
Cross-Domain Transfer for Reinforcement Learning

Matthew E. Taylor MTAYLOR@CS.UTEXAS.EDU

Peter Stone PSTONE@CS.UTEXAS.EDU

Department of Computer Sciences, The University of Texas at Austin

Abstract

A typical goal for transfer learning algorithms is

to utilize knowledge gained in a source task to

learn a target task faster. Recently introduced

transfer methods in reinforcement learning set-

tings have shown considerable promise, but they

typically transfer between pairs of very similar

tasks. This work introduces Rule Transfer, a trans-

fer algorithm that first learns rules to summarize a

source task policy and then leverages those rules

to learn faster in a target task. This paper demon-

strates that Rule Transfer can effectively speed up

learning in Keepaway, a benchmark RL problem

in the robot soccer domain, based on experience

from source tasks in the gridworld domain. We

empirically show, through the use of three dis-

tinct transfer metrics, that Rule Transfer is effec-

tive across these domains.

1. Introduction

Reinforcement learning (RL) methods excel at solving com-

plex tasks with minimal feedback. Transfer learning, in

an RL setting, typically attempts to decrease training time

by learning a source task before learning the target task.

While there have been a number of recent successes, most

existing transfer methods focus on pairs of tasks that are

closely related, such as different mazes where agents have

the same sensors and actions available (Madden & Howley,

2004). Prior to this work, the most dissimilar source and

target tasks we are aware of are pairs of tasks in a single

domain with different reward structures, different actions,

and/or different state variables (see, for instance, past trans-

fer work in the robot soccer domain (Torrey et al., 2006)).

A more difficult challenge is to transfer between differ-

ent domains, where we informally define a domain to be

a setting for a group of semantically similar tasks. Such

cross-domain transfer has been a long-term goal of trans-

fer learning because it could allow transfer between signif-

icantly less similar tasks. While previous transfer work has

focused on reducing training time by transferring from a

simple to complex task in a single domain, a (potentially)

more powerful way of simplifying a task is to formulate it

Appearing in Proceedings of the 24 th International Conference
on Machine Learning, Corvallis, OR, 2007. Copyright 2007 by
the author(s)/owner(s).

as an abstraction in a different domain. This work will fo-

cus on demonstrating that cross-domain transfer is feasible

and effective, where the source task is selected from the rel-

atively simple gridworld domain and the target task is the

more complex RL benchmark task of 3 vs. 2 Keepaway in

the robot soccer domain.

We first introduce Rule Transfer, a novel domain-

independent RL transfer method. In addition to succeeding

at cross-domain transfer and having low computational re-

quirements in practice, this method allows production rules

(henceforth rules) to transfer knowledge between agents

which may have different internal representations. Thus an

agent may train very quickly with a simple internal repre-

sentation in the source task, but a more complex agent in

the target task could still benefit from the transfer.

This paper evaluates three different rule utilization schemes

for Rule Transfer in Keepaway. We then empirically

show that cross-domain transfer can effectively improve the

speed of learning if the relationships between the tasks is

known. Lastly, learning such relationships is an important

open problem and this work also takes a step towards learn-

ing the mapping, illustrating a process by which it can be

derived from high-level qualitative knowledge.

2. Rule Transfer

The following steps summarize Rule Transfer:
1. Learn a policy (π : S 7→ A) in the source task. Af-

ter training has finished, or during the final training

episodes, the agent records some number of interac-

tions with the environment in the form of (S,A) pairs

while following the learned policy.

2. Learn a decision list (Ds : S 7→ A) that summa-

rizes the source policy. After the data is collected, a

rule learner is used to summarize the collected data to

approximate the learned policy.

3. Modify the decision list for use in the the target task

(Translate(Ds)→ Dt). To allow the learned de-

cision list to be applied in a target task that has differ-

ent state variables and actions from the source task, the

decision list must be translated before it can be used.

4. Use Dt to learn a policy in the target task. Sec-

tion 2.2 will discuss how the transferred rules can be

used in the target task to speed up learning.

The primary difference between this transfer method and

previous work is that we leverage rules to provide an ab-

Cross-Domain Transfer for Reinforcement Learning

stract representation of a source task policy that is usable in

the target task. We choose rules because rule learning is fast

and well understood, and they are human readable. By us-

ing rules as an intermediate representation, we decouple the

particular learning techniques used in the two tasks. Other

intermediate representations, such as neural networks, are

possible in principle. As long as rules may be abstracted

from the source agent’s behavior and leveraged by the tar-

get agent, agents in the two tasks may use different internal

representations, as best suits their particular task.

2.1. Task-Specific Rule Translation

If the target task has different state variables or actions than

the source task, an agent could not directly apply a learned

decision list from the source task because the preconditions

for the rules and/or actions recommended have changed. To

define a relationship between two tasks, we define a pair of

translation functions for actions and state variables, which

we initially assume are provided. δA returns the target task

action most similar to a source task action (δA(As) = At)

and δX returns the target task state variable most similar

to a source state variable (δX(xs) = xt). Together, these

functions define how a pair of tasks are related.

Translate() procedurally modifies the source task de-

cision list so that it can apply to a given target task by di-

rectly mapping state variables and actions between the tasks

in the spirit of past transfer work (Soni & Singh, 2006; Tor-

rey et al., 2006). In our experiments the source tasks’ state

variables and actions all had mappings into the target task.

If source task state variables or actions had no correspon-

dence in the target task, such preconditions or rules would

be removed from the translated decision list.

2.2. Rule Utilization

To make Rule Transfer effective, we treat the translated de-

cision list as advice rather as rules that must be followed.

The agent benefits from the decision list initially, but re-

fines its policy as it gathers more experience in the tar-

get task. This section introduces three advice utilization

schemes. The first applies if the target task learner is us-

ing a value-function approximation method, like temporal

difference learning (Sutton & Barto, 1998), but the second

and third apply to other RL learning methods in principle.

Value Bonus uses the transferred decision list, Dt, to deter-

mine which target task action the decision list would rec-

ommend in the current state. The computed Q-value of this

recommended action then receives a “bonus” so that it is

increased by some constant. Actions recommended by Dt

are initially more likely to be selected, but the bonus can be

negated over time through learning.

Extra Action adds an action to the target task. When the

target task agent selects this pseudo-action, the agent exe-

cutes the action recommended by Dt. The learner treats this

pseudo-action as a normal action. To bias the learner to-

wards this action, the agent is forced to execute the pseudo-

action for a constant number of episodes at the beginning of

training in the target task. Afterward, assuming pessimistic

initialization, the pseudo-action will have higher Q-values

than all other actions, which causes the agent to initially

perform recommended actions, but over time learning can

override this bias. For instance, in regions of the state space

in which the advice is appropriate, the agent will learn to

select the pseudo-action, while in other regions of the state

space where the advice is non-optimal, the agent must learn

to intelligently choose between all the actions.

Extra Variable adds an extra state variable to the target

task’s state description. This variable takes on the value of

the index for the action recommended by Dt. To assist the

agent in learning the importance of this variable, we again

initially force the agent to choose the action recommended

by Dt. An agent quickly learns the importance of this state

variable, but it can still learn to ignore the state variable

when the advice is sub-optimal.

3. Task Descriptions

In this section we first describe 3 vs. 2 Keepaway, an RL

benchmark task (Stone et al., 2006) in the domain of robot

soccer. Next we introduce Ringworld and Knight Joust,

novel tasks in the gridworld domain which are designed to

exhibit similarities to Keepaway.

3.1. Keepaway

2 1

dist(K ,T)

dist(K ,K)

dist(K , T)2

1 1

1

dist(K ,K)1 3

1 2

3

13

1

dist(K ,T)
K3

T2

K2

1K

T
1

ang(K ,K ,T)
ang(K ,K ,T)

Figure 1. The 13 state variables used for learning 3 vs. 2 Keep-
away, 7 of which are labeled with solid lines. There are 11 dis-
tances to players and the center of the field, as well as 2 angles
along passing lanes.

Keepaway tasks in the RoboCup simulated Soccer domain

are characterized by stochastic actions, noisy observations,

and a continuous state space. In 3 vs. 2 Keepaway, a team

of 3 keepers tries to possess a ball in a square area while 2

takers work to foil the keepers (see Figure 1). Over time the

keepers attempt to learn to possess the ball longer, increas-

Cross-Domain Transfer for Reinforcement Learning

ing the average episode length. The players in our exper-

iments are based on version 0.6 of the benchmark players

distributed by UT Austin (Stone et al., 2006) and freely-

available Soccer Server version 9.4.5.

In 3 vs. 2 Keepaway, three keepers are initially placed in

three corners of a 25m × 25m field and a ball is placed

near one of the keepers. Two takers are placed in the fourth

corner. When an episode starts, the three keepers attempt to

keep control of the ball by passing among themselves and

moving to open positions. The keepers receive a reward of

+1 for every time step that the ball remains in play. The

episode finishes when a taker gains control of the ball or

the ball is kicked out of bounds. The episode is then reset

with a random keeper placed near the ball.

Keepers can choose from 3 macro-actions when possessing

the ball: A = {hold, Pass1, Pass2}. Keepers which do

not possess the ball follow a hand-coded policy which at-

tempts to capture an open ball or moves to get open for a

pass. Takers follow a fixed strategy and do not learn. The

agent’s state is defined by 13 variables, as is shown by line

segments and angles in Figure 1. These variables describe

relevant distance and angles of the keepers K1 − Kn, the

takers T1 − Tm, and the center of the playing region, C.

Keepers and takers are ordered by increasing distance from

the ball. Learning in this multi-agent domain is complicated

by a continuous state space and (simulated) noise in agent

sensors and actuators.

Keepers learn using Sarsa (Rummery & Niranjan, 1994;

Singh & Sutton, 1996) for estimating the action-value func-

tion. Because Keepaway has a continuous state space, some

kind of function approximation is necessary. We utilized a

radial basis function approximator (Sutton & Barto, 1998),

as was done previously in this domain (Stone et al., 2006).

3.2. Ringworld

Ringworld is a novel task that is situated on a grid1 with

0.01 meter tiles. There is no noise in agents’ perceptions

and the player receives a reward of +1 for every time step

it is not captured by the opponent. The opponent always

moves towards the player. When the episode starts, the

player is randomly assigned two possible “Run Targets,”

which lie on a static ring. At every timestep, the player

may either stay in its current location, or choose to “run” to

one of the two targets. If the player runs, it moves at twice

the speed of the opponent to the run target. If the opponent

does not intercept the player, as determined by the transition

function, two new random run targets on the ring are chosen

for the player and the episode continues. As the opponent

approaches the player, either when the player is standing

still or while running, the chance of capture increases. Thus

1An agent sees an average of only 8065 distinct states over the
course of a 25,000 episode learning trial.

the only stochasticity in the environment is the randomness

associated with the probability of capture. The player learns

to maximize average episode length by using Sarsa with a

Q-value table. A = {Stay,RunNear, RunFar} and the

state is represented by 5 distances and 2 angles (see Fig-

ure 2).

dist(P,O)

2

1

dist(P,Target)

dist(Target ,O)
1

1

ang(O,P,Target)1

ang(O,P,Target)2

dist(P,Target)2

dist(Target ,O)
2

Opponent

Target

Player

Target

Figure 2. Ringworld: The player may
stay still or run to 1 of 2 possible tar-
gets. The episode ends when the oppo-
nent captures the player. The underlying
0.1m grid is not shown.

This gridworld task

was constructed so

that it would have

similarities to 3

vs. 2 Keepaway.

For instance, the

7 state variables

were chosen to

be similar to the

state variables in

Keepaway. The

width of the ring

(9.5 m) was se-

lected so that the

distance between

runs is similar,

on average, to the

distance between keepers. The transition function that

determines if the episode ends (which takes as input the

state variable dist(P,O): the distance between the player

and opponent) was based on the observed likelihood that a

Keepaway episode ends (i.e. the probability that an episode

ends given dist(K1, T1)). While it would be impossible to

recreate many of the dynamics associated with a complex,

stochastic, and continuous task, we designed Ringworld to

capture some of Keepaway’s characteristics.

3.3. Knight Joust

E

N

W

S

ang (East)

Start

Goal

ang(West)

dist(P,O)

Player

Opponent

Figure 3. Knight Joust: The player at-
tempts to reach the goal end of a a 25
× 25 grid-world while the opponent at-
tempts to touch the player.

Knight Joust is

also situated in the

gridworld domain

but was designed

to be less similar

to Keepaway than

Ringworld, and

more simple than

Ringworld. In this

task the player

begins on one

end of a 25m ×
25m board, the

opponent begins

on the other, and

the players alter-

nate moves. The

player’s goal is to reach the opposite end of the board

without being touched by the opponent (see Figure 3);

the episode ends if the player reaches the goal line or the

Cross-Domain Transfer for Reinforcement Learning

opponent is on the same square as the player. The state

space is discretized into 1m squares2 and again there is no

noise in the perception. The player’s state variables are

composed of the distance from the player to the opponent,

and two angles which describe how much of the goal line

is viewable by the player.

if opponent is E of player then
Move W with probability 0.9

else if opponent is W of player then
Move E with probability 0.9

if opponent is N of player then
Move S with probability 1.0

else if opponent is S of player then
Move N with probability 0.8

Figure 4. Knight Joust opponent policy

The player may

deterministi-

cally move one

square North,

or perform a

knight’s jump,

where the player

moves one square

North and two

East or West:

A = {Forward, JumpWest, JumpEast}. The opponent

may move in any of 8 directions and follows a fixed

stochastic policy3, shown in Figure 4.

The player receives a reward of +20 every time it takes the

forward action, a +20 upon reaching the goal line, and 0

otherwise. The player uses Sarsa with a tabular representa-

tion to learn in this task. While this task is quite dissimilar

from Keepaway, note that there are some similarities, such

as favoring larger distances between player and opponent.

4. Utilizing Rules Effectively

To determine reasonable settings for the different rule uti-

lization methods outlined in Section 2.2, we analyze Rule

Transfer by using 3 vs. 2 Keepaway as the source and tar-

get task. We first train in 3 vs. 2 for five simulator hours

(roughly 1,300 episodes). Next, JRip, an implementation of

RIPPER (Cohen, 1995) included in Weka (Witten & Frank,

2005), learns a decision list summarizing the source task

policy4. Lastly, we utilize the decision list in a new instance

of Keepaway.

We will compare the different rule utilization methods to

learning without transfer via three metrics:

1. Initial Performance: Measure the average hold time at

time = 0.

2. Asymptotic Performance: Measure the average hold

time after learning has plateaued. We measure this

after 40 simulator hours because initial informal ex-

2A learner in Knight Joust sees an average of only 601 distinct
states over a 50,000 episode learning trial

3If the opponent could move in any direction with probability
1.0, the player would never succeed in reaching the goal line. The
player can only take a limited number of jumps before hitting the
edge of the board and must hope that the opponent “stumbles” so
that the player can pass it.

4RIPPER is a simple propositional rule learner that can learn a
decision list. If additional representational power were needed, an
ILP rule learner like Aleph (Srinivasan, 2001) could be used, but
we found the additional complexity unnecessary.

periments showed that learning without transfer has

plateaued by this time.
3. Accumulated Reward: Approximate the area un-

der the curve by summing the average reward

accumulated by a particular trial at every hour:∑
40

t=0
(average reward at time t).

Figure 5 shows the performance averaged over 10 learn-

ing curves for learning without transfer with a 1000 episode

sliding window. One learning curve shows the performance

when always utilizing the rules (“Always Use Rules”). Ad-

ditionally, the three rule utilization methods are shown.

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

Without Transfer

Always Use Rules

Extra Variable

Value Bonus

3 vs. 2 Keepaway

Extra Action

Figure 5. This graph shows the average of 10 independent learning
trials for learning without transfer and for using rules after learn-
ing for five simulator hours (not shown): without further learning,
with a Value Bonus of +10, with Extra Action after 100 episodes,
and with Extra Variable after 100 episodes. Learning without
transfer and using rules without learning have standard error bars
in 5 hour increments.

Table 1 details the results, which show that while the trans-

fer metrics are affected by the relevant rule utilization pa-

rameters, each rule utilization method has a wide range of

effective parameters.

5. Cross-Domain Transfer Results

In the previous section we determined appropriate advice

utilization settings via three transfer metrics. In this section

we apply those same settings while using Ringworld and

Knight Joust as source tasks and Keepaway as the target.

This section demonstrates that transfer from Ringworld is

able to significantly improve all three transfer metrics, that

Rule Transfer settings are not particularly brittle, and that

transfer from Knight Joust is able to significantly improve

one of the transfer metrics.

5.1. Ringworld to 3 vs. 2 Keepaway

In this section we first detail how to perform Rule Transfer

between Ringworld and Keepaway. We compare the results

from using the three different advice utilization schemes

and show that Extra Action is superior. Lastly, we perform

a set of experiments to show that Rule Transfer, while it

has many parameters, is not particularly sensitive to these

parameters’ settings.

Cross-Domain Transfer for Reinforcement Learning

Keepaway to Keepaway
Initial Asymptotic Accumulated

Performance Performance Reward

Without Transfer

7.0 ± 0.7 19.4 ± 2.0 688.4 ± 68.7

Added
Constant Value Bonus

1 12.3 ± 1.7 17.1 ± 1.7 630.1 ± 61.3
5 12.7 ± 1.9 18.2 ± 1.8 666.0 ± 66.4

10 13.0 ± 1.8 18.4 ± 2.2 686.4 ± 77.5
20 12.6 ± 1.7 16.6 ± 1.7 611.9 ± 65.3
50 12.8 ± 1.9 13.9 ± 1.9 534.2 ± 73.8

Initial
Episodes Extra Action

0 7.6 ± 1.7 19.0 ± 2.1 648.2 ± 72.1
50 13.8 ± 2.1 18.3 ± 2.0 676.1 ± 75.4

100 14.0 ± 2.4 18.5 ± 2.0 688.2 ± 75.7
250 13.9 ± 2.3 18.4 ± 1.9 675.3 ± 69.0
500 13.7 ± 2.2 18.1 ± 1.9 678.8 ± 72.2
1000 13.4 ± 2.0 17.9 ± 2.1 648.2 ± 72.1

Initial
Episodes Extra Variable

0 7.0 ± 0.7 20.0 ± 2.0 691.4 ± 68.8
50 13.6 ± 2.0 19.9 ± 2.0 715.9 ± 70.2

100 14.0 ± 2.3 20.1 ± 2.1 726.0 ± 72.4
250 13.7 ± 2.1 19.9 ± 2.1 717.6 ± 74.6
500 13.6 ± 2.2 20.2 ± 2.0 729.2 ± 73.8
1000 13.7 ± 2.4 17.4 ± 6.3 637.4 ± 207.6

Table 1. Results compare three different rule utilization schemes
where each row represents 10 independent tests. The three rule
metrics from Section 4 are shown in columns 2-4. The first col-
umn contains the constant added to the recommended action in
Value Bonus, or the number of episodes the learner in initially
forced to select the recommended action for Extra Action and Ex-
tra Variable.

Agents learn for 25,000 episodes in Ringworld and then

record 20,000 (S,A) pairs, which takes less than 1,000

episodes. After JRip learns a decision list, and the rules

are transformed via Translate() and the cross-domain

mappings (Table 2), the decision list is utilized to learn

Keepaway.

Table 3 shows one of the main results of this paper; all three

rule utilization methods can significantly increase all three

transfer metrics. Furthermore, the asymptotic performance

Cross-Domain Mappings for Ringworld to Keepaway
Ringworld Keepaway

δ
A

Stay Hold Ball
RunNear Pass1: Pass to K2

RunFar Pass2: Pass to K3

δ
X

dist(P, O) dist(K1, T1)
dist(P, Target1) dist(K1, K2)
dist(Target1, O) Min(dist(K2, T1), dist(K2, T2))
ang(O, P, Target1) Min(ang(K2, K1, T1)

ang(K2, K1, T2))
dist(P, Target2) dist(K1, K3)
dist(Target2, O) Min(dist(K3, T1), dist(K3, T2))
ang(O, P, Target2) Min(ang(K3, K1, T1),

ang(K3, K1, T2))

Table 2. This table describes the cross-domain mapping used by
Translate() to modify a decision list learned in Ringworld so
that it can apply to Keepaway.

Ringworld to Keepaway
Initial Asymptotic Accumulated

Performance Performance Reward

Without Transfer

7.8 ± 0.1 21.6 ± 0.8 756.7 ± 21.8

Added
Constant Value Bonus

5 11.1 ± 1.4 19.8 ± 0.6 722.3 ± 24.3
10 11.5 ± 1.7 22.2 ± 0.8 813.7 ± 23.6

Initial
Episodes Extra Action

100 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
250 11.8 ± 1.9 23.0 ± 0.8 827.4 ± 33.0

Initial
Episodes Extra Variable

100 11.8 ± 1.9 21.9 ± 0.9 784.8 ± 27.0
250 11.7 ± 1.8 22.4 ± 0.8 793.5 ± 22.2

Table 3. A comparison of three rule utilization schemes to learn-
ing Keepaway without transfer. Each row is the average of 20
independent trials and shows the standard error (note that the top
line row uses the same settings as learning without transfer in Ta-
ble 1 but with more trials). Numbers in bold are statistically better
than learning without transfer at the 95% level, as determined via
a Student’s t-test.

IF ((dist(K1, T1) <= 4) AND
(Min(dist(K3, T1), dist(K3, T2)) >= 12.8) AND
(ang(K3, K1, T) >= 36)) THEN Pass to K3

Figure 6. An example transformed rule from Ringworld that
would be difficult for a human to generate from domain knowl-
edge alone.

is not adversely effected by Rule Transfer for the best pa-

rameter settings. These results show that the Extra Action

rule utilization method is slightly superior to the other two

methods and confirm that cross-domain transfer can be ef-

fective at increasing the speed of learning in Keepaway.

Figure 7 shows learning in Keepaway without transfer and

when using Extra Action Rule Transfer from Ringworld.

An example of the type of knowledge transferred from

Ringworld to Keepaway, consider the transformed rule in

Figure 6 from one trial. This rule demonstrates that the

agent has learned that it should pass if a taker is close, there

isn’t a taker very close to the target teammate, and the pass-

ing angle to the teammate is open.

To further determine the robustness of transfer from Ring-

world to Keepaway, we perform a series of additional stud-

ies, shown in Table 4, to determine the sensitivity of Rule

Transfer to various parameter settings. First we try learn-

ing for different amounts of time in Ringworld. At 20,000

episodes the learning in Ringworld has not plateaued and it

is not surprising that the initial performance in Keepaway

is therefore slightly reduced. Different ring diameters make

the task less similar to Keepaway, but all diameters do suc-

cessfully improve one or more transfer metrics relative to

learning without transfer.

We also performed experiments that examined the robust-

ness of rule learning for transfer. In the first experiment

we recorded different amounts of Ringworld data; less

Cross-Domain Transfer for Reinforcement Learning

Ringworld Sensitivity Analysis
Param Initial Asymptotic Accumulated

Performance Performance Reward

Episodes of Ringworld Training before Recording Data

20,000 10.1 ± 1.7 21.8 ± 1.3 762.5 ± 44.1
25,000 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
30,000 12.0 ± 1.7 20.7 ± 5.0 793.9 ± 47.8

Ringworld’s Ring Diameter (m)

7.5 14.8 ± 2.4 20.0 ± 1.5 748.2 ± 53.6
8.5 13.5 ± 1.5 21.1 ± 1.2 776.8 ± 45.2
9.5 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
10.5 9.4 ± 1.0 21.5 ± 1.3 757.7 ± 42.4
11.5 8.2 ± 1.3 20.1 ± 1.6 705.0 ± 41.6

Amount of recorded Ringworld Data

5,000 12.2 ± 1.2 20.6 ± 4.9 765.1 ± 59.4
20,000 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
40,000 11.2 ± 1.3 21.4 ± 1.3 776.4 ± 46.6

JRip Settings

N=2, O=2 13.7 ± 1.7 20.9 ± 1.3 767.3 ± 44.3
N=100, O=2 10.7 ± 1.5 21.6 ± 1.2 784.3 ± 49.9

N=100, O=10 11.9 ± 1.8 23.0 ± 0.5 842.0 ± 26.9
N=2, O=10 14.0 ± 1.8 20.9 ± 1.3 763.3 ± 44.7

Table 4. This table shows Ringworld transfer with Extra Action
rule usage after forcing the action advised by Dt for 100 episodes.
The settings used previously (in Table 3) are shown in bold for
comparison, each row is the average over 20 independent trials,
and the standard error is shown.

data would force more generalization while more data may

cause overfitting. The last sensitivity analysis tried varying

the parameters to JRip, again showing that the performance

of the 4 metrics is not particularly sensitive to the rule learn-

ing settings as they all outperform learning without transfer.

N is the minimum number of instances a rule must cover

(JRip default = 2) and O is the number of optimization runs

to increase generality (JRip default = 2). Thus, while there

are a number of parameters to set in Rule Transfer, the pa-

rameters proved easy to set in practice and were not critical

to the method’s success.

5.2. Knight Joust to 3 vs. 2 Keepaway

In this section we present the results for transferring from

Knight Joust to Keepaway using the cross-domain map-

pings in Table 5. Briefly, the intuition is that the forward

action is similar to the hold ball action because the player

should take it whenever possible. Note that the we have

made West in the Knight Joust correspond to K2 and East

correspond to K3, but either is reasonable, as long as the

state variables and actions are consistent. When it is “too

dangerous,” the player instead jumps to the side, similar

to passing the ball. We first train the Knight Joust play-

ers for 50,000 episodes, as initial experiments showed that

learners generally stopped learning after roughly this many

episodes. The advice is utilized by Extra Action Rule

Transfer in Keepaway (informal experiments showed that

Value Bonus and Extra Variable under-performed Extra Ac-

tion, as in Ringworld) and other parameters are unchanged

from the previous section. The results from these experi-

ments are presented in Table 6.

The Knight Joust task is less similar to Keepaway than

Cross-Domain Mappings for Knight Joust to Keepaway
Knight Joust Keepaway

δ
A

Forward Hold Ball
JumpWest Pass to closest keeper
JumpEast Pass to furthest keeper

δ
X

dist(P, O) dist(K1, T1)
ang(West) Min(ang(K2, K1, T1)

ang(K2, K1, T2))
ang(East) Min(ang(K3, K1, T1),

ang(K3, K1, T2))

Table 5. This table describes the cross-domain mapping used by
Translate() to modify a decision list learned in the Knight
Joust so that it can apply to Keepaway.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30 35 40

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
im

u
la

to
r

s
e

c
o

n
d

s
)

Training Time (simulator hours)

3 vs. 2 Keepaway3 vs. 2 Keepaway

Transfer from Ringworld

Transfer from Knight Joust

Without Transfer

Figure 7. Learning curves in 3 vs. 2 Keepaway, averaged over 20
trials, showing learning without transfer, learning with Extra Ac-
tion from Ringworld after 100 episodes of following the rule-
suggested actions, and learning with Extra Action from Knight
Joust after 100 episodes of following the rule-suggested actions.

Ringworld. There are many fewer state variables, a less

similar transition function, and a very different reward

structure. However, information from Knight Joust can

significantly improve the initial performance of Keepaway

players because very basic information, such as that it is de-

sirable to maximize the distance to the opponent, will ini-

tially cause the players to perform better than acting ran-

domly. The other two transfer metrics are not improved

by transfer, however. We hypothesize that this is because

the transferred knowledge, while allowing the agents to per-

form better than acting randomly, does not bias the learner

towards an optimal policy and thus the rules are less helpful

Knight Joust into Keepaway
Param Initial Asymptotic Accumulated

Performance Performance Reward

Without Transfer

7.8 ± 0.1 21.6 ± 0.8 756.7 ± 21.8

Extra Action

100 13.8 ± 1.1 21.8 ± 1.2 758.5 ± 29.3
250 13.5 ± 0.9 21.6 ± 0.9 747.9 ± 25.3

Table 6. Transferring from Knight Joust to Keepaway significantly
improves the initial performance, but the other two metrics are not
improved. All results are averaged over 20 independent trials and
the standard error is shown. Numbers in bold are statistically dif-
ferent from learning without transfer at the 95% level, as deter-
mined via a Student’s t-test.

Cross-Domain Transfer for Reinforcement Learning

after learning in the target task. In informal experiments, af-

ter 40 hours of training in Keepaway, agents that transferred

advice from Ringworld were following the advice for 90%

of the actions, while agents that transferred advice from

Knight Joust were following the advice for only 85% of

the actions, indicating that the Ringworld advice was more

useful in Keepaway.

6. Learning a Rule Translation Function

Thus far, this work has relied on hand-coded cross-domain

mappings δA and δX , as has much of the past transfer learn-

ing research. Learning cross-domain mappings in their en-

tirety is an open and very challenging research problem, and

is beyond the scope of this paper. In this section, we sketch

a method by which a cross-domain mapping from Ring-

world can be partially learned starting from some knowl-

edge about the qualitative characteristics of the source do-

main. This method increases the degree of automation of

Rule Transfer by removing the requirement for some given

knowledge, though at the expense of requiring different, ar-

guably more intuitive, information. Although this section

focuses on using Ringworld as a source task, a similar pro-

cess could be followed for Knight Joust.

An analysis of Ringworld results in observations A-C, and

we make assumption D for feasibility:
A An opponent approaches the player, as shown by a dis-

tance to opponent state variable, eventually ending the

episode when the player fails to move.

B As the player moves, the opponent will continue mov-

ing toward the player.

C The action RunNear takes longer to complete than the

action RunFar.

D The learner has a sense of “identity” and can distin-

guish between other objects in the world. We accom-

plish this by assigning unique identifiers (UIDs) to all

objects in a task. The agent initially knows only its

own UID and is able to determine the UIDs that are

used to compute each state variable.

Given these observations, we construct the following pro-

cedure under the assumption that this process could map

Ringworld to multiple target tasks, and that constructing

such a procedure is simpler than creating a mapping for a

given target (or impossible if the target is unknown before-

hand). Players in the target (3 vs. 2 Keepaway) first record

(S,A, time) tuples (for 60 episodes or roughly 7 simulator

minutes). They then determine the mapping by the follow-

ing procedure:

1. Identify the state variable(s) that are near zero

when the episode ends. Observation A tells us that the

Ringworld state variable dist(P,O) should map to this

state variable. We find that, on average, dist(K1, T1)
= 0.48 ± 0.2 and dist(K1, T2) = 0.94 ± 0.4 when the

episode ends after Hold (all other state variables are at

least an order of magnitude larger, on average).

2. Identify the action that causes the target task

variable(s) from step 1 to most consistently de-

crease. Also by observation A, we find that Stay

should be mapped to Hold in Keepaway because both

dist(K1, T1) and dist(K1, T2) decrease during this

action on average with a small variance, while this is

not true for the actions Pass1 and Pass2.
3. Identify the state variables that correspond to

dist(P, Target1) and dist(P, Target2) and

the actions that correspond to RunNear and

RunF ar.
(a) Step 1 identified the UIDs of the two opponents.

Using assumption D, we search all Keepaway

state variables and consider only those that in-

clude the player’s UID but not the opponents’

UIDs: dist(T1, C), dist(T2, C), dist(K2, T),
and Min(dist(K3, T1), dist(K3, T2)).

(b) Next, consider the state before an action (ei-

ther Pass1 or Pass2) is executed. Before

the action, some state variable will be consis-

tently greater than the value of dist(P,O) af-

ter the action (Observation B). For Keepaway,

dist(K2, T) is greater than dist(P,O) after

Pass1 (the distance decreases by 6.8m on av-

erage) and Min(dist(K3, T1), dist(K3, T2)) is

greater than dist(P,O) after taking the action

Pass2 (an average decrease of 10.8m).
(c) Observation C allows us to sort the two pass

actions by how long they take: the action

Pass1 takes an average of 7.4 time steps while

Pass2 takes an average of 9.5 time steps.

This allows us to decide that RunNear should

map to Pass1 and RunFar should map to

Pass2. Sorting out the pass actions also allows

us to map dist(P, Target1) to dist(K2, T)
and dist(P, Target2) to Min(dist(K3, T1),
dist(K3, T2)).

4. Identify dist(P, Target1) and

dist(P, Target2). Step 3 identified the UIDs

of Target1 and Target2 and the UID of the player

is known (assumption D). In Keepaway, the UIDs of

Target1 and the player identify dist(P, Target1) as

dist(K1,K2) and the UIDs of Target2 and the player

identify dist(P, Target2) as dist(K1,K3).

5. Identify ang(O, P, Target1) and

ang(O, P, Target2). Similar to Step 4, using

the known UIDs of the player, the enemies, and

the run targets, we identify ang(O,P, Target1)
as ang(T,K1,K2) and ang(O,P, Target2) as

ang(T,K1,K3).

Thus, using source task observations, we are able to map

the source task onto Keepaway, using recorded data to con-

struct a cross-domain mapping very similar to the hand-

coded mapping from Table 2. The only difference is that

Cross-Domain Transfer for Reinforcement Learning

the learned cross-domain mapping maps dist(P,O) onto

both dist(K1, T1) and dist(K1, T2), but since the takers’

policy in 3 vs. 2 Keepaway causes them to stay very close

together, in practice these two mappings are equivalent.

We emphasize that our choice of observations describing

the source task are as important as the method for us-

ing them. If, for example, one of the observations were

that dist(P, Target1) did not ever change when taking the

Stay action, dist(P, Target1) would not map to any state

variable in Keepaway because all state variables change

over time, regardless of action, due to noise in the sensors.

However, in some cases, such as this one, we would be able

to detect that the source task observations were violated.

In these cases, it would be possible to consider a different

set of observations for the source task, consider a different

source task for transfer, or simply learn Keepaway without

transfer. Thus we believe this method provides a reasonable

solution for solving the learned mapping problem when the

source task is well understood but the target is unknown.

7. Related Work

While a number of methods can successfully transfer be-

tween pairs of tasks in the same domain, the main novelty

of this work is to show that inter-domain transfer is not only

feasible, but beneficial. Additionally, we extend previous

work on using advice to improve performance by compar-

ing multiple rule utilization strategies. Most similar to our

Value Bonus method is work by Kuhlmann et al. (2004)

which gives a bonus to actions which are suggested by

hand-coded rules. Other work (Madden & Howley, 2004)

has shown that learned rules can be used to initialize Q-

values when visiting a novel state, but such a method is not

directly applicable in continuous domains. Learned advice

has also been successfully used as soft constraints to help

initialize a target task’s function approximator off-line be-

fore learning (Torrey et al., 2006).

Other work has focused on learning task relationships. For

instance, some work has used homomorphisms (Soni &

Singh, 2006) to generate and empirically test a number of

possible relationships. If a human can define both tasks can

be defined in terms of qualitative dynamic Bayes networks,

Liu and Stone (2006) showed that a graph matching method

can automatically find task similarities.

8. Conclusion and Future Work
In this work we have introduced Rule Transfer along

with three different advice utilization methods. Using

three transfer metrics, Rule Transfer significantly improved

learning in robot soccer after first learning in a gridworld

task. In addition to hand-coding an cross-domain mapping

function, we give evidence such a mapping may be learned

from observed task data.

The Ringworld task was constructed directly from data

gathered in the target task while the Knight Joust task was

chosen as intuitively related to Keepaway. In future work,

rather than constructing such tasks by hand, we would like

to automatically construct such source tasks.

The cross-domain transfer experiments in this paper begin

to demonstrate the flexibility of rule transfer; agents were

able to transfer knowledge successfully irrespective of the

underlying function approximator’s representation. In the

future we would like to further exploit this flexibility by

transferring between agents with more dissimilar internal

representations and learning methods. Finally, if both the

source and target task had a finite number of states, the poli-

cies could be transferred directly. We plan to test this and

determine the effect of using rules as an intermediary when

they are not required for transfer.

Acknowledgments

We would like to thank Raymond Mooney, Cynthia Ma-

tuszek, Lilyana Mihalkova, Nick Jong, and the anonymous

reviewers for helpful comments and suggestions. This re-

search was supported in part by DARPA grant HR0011-04-

1-0035, NSF CAREER award IIS-0237699, and NSF award

EIA-0303609.

References
Cohen, W. W. (1995). Fast effective rule induction. International

Conf. on Machine Learning (pp. 115–123).

Kuhlmann, G., Stone, P., Mooney, R., & Shavlik, J. (2004). Guid-
ing a reinforcement learner with natural language advice: Ini-
tial results in RoboCup soccer. The AAAI-2004 Workshop on
Supervisory Control of Learning and Adaptive Systems.

Liu, Y., & Stone, P. (2006). Value-function-based transfer for re-
inforcement learning using structure mapping. Proc. of the 21st
National Conference on Artificial Intelligence.

Madden, M. G., & Howley, T. (2004). Transfer of experience
between reinforcement learning environments with progressive
difficulty. Artif. Intell. Rev., 21, 375–398.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning us-
ing connectionist systems Technical Report CUED/F-INFENG-
RT 116). Engineering Dept., Cambridge University.

Singh, S. P., & Sutton, R. S. (1996). Reinforcement learning with
replaceing eligibility traces. Machine Learning, 22, 123–158.

Soni, V., & Singh, S. (2006). Using homomorphisms to trans-
fer options across continuous reinforcement learning domains.
Proc. of the 21st National Conference on Artificial Intelligence.

Srinivasan, A. (2001). The aleph manual.

Stone, P., Kuhlmann, G., Taylor, M. E., & Liu, Y. (2006). Keep-
away soccer: From machine learning testbed to benchmark.
In I. Noda, A. Jacoff, A. Bredenfeld and Y. Takahashi (Eds.),
RoboCup-2005: Robot soccer world cup IX, vol. 4020, 93–105.
Berlin: Springer Verlag.

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement
learning. MIT Press.

Torrey, L., Shavlik, J. W., Walker, T., & Maclin, R. (2006). Skill
acquisition via transfer learning and advice taking. ECML (pp.
425–436). Springer.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine
learning tools and techniques. Morgan Kaufmann.

