
Value Function Transfer for General Game Playing

Bikramjit Banerjee BANERJEE@CS.UTEXAS.EDU

Gregory Kuhlmann KUHLMANN @CS.UTEXAS.EDU

Peter Stone PSTONE@CS.UTEXAS.EDU

Department of Computer Sciences, The University of Texas atAustin

Abstract

We present value function transfer techniques for
General Game Playing (GGP) by Reinforcement
Learning. We focus on 2 player, alternate-move,
complete information board games and use the
GGP simulator and framework. Our approach is
two-pronged: first we extract knowledge about
crucial regions in the value-function space of any
game in the genre. Then for each target game, we
generate a smaller version of this game and ex-
tract symmetry information from the board setup.
The combined knowledge of value function and
symmetry allows us to achieve significant trans-
fer via Reinforcement Learning, to larger board
games using only a limited size of state-space by
virtue of exploiting symmetry.

1. Introduction

We present two basic techniques for value function transfer
in the General Game Playing (GGP) domain (Pell, 1993).
This domain allows description of a wide range of games in
a uniform language, called the Game Description Language
(GDL). The challenge is to develop a player that can com-
pete effectively in arbitrary games presented in the GDL
format (Genesereth & Love, 2005). In this paper we focus
on the problem of building a learning agent that can use
knowledge gained from previous games to learn faster in
new games in this framework.

We use afterstate Q-learning (Watkins & Dayan, 1992) as
the basic learning mechanism. We use two approaches to
knowledge transfer: first we learn the values of some hand
generated structures (with intuitive meaning, see Figure 2)
in the game-tree, that we callfeatures. We use the Q-values
of such structures learned in one game (tic-tac-toe) to ini-
tialize (some) Q-values in other games. This approach is
not limited to board games, but only to 2-player, alternate
move, complete information games. It belongs to the line

Appearing in theProceedings of the ICML Workshop on Structural
Knowledge Transfer for Machine Learning, Pittsburgh, PA, 2006.
Copyright 2006 by the author(s)/owner(s).

of previous research using similar techniques in other do-
mains (Liu & Stone, 2006; Taylor & Stone, 2005). The
intention is to reuse portions of the value-function space
that are independent of the game in our chosen domain.
However, a common problem with value-function learning
is that the size of the state space can be overwhelming. Our
second approach is designed not only to address that, but
also to enhance transfer. We automatically identify if a
given target game is a board game, and if so identify what
kind of symmetries are present in asmall versionof the tar-
get game. We then use this structural symmetry informa-
tion to compact the value function space in the full-size tar-
get game by aliasing states that are identical by symmetry.
Alternatively, we can look at this as exploiting symmetry
to simultaneously update multiple states that are symmet-
ric variations of each other, leading to faster learning.

X

X

O

O

Figure 1.Illustration of featureF1 in Tic-tac-toe, Connect-3 and
CaptureGo. Note that in Tic-tac-toe, it also matchesF2
2. Feature extraction in value space

Our learning agent uses a private simulator based on the
given game description, to lookahead a few levels of
moves. This is not a strong assumption since novice hu-
man players routinely use this capability but they still need
to learn from experience to become better players. We cur-
rently use four handcraftedfeaturesthat serve to warn the
player if a terminal (either favorable or not) state is in the
vicinity of the current state in the game search tree. These
four features areF1: Mark to winF2: Mark to block opponent from winningF3: Fail to block opponent from winning

Value Function Transfer for General Game Playing

aS, matches "Mark to win"

. . . .

a
. . . .

a
. . . .

. . . .

�
�
�
�
�
�
�
�

. . . .

�
�
�
�
�
�
�
�

.

a
.

�
�
�
�
�
�
�
�

. . . .

�
�
�
�
�
�
�
�

. . . .

�������
�������
�������

�������
�������
�������

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

S

aS, matches "Block opponent"

S

. . . .

a

. . . .

S

S, matches "Create fork"a

S

a

S, * matches "Fail to block opponent"

Figure 2.Illustration of featuresF1; : : : ; F4 in a game’s search tree. Circular (green) nodes represent the learner’s states, square (red)
nodes are the opponent’s states. Faces are terminal states and self-explanatory.F4: Create a fork

FeatureF1 is illustrated in Figure 1 in 3 different games.
Figure 2 shows the common game tree structure of these
features. None of the features require a deeper lookup than
2 moves by the learner.

Note that the features reveal a hierarchical nature, e.g., fea-
turesF2 andF3 involve featureF1 at the opponent level
(in terms of the opponent’s win), and similarlyF4 involvesF3. Once the training episodes are complete in the source
game, we extract feature information from the acquired
value-function space. This involves matching each state
from this space against each of these features using the
simulator for lookahead. If a states matches a feature, we
identify the candidate actiona and note the valueQ(s; a)
against that feature. For feature 3, all available actions of
the learner are candidate actions, so we note their averageQ-value. The value of a featureFi is then calculated asval(Fi) = avgfQ(s; a)j(s; a) matchesFig
It is possible that an(s; a) matches multiple features (e.g.,
in Figure 1, left) and so each state can potentially contribute
to multiple features. After the feature values have been
computed, we use them to initializeQ(s; a) in the target
game for each(s; a) that matchesFi, i = 1 : : : 4. Here
again, an(s; a) may match multiple features, and we ini-
tialize asQinit(s; a) = maxi fval(Fi)j(s; a) matchesFig
The states that remain uninitialized after this process are
initialized to the default value. The idea behind this trans-

fer mechanism is to save the cost of a few value-backup
steps near terminal states (i.e., when the states gain predic-
tive potential) and thus guide exploration to focus more in
the regions where foresight is not usually available. In this
way, our transfer learner behaves more like human learners.

Lookahead search has been shown to be an effec-
tive technique in conjunction with Reinforcement Learn-
ing (Tesauro, 1994). Although we depend on handcrafted
features, this work should be looked upon as a proof of
concept that feature transfer can be effective. Existing tech-
niques for automated feature discovery in games (Fawcett,
1993) can be leveraged to strengthen feature transfer in fu-
ture.

Characteristics of feature transfer

The features do not depend on the exact game, as long as
it is within the genre of chosen games. Specifically, the
size of the board, the number of available actions at each
level, and the semantics of terminal states and win/loss cri-
teria have been effectively abstracted away by exploiting
the GDL. Consider the diverse natures of games in these as-
pects: in Tic-tac-toe the number of available moves steadily
diminishes, in Connect-4 it diminishes at intervals, whilein
Othello it may actually increase. The winning criteria are
widely varying in these games; they are similar in Tic-tac-
toe and Connect-4 but completely different in Go or Oth-
ello. A key motivation behind this research is to develop
simple techniques that can transfer knowledge effectively
from one game to a markedly different game which is why
we have focused on such a high level of abstraction.

Value Function Transfer for General Game Playing

Prior to developing the feature transfer concept, we have
looked at the possibility of using a common feature space
where we do both learning and transfer. In other words, we
asked the question whether we can learn the quality values
of featuresQ(Fi) directly (soFi forms the state space as
well) instead of first learningQ(s; a) and then extractingval(Fi). We realized the futility of such an endeavor by
posing a simple transfer problem that answered this ques-
tion in the negative. Consider the problem ofrole transfer,
i.e., learn to play a game as, say, the first mover and then use
transferred knowledge to learn to play as the second mover.
A feature space in which we learn must be discriminative
enough so as not to alias semantically different states, but
then if it is so discriminative then it is more than likely that
we can identify the role of the player by just looking at the
feature description. Now if the role is identifiable in a fea-
ture then the knowledge gained as the first mover would
be useless when moving second. Consequently, we looked
into different feature spaces for learning and transfer. Note
that our features are also independent of the learner’s role,
but the state space used for learning is not.

One concern when using complex feature spaces for trans-
fer is that the time overhead for computing transfer knowl-
edge should not overwhelm the learning time. By lim-
iting the number of features and the depth of lookahead,
we are ensuring a low computational complexity for trans-
fer knowledge. The limited lookahead depth also serves
to keep the features quite indicative of the outcome of the
subsequent moves. Note however, this indication is not al-
ways unambiguous, e.g., whileF1 andF3 are indicative of
winning and losing the game respectively,F2 provides no
clearcut indication. Win, loss or draw are all possible out-
comes in this case. This ambiguity justifies transfer learn-
ing; if merely looking ahead would give a concrete idea of
the ultimate outcome of playinga in states, then we could
well have initialized the correspondingQ-value in the tar-
get game to the known value of that outcome.

3. Symmetry transfer

Many games that humans enjoy playing take place on a
rectangular grid or board. These games often exhibit some
kind of symmetry that makes the game simpler to reason
about. One type isreflectionalsymmetry, which means that
for every state, the board can be “flipped” without chang-
ing the value of that position for either player. Reflectional
symmetry may exist across the board’s vertical axis, hori-
zontal axis, or both. An example of reflectional symmetry
about the vertical axis is shown in Figure 3 for the Connect-
3 game. Note that Connect-3 does not exhibit reflectional
symmetry about the horizontal axis. In fact, for the state
shown in the figure, the state that results from a flip about
the horizontal axis is not even a valid state.

Figure 3.Reflectional symmetry in4� 4 Connect-3

In addition to reflectional symmetry, square boards may ex-
hibit rotational symmetry. An example for the CaptureGo
games is shown in Figure 4. The four states that result from
rotating the board 90 degrees at a time are all strategically
equivalent. We refer to the set of states that arise from a
board’s symmetric transformations to be the state’ssymme-
try set.

Figure 4.Rotational symmetry in3� 3 CaptureGo

A prerequisite for identifying board symmetries in a game
is recognizing that the game contains a board. The agent
identifies boards on its own by examining the formal game
description. A board is essentially identified as a ternary
predicate with two ordered inputs and one output. The full
details can be found in (Kuhlmann et al., 2006).

Once the board has been identified, the agent tests it for
each type of symmetry. For a board to exhibit a certain kind
of symmetry, it must satisfy two conditions. First, for each
terminal state, every state in its symmetry set must have
the same outcome. Second, for every transition from non-
terminal states via actiona to resulting states0, executing
the symmetric transformation ofa in the transformed state
for s results in the transformation ofs0.
Note that this symmetry identification method requires the
enumeration of every valid state in the game. For large
games, this would not be feasible. An important observa-
tion is that the symmetries exhibited by a smaller version
of the same game are very likely to be the ones exhibited
in the larger game. Therefore, the agent can use a smaller
version of the target game it is going to learn to identify
the game’s symmetries and transfer that knowledge to the
larger game.

The agent uses symmetry knowledge transferred from the
smaller source task to speed up learning on the target task.

Value Function Transfer for General Game Playing

By treating symmetric states as identical, the agent avoids
the need to learn about the same situation multiple times.
By requiring the agent to learn fewer values in its value
function, the hope is that it will be able to learn more effi-
ciently.

4. Experimental Results

We conducted a set of experiments to measure the impact
of each type of transfer on learning speed. We tested the
transfer methods on two different target games: Connect-3
and CaptureGo. For both games, we compared the learn-
ing speeds of abaselinelearner to learners that use trans-
ferred knowledge from other tasks. The baseline learner
uses afterstate Q-learning with a value function initialized
uniformly to the default value. Thesymmetrylearner is
identical to the baseline learner except that value function
updates are performed for all afterstates that are in the sym-
metry set for the current afterstate. Finally, thefeature
learner uses the same backups as baseline, but initializes
its value function to the values transferred from the source
game. We do not report results from the combined (feature
+ symmetry) learner since they were not found to be signif-
icantly improved over the feature learner, given the shallow
goals in these games.

Both of the target tasks take place on a4 � 4 board. For
symmetry transfer, the3 � 3 versions of the games were
chosen as the source games. The values for feature transfer
were learned from standard tic-tac-toe as the source task.
For both domains, the learner competes against an oppo-
nent that takes winning moves and avoids losing moves by
looking ahead one full turn, but otherwise plays randomly.

Learning curves for each of the three learners in the
Connect-3 game are shown in Figure 5. Both symmetry and
feature transfer help the agent reach optimal play in fewer
games than the baseline learner. The speed increase from
symmetry transfer is significant, but not nearly as dramatic
as feature transfer. The main reason for the limited impact
of symmetry transfer is that only a single type of symmetry
is present in Connect-3. Also, feature transfer reaches such
a high level of performance so early, that there is little room
for improvement. Games, such as Othello, where goals are
usually deep in the game-tree could be more demonstrative
of the superiority of the unified approach. We intend to run
more experiments in the future.

The results of the experiments in the CaptureGo game are
shown in Figure 6. Again, feature transfer achieves a high-
level of performance from the start. This result is likely
due to the fact that the calculated features examine the
game tree at a greater depth than is explored by the one-
move-lookahead opponent. Because CaptureGo exhibits
both rotational and reflectional symmetry, the benefits of

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000

A
ve

ra
ge

 S
co

re

Number of Training Games

Feature Transfer
Symmetry Transfer

Baseline

Figure 5.Results for4� 4 Connect-3

symmetry transfer in this game are more pronounced than
in Connect-3. Also the advantage of symmetry transfer in
compacting the state-space is compelling.

 40

 50

 60

 70

 80

 90

 100

 0 50000 100000 150000 200000 250000

A
ve

ra
ge

 S
co

re

Number of Training Games

Feature Transfer
Symmetry Transfer

Baseline

Figure 6.Results for4� 4 CaptureGo

References
Fawcett, T. E. (1993). Feature discovery for problem solving systems, PhD thesis, University of

Massachusetts, Amherst.

Genesereth, M., & Love, N. (2005). General game playing: Overview of the AAAI competition.
AI Magazine, 26.

Kuhlmann, G., Dresner, K., & Stone, P. (2006). Automatic heuristic contruction in a complete
general game player.Proceedings of the Twenty-First National Conference on Artificial Intel-
ligence. To appear.

Liu, Y., & Stone, P. (2006). Value-function-based transferfor reinforcement learning using struc-
ture mapping.Proceedings of the Twenty-First National Conference on Artificial Intelligence.
To appear.

Pell, B. (1993). Strategy generation and evaluation for meta-game playing. PhD thesis, University
of Cambridge.

Taylor, M. E., & Stone, P. (2005). Behavior transfer for value-function-based reinforcement learn-
ing. The Fourth International Joint Conference on Autonomous Agents and Multiagent Systems
(pp. 53–59). New York, NY: ACM Press.

Tesauro, G. (1994). Td-gammon, a self-teaching backgammonprogram, achieves masterlevel play.
Neural Computation, 6, 215–219.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning.Machine Learning, 8, 279–292.

