1; b2; b3)SumHistV als (4)

where b1, b2, b3 represent the histogram bin indices cor-

responding to the color channel values 1, 2, 3, andSumHistV als is the sum of the values in all the bins of

the histogram for that color. The aposteriori probabilities for

each color are then given by Equation 3.
Unfortunately, histograms do not generalize well with lim-

ited training data, especially for samples not observed in

the training set, such as with minor illumination changes.

Constrained computational and memory resources prevent the

implementation of operations more sophisticated than smooth-

ing. Also, they require more storage, which would be wasteful

for colors that can be modeled as Gaussians. We propose to

combine the two representations such that they complement

each other: colors for which a 3D Gaussian is not a good fit

are modeled using 3D histograms. The decision is made online

by the robot, for each color, based on image pixel samples.
Samples for which a 3D Gaussian is a bad fit can still

be modeled analytically using other distributions (e.g. mixture

of Gaussians, Weibull) through methods such as Expectation-

Maximization [5]. But most of these methods do not offer an

efficient parameter estimation scheme that can be implemented

to work in real-time on mobile robots. Hence, we use a hybrid

representation with Gaussians and histograms.

B. Experimental Platform

The SONY ERS-7 Aibo is a four legged robot with a CMOS

camera, providing the robot with a limited view (56:9o horz.,45:2o vert.) of its environment. The images, captured in the

YCbCr format at 30Hz with a resolution of 208� 160 pixels,

possess common defects such as noise and distortion. The

robot has 20 degrees-of-freedom, three in each leg, three in

its head, and a total of five in its tail, mouth, and ears. It has

noisy touch sensors, IR sensors, and wireless LAN for inter-

robot communication. The legged (as opposed to wheeled)

locomotion results in jerky camera motion.

The RoboCup Legged League is a research initiative in

which teams of four robots play a competitive game of soccer

on an indoor field of size � 4m� 6m (see Figure 1).

Visual processing on

Fig. 1: An Image of the Aibo and the
field.

the robot typically

begins with an

off-board training

phase that generates

the color map

from the space of128 � 128 � 128
possible pixel values1

to one of the colors

that appear in its

environment (pink, yellow, blue, orange, red, dark blue,

white, green, and black). Almost all known approaches

in this scenario (Section V) produce the color map by

hand-labeling several (� 20 � 30) images over a period of

at least an hour. This map is used to segment the images

and construct connected constant-colored regions out of the

segmented images. The regions are used to detect useful

objects (e.g. markers and the ball). The robot uses the

markers to localize and coordinates with its team-mates

to score goals on the opponent. All processing for vision,

localization, locomotion, and action-selection is performed on

board the robots, using a 576MHz processor. Currently, games

are played under constant and reasonably uniform lighting

conditions but the goal of RoboCup is to create a team of

humanoid robots that can beat the human soccer champions

by the year 2050 on a real, outdoor soccer field [11]. This

puts added emphasis on learning and adapting the color map

in a short period of time.

III. ALGORITHM

Algorithm 1 describes a method by which the robot au-

tonomously plans to learn the colors in its environment using

the known positions of color-coded objects. Underlined func-

tion names are described below.

Our previous algorithm [15] (lines 11; 12; 17 � 20) had

the robot learn colors by moving along a prespecified motion

sequence, and modeled each color as a 3D Gaussian. This fails

to work outside the controlled setting of the lab because some

1We use half the normal resolution of 0-255 along each dimension to reduce
memory requirements.

Algorithm 1 Planned Autonomous General Color Learning

Require: Known initial pose (can be varied across trials).

Require: Color-coded model of the robot’s world - objects at

known positions, which can change between trials.

Require: Empty Color Map; List of colors to be learned -Colors.

Require: Arrays of colored regions, rectangular shapes in 3D;Regions. A list for each color, consisting of the properties

(size, shape) of the regions of that color.

Require: Ability to navigate to a target pose (x; y; �).

1: i = 0; N =MaxColors
2: T imest = CurrT ime, T ime[℄ — the maximum time

allowed to learn each color.

3: while i < N do

4: Color = BestColorToLearn(i);

5: TargetPose = BestTargetPose(Color);

6: Motion = RequiredMotion(TargetPose)

7: Perform Motion fMonitored using visual input and

localizationg
8: if TargetRegionFound(Color) then

9: Collect samples from the candidate region,Observed[℄[3℄.
10: if PossibleGaussianFit(Observed) then

11: LearnGaussParams(Colors[i℄)

12: Learn Mean and Variance from samples

13: else f 3D Gaussian not a good fit to samples g
14: LearnHistVals(Colors[i℄)

15: Update the color’s 3D histogram using the sam-

ples

16: end if

17: UpdateColorMap()

18: if !Valid(Color) then

19: RemoveFromMap(Color)

20: end if

21: else

22: Rotate at target position.

23: end if

24: if CurrT ime � T imest � T ime[Color℄ orRotationAngle � Angth then

25: i = i+ 1
26: T imest = CurrT ime
27: end if

28: end while

29: Write out the color statistics and the Color Map.

color distributions are now multi-modal and can no longer

be modeled as Gaussians. The current algorithm significantly

extends the previous approach in two ways. It automatically

chooses between two representations for each color to allow

color learning outside the lab and also automatically generates

the motion sequence suitable for learning colors for any given

starting pose and object configuration.

The robot starts off at a known field location without any

color knowledge. It has a list of colors (Colors[℄) to be learned

and a list of object descriptions (Regions[℄[℄) corresponding

to each color (size, shape, location). Both the robot’s starting

pose and the object locations can be varied between trials,

which causes the robot to also modify the list of candidate

regions for each color. Note that we are not entirely removing

the human input. Instead of providing a color map and/or the

motion sequence each time the environment or the illumination

conditions change, we now just provide the positions of various

objects in the robot’s world. In many applications, particularly

when object locations change less frequently than illumination,

this is more efficient than hand-labeling several images.

Due to the inaccuracy of the motion model and the initial

lack of visual information, geometric constraints on the po-

sition of objects in the robot’s environment are essential to

resolve conflicts that may arise during the learning process.

To generate the motion sequence, the robot needs to make

two decisions: the order in which the colors are to be learned

and the best candidate object for learning a particular color.

The algorithm currently makes these decisions greedily and

heuristically, i.e. it makes these choices one step at a time.

The aim is to get to a large enough target object while moving

as little as possible, especially when not many colors are

known. The robot computes three weights for each object-

color combination (; i):w1 = fd(d(; i)); w2 = fs(s(; i)); w3 = fu(o(; i))
(5)

where the functions d(; i), s(; i) and o(; i) represent the

distance, size and object description for each color-object com-

bination in the robot’s world. The function fd(d(; i)) assigns

a smaller weight to distances that are large, fs(s(; i)) assigns

larger weights to larger candidate objects, while fu(o(; i))
assigns larger weights iff the particular object (i) for a partic-

ular color (c) is unique, i.e. it can be used to learn the color

without having to wait for any other color to be learned.

The BestColorToLearn (line 4) is chosen as:arg max2[0;9℄� maxi2[0;N�1℄(fd(d(; i))+ fs(d(; i)) + fu(o(; i))) � (6)

where the robot parses through the different objects available

for each color (N) and calculates the weights. The functions

are currently experimentally determined based on the relative

importance of each factor, though once estimated they work

across different environments. One future research direction is

to estimate these functions automatically as well.

Once a color is chosen, the robot determines the best target

for the color, using the minimum motion and maximum size

constraints:arg maxi2[0;N�1℄� fd(d(; i))+ fs(d(; i)) + fu(o(; i)) � (7)

For a chosen color, the best candidate object is the one that

provides the maximum weight for the given heuristic functions.

Next, the robot calculates the BestTargetPose() (line 5) to

learn from this target object. It then determines (Required-

Motion() – line 6) and executes the motion sequence to get

there. The current knowledge of colors is used to recognize

objects, localize using Particle Filtering [14], and provide

visual feedback for the motion.

Once it gets close to the target location, the robot searches

for candidate image regions satisfying a set of constraints

based on current robot location and target object description. If

a suitable image region is found (TargetRegionFound() – line

8), the robot stops with the region at the center of its visual

field, and uses the pixel values in the region as verification

samples, Observed, to verify quality of fit with a 3D Gaussian

(PossibleGaussianFit() – line 10). We use Bootstrapping [6]

with the KL-divergence measure as described in Algorithm 2.

Algorithm 2 PossibleGaussianFit(), Line 10, Algorithm 1

1: Determine Maximum-likelihood estimate of Gaussian pa-

rameters from samples, Observed.

2: Draw N samples from Gaussian – Estimated, N = size

of Observed.

3: Dist = KLDist(Observed; Estimated).
4: Mix Observed and Estimated to get Data, 2N items.

5: for i = 1 to NumTrials do

6: Sample N items with replacement from Data – Set1,

remaining items – Set2.

7: Disti = KLDist(Set1; Set2)
8: end for

9: Goodness-of-fit by p-value: where Dist lies in the distri-

bution of Disti.
If the 3D Gaussian is a good fit, the pixels in the candidate

region are used to compute the mean and variance of the 3D

Gaussian representing this color using LearnGaussParams()

(line 11). If not, the candidate pixels are used to populate

a 3D histogram using LearnHistVals() (line 14). The learned

distributions are used to generate the Color Map, the mapping

from pixel values to color labels. Each cell in the color map

is assigned a label corresponding to the color which has the

largest aposteriori probability (Equation 3) for that set of pixel

values. This computationally intensive part of the learning

process is performed only once every five seconds or so. The

updated map is used to segment subsequent images and detect

objects. This helps validate the learned parameters (lines 18,

19) and helps the robot localize to suitable locations to learn

the other colors. Essentially, our algorithm bootstraps, the

knowledge available at any instant being exploited to plan and

execute the subsequent tasks efficiently.

If the candidate region is not found, it is attributed

to slippage and the robot turns in place, searching for

the candidate region. If the robot has turned for more

than a threshold angle (Angth = 360o) and/or has

spent more than a threshold amount of time on a color

(T ime[Color℄ � 20se), it transitions to the next color

in the list. A video of the color learning process and im-

ages at various intermediate stages can be viewed online:

www.cs.utexas.edu/users/AustinVilla/?p=research/auto vis.

IV. EXPERIMENTAL SETUP AND RESULTS

We are concerned with both the color learning and the

planning components of the algorithm. We hypothesized that

the hybrid color learning scheme should allow the robot to

automatically choose the best representation for each color and

learn colors efficiently both inside and outside the lab. Our goal

is for the hybrid representation to work outside the lab while

not resulting in a reduction in accuracy in the controlled lab

setting. We proceeded to test that as follows.

We first compared the two color representations, Gaussians

(AllGauss) and Histograms (AllHist), for all the colors, inside

the controlled setting of the lab. We quantitatively compared

the two color maps with the labels provided by a human

observer, over � 15 images. Since most objects of interest

are on or slightly above the ground (objects above the horizon

are automatically discarded), only suitable image regions were

hand-labeled (on average 6000 of the total 33280 pixels).

The average classification accuracies for AllHist and AllGauss

were 96:7 � 0:85 and 97:1 � 1:01 while the corresponding

storage requirements were 3000Kb and 0:15Kb. Note that,

qualitatively, AllHist performs as well as AllGauss but requires

more storage (Figure 2).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2: Images inside the lab. (a)-(c) Original, (d)-(f) AllGauss, (g)-
(i) AllHist. Note that AllHist performs as well as AllGauss.

A main goal of this work is to make it applicable to less-

controlled settings. We tested the robot in two indoor corridors

with overhead fluorescent lamps placed a constant distance

apart, resulting in non-uniform illumination conditions and a

lot of highlights and shadows on the objects and the floor. In

the first corridor, the floor was non-carpeted and of a similar

color as the walls. As a result of the non-uniform illumination

the floor and the walls had multi-modal color distributions.

AllGauss could not determine a suitable representation for the

ground/walls, causing problems with finding candidates for the

other colors (see Figure 3).
With the hybrid color representation, GaussHist, the robot,

based on the statistical tests, ended up modeling one color

(a) (b) (c) (d)

Fig. 3: Segmentation using: (a)-(b) 3D Gaussians, (c)-(d) 3D His-
tograms. Gaussians do not model ground/walls well but Histograms
do.

(wall and ground) as histogram and the other colors as Gaus-

sians. Figure 4 compares AllHist with GaussHist.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4: Images outside the lab: (a)-(c) Original, (d)-(f) AllHist, (g)-(i)GaussHist. GaussHist performs better under minor illumination
changes.

The AllHist model does model the ground color better. But

histograms require more storage and do not generalize well

to minor illumination changes (errors in row 2 of Figure 4),

causing problems in resolving conflicts between overlapping

colors. The robot is unable to identify suitable candidate

regions leading to false positives. With Gaussians, the robot

has the option of varying the spread of the known overlapping

colors. Hence GaussHist lets the robot learn all the colors

using the good features of both models. Sample images at:

www.cs.utexas.edu/users/AustinVilla/?p=research/auto vis.

Next, we ran the algorithm in a different corridor, where

the floor had a patterned carpet with varying shades. The

illumination resulted in multi-modal distributions for the color

of ground and walls. AllGauss did not model these colors

well and AllHist had problems with the inevitable minor

illumination variations during testing. But GaussHist was able

to learn all the desired colors.

Table I documents some numerical results. The storage

requirements reflect the number of colors represented as

histograms instead of Gaussians. Sample images can be seen

online:www.cs.utexas.edu/�AustinVilla/?p=research/auto vis.

We also provide images to show that the planned color

learning scheme can be applied to different illumination

Type Accuracy (%) (KB)AllHist� 1 89:53 � 4:19 3000GaussHist� 1 97:13 � 1:99 440AllHist� 2 91:29 � 3:83 3000GaussHist� 2 96:57 � 2:47 880

TABLE I: Accuracies and storage requirements of models in two
different indoor corridors. The results are statistically significant.

conditions and can handle re-paintings - changing all yellow

objects to white and vice versa poses no problem.

One challenge in experimental methodology was to mea-

sure the robot’s planning capabilities in qualitatively difficult

setups (objects configurations and robot’s initial position).

We described our algorithm to seven graduate students with

experience working with the robots and asked them to pick a

few test configurations which they thought would challenge the

algorithm. For each configuration, we measured the number of

successful learning attempts: an attempt is deemed a success

if the five colors needed for localization are learned.

Config Success (%) Localization Error
X (cm) Y (cm) � (deg)

Worst 70 17 20 20
Best 100 3 5 0
avg 90� 10:7 8:6� 3:7 13:1� 5:3 9� 7:7

TABLE II: Successful Planning and Localization Accuracy.

Table II tabulates the performance of the robot over 15

configurations, with 10 trials for each configuration. It also

shows the localization accuracy of the robot using the learned

color map. The robot is able to plan its motion sequence and

learn colors in most of the configurations that are designed

to be adversarial. The corresponding localization accuracy is

comparable to that obtained with the hand-labeled color map

(� 6m; 8m; 4deg in X , Y , and �).

One configuration

1
2

3

4

PINK−BLUE

YELLOW GOAL

B
L

U
E

 G
O

A
L

BLUE−PINK

YELLOW−PINKPINK−YELLOW

Fig. 5: Sample Configuration where robot
performs worst.

where the robot per-

forms worst is shown

in Figure 5. Here, it

is forced to move a

large distance to ob-

tain its first color-

learning opportunity

(from position 1 to 2).

This sometimes leads

the robot into posi-

tions quite far away from its target location (position 2) and it

is then unable to find any candidate image region that satisfies

the constraints for the target. Currently, failure in the initial

stages strands the robot without any chance of recovery: a

suitable recovery mechanism is an important area for future

work. The failure is largely due to external factors such as

slippage: the color-learning plan generated by the robot is

quite reasonable. A video of the robot using a learned color

map to localize in an indoor corridor can be viewed online:

www.cs.utexas.edu/users/AustinVilla/?p=research/gen color.

V. RELATED WORK

Color segmentation is a well-researched field in computer

vision with several effective algorithms [4], [7]. Attempts

to learn colors or make them independent to illumination

changes have produced reasonable success [8], [9]. But these

approaches either involve computations infeasible to perform

on mobile robots which typically have constrained resources

and/or require the knowledge of the spectral reflectances of

the objects under consideration.

On Aibos, the standard approaches for creating mappings

from the YCbCr values to the color labels [2], [3], [18]

require hand-labeling of several images over an hour or more.

Attempts to automatically learn the color map have rarely

been successful. In one approach, edges are detected, closed

figures are constructed corresponding to known environmental

features and the color information from these regions is used

to build color classifiers [1]. This approach is time consuming

even with the use of offline processing and requires human

supervision. In another approach, a color map is learned using

three layers of color maps, with increasing precision levels;

colors being represented as cuboids [10]. The generated map

is not as accurate as the hand-labeled one and additional

higher level constraints during the object recognition phase are

required to disambiguate the colors. Schulz and Fox [13] esti-

mate colors using a hierarchical Bayesian model with Gaussian

priors and a joint posterior on robot position and environmental

illumination. Ulrich and Nourbakhsh [17] recognize obstacles

by modeling the ground using color histograms and assuming

non-ground regions to represent obstacles.

Our prior work [15] enabled the robot to autonomously

learn the color map, modeling colors as Gaussians. Here, we

present a novel approach that uses a hybrid representation

for color, works online with no prior knowledge of color by

planning a suitable motion sequence, and enables the robot

to learn colors and localize both inside the lab and in less

controlled environments.

VI. CONCLUSIONS

Color segmentation is a challenging problem, even more

so on mobile robots that typically have constrained process-

ing and memory resources. In our prior work [15] we had

presented an algorithm to learn colors autonomously within

5 minutes, in the controlled setting of the lab, modeling

colors as 3D Gaussians. The hybrid representation for color

distributions presented in this paper enables the robot to

autonomously learn colors and localize in uncontrolled indoor

settings, while maintaining the efficiency in the constrained lab

environment. We have also provided a scheme for the robot

to autonomously generate the appropriate motion sequence

based on the world model so that it simultaneously learns

colors and localizes. The color map provides segmentation and

localization accuracy comparable to that obtained by previous

approaches. The algorithm is dependent only on the structure

inherent in the environment and can be quickly repeated if a

substantial variation in illumination is noticed. The robot could

automatically detect the changes in illumination and adapt to

them without human intervention. We are also working on

making the robot learn the colors from any unknown location

in its environment.

The results indicate that the robot should be able to learn the

colors even in a natural outdoor setting as long as reasonable

illumination is available. We use colors as the distinctive

features. But in environments where features aren’t constant-

colored, other representations such as SIFT [12] could be

used. As long as the locations of the features are as indicated

in the world model, the robot can robustly re-learn how to

detect them. This flexibility could be exploited in applications

such as surveillance where multiple robots patrol the corridors.

Ultimately, we aim to develop efficient algorithms for a mobile

robot to function autonomously under completely uncontrolled

natural lighting conditions.

ACKNOWLEDGMENT

Special thanks to Suresh Venkat for his helpful discussions

on the color learning experiments. The authors would also like

to thank the members of the UT Austin Villa team. This work

was supported in part by NSF CAREER award IIS-0237699

and ONR YIP award N00014-04-1-0545.

REFERENCES

[1] D. Cameron and N. Barnes. Knowledge-based autonomous dynamic
color calibration. In The Seventh International RoboCup Symposium,
2003.

[2] S. Chen, M. Siu, T. Vogelgesang, T. F. Yik, B. Hengst, S. B. Pham,
and C. Sammut. RoboCup-2001: The Fifth RoboCup Competitions and
Conferences. Springer Verlag, Berlin, 2002.

[3] D. Cohen, Y. H. Ooi, P. Vernaza, and D. D. Lee. RoboCup-2003:

The Seventh RoboCup Competitions and Conferences. Springer Verlag,
Berlin, 2004.

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. PAMI, 2002.

[5] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley
Publishers, 2nd edition, 2000.

[6] B. Efron and R. J. Tibshirani. An Introduction to Bootstrap. Chapman
and Hall Publishers, 1993.

[7] B. Sumengen et. al. Image segmentation using multi-region stability and
edge strength. In ICIP, 2003.

[8] Y. B. Lauziere et. al. Autonomous physics-based color learning under
daylight. In Conf. on Color Techniques and Polarization in Industrial

Inspection, 1999.
[9] T. Gevers and A. W. M. Smeulders. Color based object recognition. In

Pattern Recognition, 32(3):453–464, 1999.
[10] M. Jungel. Using layered color precision for a self-calibrating vision

system. In The Eighth International RoboCup Symposium, 2004.
[11] H. Kitano, M. Asada, I. Noda, and H. Matsubara. Robot world cup.

Robotics and Automation, 5(3):30–36, 1998.
[12] D. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision (IJCV), 60(2):91–110, 2004.
[13] D. Schulz and D. Fox. Bayesian color estimation for adaptive vision-

based robot localization. In IROS, 2004.
[14] M. Sridharan, G. Kuhlmann, and P. Stone. Practical vision-based monte

carlo localization on a legged robot. In The International Conference

on Robotics and Automation, April 2005.
[15] M. Sridharan and P. Stone. Autonomous color learning on a mobile

robot. In AAAI, 2005.
[16] M. Swain and D. H. Ballard. Color indexing. International Journal of

Computer Vision, 7(1):11–32, 1991.
[17] I. Ulrich and I. Nourbakhsh. Appearance-based obstacle detection with

monocular color vision. In AAAI, 2000.
[18] W. Uther, S. Lenser, J. Bruce, M. Hock, and M. Veloso. Cm-pack’01:

Fast legged robot walking, robust localization, and team behaviors. In
The Fifth International RoboCup Symposium, Seattle, USA, 2001.

