
In The Ninth International Conference on Development and Learning (ICDL 2010),
Ann Arbor, Michigan, August 2010.

Real Time Targeted Exploration in Large Domains

Todd Hester and Peter Stone

Department of Computer Science

The University of Texas at Austin

Austin, TX 78712

{todd,pstone}@cs.utexas.edu

Abstract—A developing agent needs to explore to learn about
the world and learn good behaviors. In many real world tasks,
this exploration can take far too long, and the agent must make
decisions about which states to explore, and which states not

to explore. Bayesian methods attempt to address this problem,
but take too much computation time to run in reasonably sized
domains. In this paper, we present TEXPLORE, the first algorithm
to perform targeted exploration in real time in large domains.
The algorithm learns multiple possible models of the domain
that generalize action effects across states. We experiment with
possible ways of adding intrinsic motivation to the agent to drive
exploration. TEXPLORE is fully implemented and tested in a novel
domain called Fuel World that is designed to reflect the type of
targeted exploration needed in the real world. We show that
our algorithm significantly outperforms representative examples
of both model-free and model-based RL algorithms from the
literature and is able to quickly learn to perform well in a large
world in real-time.

I. INTRODUCTION

A important part of developmental learning is being able to

learn with minimal supervision. Reinforcement learning (RL)

is a popular method in the machine learning community for

learning with minimal supervision. However, its ability to be

useful for developmental learning has been hampered because

most RL algorithms require that the state space be explored

exhaustively. In order to apply the power of RL to the learning

problems of a developing agent in a vast state space, there

needs to be a way to explore the space intelligently. In this

paper we present an algorithm that does that.

We illustrate the exploration problem through an example.

Imagine you’ve moved to a new city, and you’re trying to

navigate from your house to a store at a particular intersection

across town. There are some things you know about the

problem: you know the city is laid out in blocks, you know

how your car works, and you know where your destination is.

But you don’t know the best path, which roads are faster or

have fewer stoplights, which ones are dead ends, or where the

gas stations and post offices are. What is the optimal way to

explore when presented with this problem?

You most likely want to explore a few possible paths to

your destination. But you don’t need to explore exhaustively,

as eventually the possible cost of exploring (running into a

dead end or extremely slow street) will outweigh the possible

benefits of finding a faster route. In fact, after you’ve been

on a few roads in a slow neighborhood, you probably want to

avoid exploring additional paths that go through that area.

RL addresses the problem of finding effective solutions to

such sequential decision making problems [1]. The goal of

RL algorithms is to maximize a reward signal (a scalar) over

time, which can either come from the agent or the external

environment. In tasks such as this one, where taking actions

is expensive or time-consuming, it is important that an RL

algorithm be sample efficient: it takes very few actions to learn

an effective policy. The size of many real world tasks also

require sample efficient algorithms so the agent can learn in a

reasonable amount of time.

Model-based methods are a class of RL algorithms that

are particularly sample efficient. They learn a model of the

domain from their experiences, and then plan on that model to

calculate good policies in the domain. To be sample efficient,

these methods must acquire the necessary experiences to effec-

tively learn the model. Typical approaches to this exploration

problem include exploring randomly or exhaustively. However,

neither of these approaches are effective in practical problems.

In this paper, we present an algorithm that tries to explore

the minimal number of states necessary to learn an accurate

model of the domain and learn a good policy. It explores

states that are promising, but also learns what states not to

explore when the expected costs of exploration outweigh the

expected benefits. Note that because the agent is not exploring

exhaustively, there is a chance that the agent will miss a great

outcome that it did not think was possible (for example, a

wormhole that directly transports the agent across the city).

Just as any agent in a large and varied environment (such as

the real world) must, we sacrifice this guarantee of optimality

for high expected reward in reasonable time frames.

II. BACKGROUND

We adopt the standard Markov Decision Process (MDP)

formalism for this work [1]. An MDP consists of a set of

states S, a set of actions A, a reward function R(s, a), and a

transition function P (s′|s, a). In many domains, the discrete

state s is represented by a vector of n discrete state variables

s = 〈x1, x2, ..., xn〉. In each state s ∈ S, the agent takes an

action a ∈ A. Upon taking this action, the agent receives a

reward R(s, a) and reaches a new state s′. The new state s′

is determined from the probability distribution P (s′|s, a).
The value Q∗(s, a) of a given state-action pair (s, a) is an

estimate of the future reward that can be obtained from (s, a)
and is determined by solving the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)max
a′

Q∗(s′, a′) (1)

where 0 < γ < 1 is the discount factor. The goal of the agent

is to find the policy π mapping states to actions that maximizes

the expected discounted total reward over the agent’s lifetime.

The optimal policy π is then as follows:

π(s) = argmax
a
Q∗(s, a) (2)

Model-based RL methods learn a model of the domain by

approximating R(s, a) and P (s′|s, a) for each state and action.
The agent can then plan on this model through a method

such as value iteration [1] or UCT [2], effectively updating

the Bellman equations for each state using their model. RL

algorithms can also work without a model, updating the values

of actions only when taking them in the real task. Generally

model-based methods are more sample efficient than model-

free methods; their sample efficiency is only constrained by

how many actions it takes to learn a good model of the domain.

The agent’s model of the domain can be learned using a

number of techniques. A common approach is to use a tabular

model where the agent learns a model for each state-action

based on the frequencies of different outcomes at each state.

The agent could also learn the model using any supervised

learning technique, such as decision trees [3] or Gaussian

Process regression [4].

III. RELATED WORK

Our goal in this work is to develop an agent that can

explore intelligently by combining an effective model learning

method with targeted exploration. There are a number of

related algorithms that address the exploration problem.

R-MAX [5] is a typical model-based approach that uses a

tabular model and explores thoroughly by driving the agent

to visit each state-action m times. It is guaranteed to find the

optimal policy in time polynomial in the number of states and

actions, but this may still result in an inordinate amount of

time spent exploring the domain.

Many methods such as SPITI [6] use ǫ-greedy exploration,

where the agent takes what it thinks is the optimal action most

of the time, but takes a random action ǫ of the time. Random

exploration is guaranteed to explore the entire state space when

given an infinite number of actions, but does not attempt to

explore in any targeted way.

Bayesian RL methods seek to solve the exploration problem

optimally by maintaining a distribution over possible models

inside their state representation and taking actions to maximize

reward in these models. Doing so, however, requires the agent

to include its belief over the model in its state representation,

and the transition dynamics have to include both transitions in

the actual domain as well as changes in the agent’s model.

This augmented state representation results in a enormous

state space, making the full Bayesian algorithm intractable.

Attempts have been made to approximate the full algorithm

by parameterizing the model and tying model parameters

together [7] or sampling from the model distribution [8], [9],

but these methods are still only tested in domains with 5-

36 states. In addition to requiring a large amount of time to

compute a policy, these methods must maintain a belief state

over the model and require the user to create a well-defined

model prior.

Simsek and Barto [10] take a similar approach, examining

the optimal exploration problem where the agent does not

care about external rewards. They derive a second MDP

whose reward is the improvement of the value of the greedy

policy of the original MDP. Both the original and derived

MDPs are learned using Q-learning, resulting in an agent that

takes actions in the parts of the statespace where values are

improving the most. However, this method does not work with

a model-based method learning the original MDP, and does not

consider the balance of exploration and exploitation.

Another approach that addresses our problem is Gaussian

Process RL. Deisenroth and Rasmussen [4] present one such

approach, where the agent maintains a model of the domain

using Gaussian Process regression. This model is able to gen-

eralize experience to unknown situations as well as represent

uncertainty. This approach has achieved great results on motor

control problems such as the inverted pendulum and cart-

pole problems. However, the algorithm requires ten minutes of

computation time for every 2.5 seconds of experience. Also,

the algorithm is provided a cost function of how far the agent

is from the target state.

Oudeyer et al. [11] present Intelligent Adaptive Curiosity

(IAC), a method for providing intrinsic reward to encourage

a developing agent to explore. Their approach does not adopt

the RL framework, but is similar in many respects. In it, they

split the state space into regions and attempt to learn a model

of the transition dynamics in each region. They maintain an

error curve for each region and use the slope of this curve as

the intrinsic reward for the agent, driving the agent to explore

the areas where its model is improving the most. The resulting

intrinsic motivation drive is close to what we desire, but their

algorithm selects actions only to maximize the immediate

reward, rather than the discounted sum of future rewards. In

addition, their method has no way of incorporating external

rewards or weighing their value in deciding what to explore.

In previous work [3], we presented an algorithm, RL-DT,

that uses decision trees to model the transition and reward

dynamics in the domain. The algorithm is able to build a

model that generalizes experience to unknown states well.

However, RL-DT uses a heuristic for exploration: it explores

exhaustively until it has found a state-action with at least some

percentage of the maximum reward in the domain, and then it

switches to exploiting its model. In many cases this algorithm

over-explores, and it does not make any attempt to target its

exploration on states that will most improve its model.

Knows What It Knows (KWIK) [12] is a learning framework

for efficient model learning. A learning algorithm that fits

the KWIK framework must always either make an accurate

prediction, or reply “I don’t know” and request a label for

that example. KWIK algorithms can be used as the model

learning methods in an RL setting, as the agent can be driven

to explore the states the model does not know to improve its

model quickly. The drawback of KWIK algorithms is that they

often require a large number of experiences to guarantee an

accurate prediction when not saying “I don’t know.”

Here, we present a novel RL algorithm, TEXPLORE, that

does not have the drawbacks of the methods presented above.

Specifically, it does not explore as much as R-MAX, it can

run in real-time on large domains unlike Bayesian or Gaus-

sian Process methods, and it is able to reason about future

rewards unlike IAC. It is the first method to perform targeted

exploration in real-time in large domains.

IV. ALGORITHM

TEXPLORE is a model-based algorithm that learns multiple

possible models of the domain and averages them to come up

with a model that represents its uncertainty in the domain

(Figure 1). It is also able to explore areas where it is

particularly uncertain (where the models’ predictions vary

the most) by adding intrinsic rewards for exploration into its

model. The agent re-plans its policy on this model at each time

step, finding the best action according to its current model and

intrinsic rewards.

A. Model Learning

In many domains, actions have similar effects across states.

For example, in robotics tasks, actions may move a joint by

some number of degrees in each state. The transition effects, or

the relative change in a state, are therefore easier to generalize

across states than absolute outcomes. For this reason, we

choose to learn models of transition effects, se = s′−s, rather

than absolute outcomes.

The algorithm learns a model of the domain by learning

a separate prediction for each of the n state features and the

reward. Assuming that each of the state variables transition

independently, these separate models can be combined to

create a complete model of the transition effects. The proba-

bility of the transition effect P (se|s, a) is the product of the

probabilities of each of its n state features:

P (se|s, a) = Πn

i=0
P (xi

e
|s, a) (3)

Building a model in this way assumes that each state feature

can be predicted independently, which may be incorrect in

many cases, but has not been a detrimental assumption in the

domains we have tested.

We build each model using a random forest [13]. The

random forest is a collection of decision trees, each of which

is trained on only a subset of the agent’s experiences. Similar

to the distribution over possible models that Bayesian methods

use, each tree represents a possible model of the domain.

The final prediction for a state-action is the average of the

predictions of each of the trees. For example, if four trees

predicted outcome A, and one tree predicted outcome B, the

final model would have an 80% probability of outcome A and

a 20% probability of outcome B.

Averaging multiple possible models of the domain inher-

ently incorporates uncertainty in the model. If all the models

agree on the outcome of a particular state-action, then it is

likely to be correct. Moreover, averaging the models in this

way also allows the trade-off between exploration costs and

potential benefits to be handled naturally. For example, if the

models disagree and the average model predicts there is a

Fig. 1. Model Learning. This is how the algorithm learns a model of the
domain. The agent calculates the difference between s

′ and s as the transition
effect. Then it splits up the state vector and learns a random forest for each
state feature. Each random forest is made up of stochastic decision trees, which
get each new experience with probability w. The random forest’s predictions
are made by averaging each tree’s predictions, and then the predictions for
each feature are combined into a complete model of the domain.

small chance of a particular high-valued outcome occurring,

it may be worth exploring even if there is a low probability

that it is real. On the other hand, if this outcome has a large

negative value, the possibility that exploring it could be costly

should make the agent avoid it.

When the agent takes an action, it saves an experience,

(s, a, s′, r), of the state-action it took, the outcome, and

the reward it received. Each tree is updated with the new

experience with probability w, taking the (s, a) as input and

trying to predict a state feature from se or the reward.

Each decision tree is built recursively using the C4.5

algorithm [14]. At each node, the algorithm calculates the

gain ratio for each potential split, and splits the tree using

the split with the highest gain ratio. If the best gain ratio

is not above some threshold t, then the node becomes a

leaf node. To increase stochasticity in the models, at each

split, each feature is removed from the set used for potential

splits with probability f . When making a prediction, the tree

finds the leaf corresponding to the given state-action, and

outputs a probability for each outcome in the leaf based on

the percentage of the leaf’s outcomes that it makes up.

As an example, in the forest predicting rewards for the

example in the introduction, each tree may disagree on where

the ’slow’ neighborhood is based on the experiences it has

seen. One tree may say that the reward is −10 when the

STREET feature is less than 10 and −1 otherwise, while

another may say that the split occurs at 32nd street instead.

B. Exploration

There are a number of possible ways to incorporate explo-

ration on top of the learned model of the domain. As stated

earlier, we hypothesize that acting greedily with respect to

the average of multiple possible models will perform well.

Another option is to use information based on the variance of

predictions by each model. Similar to [4], we experimented

with an approach where the agent is given intrinsic rewards

based on the variance of the model’s predictions. In this case,

the model’s reward R is modified as follows:

R(s, a) = Ro(s, a) + bσ2(s, a) (4)

σ2(s, a) =
1

n + 1
[σ2R(s, a) +

n∑

i=1

σ2P (st

i
|s, a)] (5)

where Ro(s, a) is the original prediction of the model, σ2(s, a)
is the variance in the model’s predictions, averaged over each

feature and reward model, and b is a coefficient either adding

or subtracting intrinsic rewards from the model based on the

variance. By setting b < 0, the agent will avoid states that

the model is uncertain about; setting b > 0 will result in

the agent being driven to explore these uncertain states. If

b = 0, the agent will act greedily with respect to its model.

Changing the parameter b affects how aggressive the agent is

in trying to improve uncertainties in its model. In addition to

these methods, we ran experiments using ǫ-greedy exploration,

where the agent takes a random action ǫ of the time.

C. Planning

Each time the agent’s model is updated, it needs to re-

plan what the best action is based on its model. TEXPLORE

plans using a version of the popular UCT algorithm [2] that

is modified by incorporating eligibility traces and generalizing

values across depths in the search tree. To select an action, UCT

searches ahead from the agent’s current state in the model to

find the best action. It is an anytime algorithm and will keep

improving its action choice until it is stopped.

Similar to the prior that is created for Bayesian RL algo-

rithms, we wish to provide our algorithm with some basic

knowledge of the structure of the domain. We do this by

seeding the agent with a few sample experiences from the

domain, which it uses to initialize its model. Since these

seeds bias the agent’s expectations of the domain, the agent’s

performance is sensitive to them. We explore this effect

empirically in Section VI.

V. EXPERIMENTS

We tested the algorithms in a novel domain called Fuel

World which we created to examine exploration, shown in

Figure 2. In it, the agent starts in the middle left of the domain

and is trying to reach a terminal state in the middle right of

the domain with a reward of 0. The agent has a fuel level

that ranges from 0 to 60. The agent’s state vector, s, is made

up of three features: its ROW, COL, and FUEL. Each step the

agent takes reduces its fuel level by 1. If the fuel level reaches
0 the episode terminates with reward −400. There are fuel

stations along the top and bottom row of the domain which

increase the agent’s fuel level by 20. The agent can move in

eight directions: NORTH, EAST, SOUTH, WEST, NORTHEAST,

SOUTHEAST, SOUTHWEST, and NORTHWEST. The first four

actions each move the agent one cell in that direction and

have a reward of −1. The last four actions move the agent to

the cell in that diagonal direction and have reward −1.4. The

Fig. 2. The Fuel World domain. Starting states are in blue, fuel stations in
green, and the goal state is shown in red. The possible actions the agent can
take are shown in the middle.

domain has 21×31 cells, each with 61 possible energy levels,

and 8 possible actions, for a total of 317, 688 state-actions.

The agent does not start with enough fuel to reach the goal,

and must learn to go to one of the fuel stations on the top or

bottom row before heading towards the goal state.

Actions from a fuel station have an additional cost, which

is defined by:

R(x) = base − (x mod 5)a (6)

where R(x) is the reward of a fuel station in column x, base

is a baseline reward for that row, and a controls how much the

costs vary across columns. We designed two versions of the

domain to examine the effect of these costs on exploration. In

the first version, a = 1.0 and base = −18.0 for the bottom

row and −21.0 for the top row, resulting in rewards ranging

from −18.0 to −25.0. The second version has more variation,

as a = 5.0 and base = −10.0 for the bottom row and −13.0
for the top row, resulting in rewards from −10.0 to −33.0.
We ran experiments comparing versions of TEXPLORE using

models with 1, 5, and 15 decision trees. For the methods

with multiple decision trees, we ran experiments with intrinsic

rewards from Equation 4 with b = 35, 9, 0, and −35. Planning
was performed using UCT with λ = 0.05 and planning stopped

after 0.1 seconds (so that the agent takes 10 actions per sec-

ond). Based on informal testing, the experiments were run with

w = 0.6 and f = 0.2. In addition, we compared against two

baseline methods, which are typical model-free and model-

based approaches: Q-LEARNING [15] and R-MAX [5]. Each of

these algorithms strive for optimality; but achieving provably

optimal performance requires them to explore the domain

thoroughly, which is not practical in large domains such as

this one. The discount factor, γ, was set to 0.99.
All of the algorithms (including Q-LEARNING and R-MAX)

are given seeding experiences in the domain. They are given

two experiences from the goal state, and two transitions from

each row of fuel stations, for a total of six seeding experiences.

Since Q-LEARNING and R-MAX both employ tabular represen-

tations with no generalization, the sample experiences are only

useful to them in the exact states they occurred in. In contrast,

TEXPLORE’s random forest models are able to generalize these

experiences across state-actions.

VI. RESULTS

Figure 3 shows the average reward per episode over 30 trials

for the baseline methods and TEXPLORE using 15 decision

-700

-600

-500

-400

-300

-200

-100

 0

 0 20 40 60 80 100

A
v
e
ra

g
e
 R

e
w

a
rd

Episode Number

High Variation Fuel World

Q-Learning
R-Max
15 Trees: b = 35
15 Trees: b = 9
15 Trees: b = 0
15 Trees: b = 0 Epsilon-Greedy
15 Trees: b = -35

Fig. 3. Average reward over the first 100 episodes in the high variation Fuel
World domain. Results are averaged over 30 trials.

-12000

-10000

-8000

-6000

-4000

-2000

 0

 0 20 40 60 80 100

C
u
m

u
la

ti
v
e
 C

o
s
t

Episode Number

High Variation Fuel World

1 Tree: b = 0
1 Tree: Epsilon-Greedy
5 Trees b = 0
5 Trees: Epsilon-Greedy
15 Trees: b = 0
15 Trees: Epsilon-Greedy

Fig. 4. Cumulative reward over 100 episodes in the high variation Fuel
World domain. Results are averaged over 30 trials.

trees in the high variation Fuel World domain. R-MAX and

Q-LEARNING both fail miserably, running out of fuel quickly

every episode, and all the methods other than b = 35 accrue

significantly more reward per episode (p < 0.001) than them

starting in episode 5. The algorithm with b = 35 learns to get

fuel to stay alive, but over-explores, accruing large negative

rewards. The other methods all learn the task quickly and

perform well. After 300 episodes, the greedy method (b = 0)
accrues significantly (p < 0.001) more rewards than the others,

closely followed by the version with a small incentive to

explore uncertain states (b = 9).

Next we compared how the best exploration type (b = 0)
and ǫ-greedy exploration fared with either 1, 5, or 15 decision

trees. In the case with one tree, it was updated with all

the experiences and the full set of features to split on. The

cumulative rewards of these methods over 100 episodes on

the high variation Fuel World domain are shown in Figure 4.

More decision trees result in better policies, as the greedy

method with 15 trees accumulates significantly more reward

(p < 0.001) than the 5 tree algorithm after the 3rd episode,

and the 5 tree method accrues significantly more reward

(p < 0.001) than the 1 tree method after the 26th episode. In

addition, using the average model to explore greedily is better

than doing ǫ-greedy exploration, as all the greedy methods

have significantly more reward (p < 0.001) than all the ǫ-

greedy methods after episode 6. These results look similar in

the low variation Fuel World.

To further examine how the agents were exploring, we made

heat maps showing which states the agents visited. The colors

Low Variation Fuel World - First 20 Ep. - 15 Trees: b = 0

 0 5 10 15 20 25 30

 0

 5

 10

 15

 20

V
is

it
s

Fig. 5. Heat map displaying the average number of visits the agent with
15 trees and b = 0 took to each state over the first 20 episodes in the low
variation Fuel World, averaged over 30 trials and all fuel levels.

High Variation Fuel World - First 20 Ep. - 15 Trees: b = 0

 0 5 10 15 20 25 30

 0

 5

 10

 15

 20

V
is

it
s

Fig. 6. Heat map displaying the average number of visits the agent with
15 trees and b = 0 took to each state over the first 20 episodes in the high
variation Fuel World, averaged over 30 trials and all fuel levels.

represent the number of times the agent visited each cell in

the domain (averaged over 30 trials and all fuel levels), with

brighter colors meaning more visits. Figure 5 shows the visit

map over the first 20 episodes for the algorithm with 15

decision trees and b = 0 in the low variation Fuel World

domain, and Figure 6 shows the same for the high variation

domain. First, we can see that both algorithms are mainly

exploring states near the fuel stations and the path to the goal,

ignoring the space in the middle and right of the domain.

Looking at the cells in the bottom row between columns 10

and 15, we can see that the agent in the low variation world

explored more of these fuel stations. Because of the extra

variation in the costs of fuel stations in the second world,

exploration is more costly (it may result in up to −20 more

reward) and the agent decides it is not worthwhile to explore

the fuel stations as thoroughly.

The effects of the agent’s different exploration in these

two domains can be seen in its final policy in each domain.

Figures 7 and 8 show their visits over the final 50 episodes

on the two domains. The optimal policy in both domains is to

use the fuel station in column 15 on the bottom row. Going

to the station in column 10 is only slightly worse, with an

expected total reward only 0.6 less than going to column 15.

In the low variation version, the agent explored the stations

and largely settled on one of these two policies. In the high

variation version, the various trials settled on a number of

different policies, all of which are within 7.4 reward/episode

of the optimal policy. Since the reward within one fuel row

can vary up to 20.0 in this domain, it is not worthwhile to the

agent to possibly receive this additional cost for a maximum

possible benefit for 7.4.

For comparison, we show the visit map for the algorithm

Low Variation Fuel World - Final 50 Ep. - 15 Trees: b = 0

 0 5 10 15 20 25 30

 0

 5

 10

 15

 20

V
is

it
s

Fig. 7. Heat map displaying the average number of visits the agent with
15 trees and b = 0 took to each state over the final 50 episodes in the low
variation Fuel World, averaged over 30 trials and all fuel levels.

High Variation Fuel World - Final 50 Ep. - 15 Trees: b = 0

 0 5 10 15 20 25 30

 0

 5

 10

 15

 20

V
is

it
s

Fig. 8. Heat map displaying the average number of visits the agent with
15 trees and b = 0 took to each state over the final 50 episodes in the high
variation Fuel World, averaged over 30 trials and all fuel levels.

with 15 trees and b = 35 over the first 20 episodes in the low

variation domain in Figure 9. Here the agent explored a lot

more states in general, and more fuel stations in particular.

Still, because of the extra cost of exploring the fuel stations,

the agent spent most of its time in the rows adjacent to the fuel

stations, presumably navigating between the ones it wants to

explore. Due to this extra exploration, in both versions of the

domain, this agent settles on better final policies, but accrues

significantly more negative reward while exploring.

Finally, we examined how the seeding affects the perfor-

mance of the algorithm. If given no seeding experiences, the

algorithms have no expectation of goal states or fuel stations

being possible. The algorithms eventually find the fuel stations,

but never find the goal state, simply learning to live a long time

near the fuel stations. When we provide the algorithm with a

single experience of the goal state, it still has no idea of the

existence of fuel stations. In this case, we see that the methods

using intrinsic rewards to drive exploration (b > 0) are able

to find the fuel stations faster and accrue higher cumulative

rewards. The algorithm that is driven to avoid uncertain states

(b = −35) has a lot of difficulty, accruing 13 times more costs

Low Variation Fuel World - First 20 Ep. - 15 Trees: b = 35

 0 5 10 15 20 25 30

 0

 5

 10

 15

 20

V
is

it
s

Fig. 9. Heat map displaying the average number of visits the agent with
15 trees and b = 35 took to each state over the first 20 episodes in the low
variation Fuel World, averaged over 30 trials and all fuel levels.

than the best methods.

VII. DISCUSSION AND CONCLUSION

We have presented an algorithm that explores efficiently by

averaging possible models of the domain. Unlike methods that

guarantee optimality by exploring exhaustively, TEXPLORE

learns quickly by discovering which states not to explore.

It weighs the expected costs of exploring with the expected

benefits of learning a better policy, and can thus learn a task

quickly. TEXPLORE also runs in real-time on large domains,

which is something that Bayesian methods that try to achieve

similar exploration fail to do. The algorithms using a model

that generalizes were significantly better than the baseline

algorithms. Comparing only the algorithms using this model,

significantly more reward was accrued by acting greedily with

respect to an average model than using ǫ-greedy exploration or

a single model, thus demonstrating that our exploration method

is better than these methods under identical conditions.

This work has a number of possible directions for future

work. One possible extension is to use a different type of

model that does not require the feature independence assump-

tion of Equation 3. We also want to extend the current model

learning and planning methods to work in continuous domains

and robotics problems in particular. Finally, we are interested

to see if using solely the intrinsic rewards from Equation 4 and

no external rewards will provide enough intrinsic motivation

for a developing, curious agent.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[2] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
In: ECML-06. Number 4212 in LNCS. Springer, 2006, pp. 282–293.

[3] T. Hester and P. Stone, “Generalized model learning for reinforcement
learning in factored domains,” in AAMAS, May 2009.

[4] M. P. Deisenroth and C. E. Rasmussen, “Efficient reinforcement learning
for motor control,” in 10th International PhD Workshop on Systems and

Control, Hluboka nad Vltavou, Czech Republic, Sept. 2009.
[5] R. I. Brafman and M. Tennenholtz, “R-MAX - a general polynomial time

algorithm for near-optimal reinforcement learning,” in IJCAI, 2001, pp.
953–958.

[6] T. Degris, O. Sigaud, and P.-H. Wuillemin, “Learning the structure of
factored markov decision processes in reinforcement learning problems,”
in ICML ’06. New York, NY, USA: ACM, 2006, pp. 257–264.

[7] P. Poupart, N. Vlassis, J. Hoey, and K. Regan, “An analytic solution to
discrete bayesian reinforcement learning,” in ICML ’06. New York,
NY, USA: ACM, 2006, pp. 697–704.

[8] M. Strens, “A Bayesian framework for reinforcement learning,” in ICML

’00, 2000, pp. 943–950.
[9] J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate, “A bayesian

sampling approach to exploration in reinforcement learning,” in UAI,
2009.

[10] O. Şimşek and A. G. Barto, “An intrinsic reward mechanism for efficient
exploration,” in ICML, 2006, pp. 833–840.

[11] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development.” IEEE Trans. Evolutionary

Computation, vol. 11, no. 2, pp. 265–286, 2007.
[12] L. Li, M. L. Littman, and T. J. Walsh, “Knows what it knows: a

framework for self-aware learning,” in ICML, 2008, pp. 568–575.
[13] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[14] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

pp. 81–106, 1986.
[15] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Uni-

versity of Cambridge, 1989.

