
In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000),
pp. 935-942, 2000.

TPOT-RL Applied to Network Routing

Peter Stone pstone@research.att.com

AT&T Labs — Research, 180 Park Ave. Room A273, Florham Park, NJ 07932 USA

Abstract

Team-partitioned, opaque-transition rein-
forcement learning (TPOT-RL) is a dis-
tributed reinforcement learning technique
that allows a team of independent agents to
learn a collaborative task. TPOT-RL was
first successfully applied to simulated robotic
soccer (Stone & Veloso, 1999). This pa-
per demonstrates that TPOT-RL is general
enough to apply to a completely different do-
main, namely network packet routing. Em-
pirical results in an abstract network rout-
ing simulator indicate that agents situated
at individual nodes can learn to efficiently
route packets through a network that ex-
hibits changing traffic patterns, based on lo-
cally observable sensations.

1. Introduction

Team-partitioned, opaque-transition reinforcement
learning (TPOT-RL) is a distributed reinforcement
learning technique that allows a team of independent
agents to learn a collaborative task. The individual
agents make their decisions based on locally observ-
able, action-dependent features and update their value
functions without knowledge of state transitions fol-
lowing their actions.

TPOT-RL was introduced for learning team strate-
gies in the simulated robotic soccer domain (Stone &
Veloso, 1999). This domain posed a challenging learn-
ing environment due to its enormous state space, lim-
ited training examples available, dynamically changing
conditions (opponents), and opaque transitions: agents
are unable to track state transitions subsequent to tak-
ing actions. TPOT-RL enabled multiple agents to si-
multaneously learn a distributed collaborative team
policy by aggressively abstracting the state space. The
agents learned a distributed passing and shooting pol-
icy that was empirically effective.

The purpose of this paper is to demonstrate TPOT-
RL’s potential as a generally applicable multiagent

learning technique. In order to do so, we implement
and test TPOT-RL on a completely different multi-
agent learning task, namely network packet routing.
Like robotic soccer, network routing can be formulated
as a distributed learning task with opaque transitions
and dynamically changing conditions.

The remainder of the paper is organized as follows.
Section 2 gives an overview of TPOT-RL. Section 3
introduces the packet routing simulator used in our
experiments. Section 4 lays out our application of
TPOT-RL to this domain. Section 5 details our em-
pirical results and Section 6 concludes.

2. TPOT-RL

TPOT-RL learns a value function that maps state-
action pairs to expected rewards. TPOT-RL includes
three main adaptations to the standard RL paradigm:

• The value function is partitioned among the team,
with each agent only learning for states from
which it can act. All agents are trained simul-
taneously with a decreasing exploration rate.

• Action-dependent features (defined below) are
used to produce an aggressively generalized fea-
ture space, which is used as the input represen-
tation for learning. While other RL approaches
aggregate states to reduce the size of the learn-
ing task (e.g., McCallum, 1996), action-dependent
features enable the creation of a particularly small
but informative feature space for learning.

• Agents learn despite the fact that state transi-
tions subsequent to their actions are opaque to
them. No agent is in full control of the team’s
goal achievement. A domain is opaque-transition

if the learning agents do not know the complete
and relevant state information that guides their
teammates’ actions, or even when they can act.

Formally, a policy is a mapping from a state space S

to an action space A such that the agent using that

policy executes action a whenever in state s. De-
signed to work in real-world domains with far too
many states to handle individually, TPOT-RL exploits
action-dependent features to create a small feature
space V . V is used as a component of the input repre-
sentation of the learned value function Q : V ×A 7→ IR.

In short, the policy’s mapping from S to A in TPOT-
RL can be thought of as a 3-step process:

State generalization: The state s is general-
ized to a feature vector v using the state gen-
eralization function f : S 7→ V .

Value function learning: The feature vector
v is used as an input to the learned value
function Q : V × A 7→ IR, which estimates
the expected reward for taking each possible
action.

Action selection: An action a is chosen for ex-
ecution and its long-term, observed reward is
used to further update Q.

State generalization, value function learning, and ac-
tion selection in TPOT-RL are further specified in Sec-
tions 2.1, 2.2, and 2.3 respectively.

2.1 State Generalization

f : S 7→ V maps the current state of the world, s,
to the feature vector used for learning, v. f relies on
a unique approach to constructing V . Rather than
discretizing the various dimensions of S, it uses an
action-dependent feature function.

The action-dependent feature function

e : S × A 7→ U

evaluates each possible action ai ∈ A based on s. U is
a discrete set of features reflecting expected short-term
effects of actions. Unlike Q, e does not produce the ex-
pected long-term reward of taking an action; rather,
it classifies the likely short-term effects of the action.
In the soccer implementation, e was a learned pass-
completion predictor that compressed an enormous
state space into a single feature useful for leaning the
long-term effects of actions (Stone & Veloso, 1999).

In the multiagent scenario, other than one output of
e for each action, the feature space V also involves
one coarse component that partitions the state space
S among the agents. The partition function

P : S 7→ M

breaks the state space into |M | disjoint partitions to be
divided among the teammates, with |M | ≥ m where
m is the number of teammates. Partitioning is possi-
ble in domains in which specialization is possible. For

example, in the robotic soccer implementation, agents
learned how to act from a particular geographic loca-
tion on the field. In particular, if the set of possible
actions in state s is A = {a0, a1, . . . , an−1}, then

f(s) = 〈e(s, a0), e(s, a1), . . . , e(s, an−1), P (s)〉, and

V = U |A| × M.

Thus, |V | = |U ||A|∗|M |. Since the goal of constructing
V is to create a feature space that is smaller than the
original state space, the ranges of the action-dependent
feature function and partition function, U and M re-
spectively, are ideally as small as they can be without
abstracting away the useful information for learning.

This state generalization process reduces the complex-
ity of the learning task by constructing a small feature
space V which partitions S into |M | regions. Each
agent needs to learn how to act only within its own par-
tition(s). Nevertheless, for large A, the feature space
can be too large for learning, especially with limited
training examples. Our particular action-dependent
formulation allows us to reduce the effective size of
the feature space in the value-function-learning step.
Choosing features for state generalization is generally
a hard problem. While TPOT-RL does not specify the
function e, our work illustrates effective choices of e.

2.2 Value Function Learning

As we have seen, TPOT-RL uses action-dependent fea-
tures. When using action-dependent features, we can
assume (heuristically) that the expected long-term re-
ward for taking action ai depends only on the feature
value related to action ai. That is,

Q(f(s), ai) = Q(f(s′), ai) (1)

whenever e(s, ai) = e(s′, ai) and P (s) = P (s′). Recall
that

f(s) = 〈e(s, a1), . . . , e(s, an−1), P (s)〉

f(s′) = 〈e(s′, a1), . . . , e(s
′, an−1), P (s′)〉

Another way of stating this same assumption is that
Q(f(s), ai) depends upon e(s, ai) and is independent
of e(s, aj) for all j 6= i.

Without this assumption, since there are |A| actions
possible for each element in V , the value function Q

has |V | ∗ |A| = |U ||A| ∗ |M | ∗ |A| independent values.
Under this assumption, however, the Q-table has at
most |U |1 ∗ |M | ∗ |A| entries: for each action possible
from state s, only one of the |A| action-dependent fea-
ture values e(s, ai) comprising f(s) is relevant. There-
fore, even with only a small number of training exam-
ples available, we can treat the value function Q as a

lookup-table without the need for any complex func-
tion approximation. To be precise, Q stores one value
for every possible combination of a ∈ A, e(s, a) ∈ U ,
and P (s) ∈ M .

After taking an action a while in state s with f(s) = v,
an agent receives reward r and uses it to update Q(v, a)
from its previous value Q(v, a) in the Monte Carlo style
as follows:

Q(v, a) = Q(v, a) + α(r − Q(v, a)) (2)

where α is the learning rate. The reward r is derived
from the observable environmental characteristics—
those that are captured in S—over a maximum num-
ber of time steps tlim after the action is taken. The
reward function

R : Stlim 7→ IR

returns a value at some time no further than tlim
in the future. The reward is discounted based on
the amount of time between acting and receiving the
reward.1 During that time, other teammates (or op-
ponents, if any) can act in the environment and affect
the action’s outcome, but the agent may not be able
to observe these actions. In practice, the range of R is
[−Qmax, Qmax] where Qmax is the reward for immedi-
ate goal achievement.

Notice from Equation 2 that in TPOT-RL, the up-
dated action value depends only on the stored action
value in the same feature-state (i.e. element of V) as
opposed to chains of learned values. That is, when
updating Q(v, a) TPOT-RL does not reference any
Q(v′, a′) such that v 6= v′ or a 6= a′. However, the
update in Equation 2 is not strictly Monte Carlo since
r may not reflect the result of the entire trial.

The reward function, including tlim and Qmax, is
domain-dependent. One possible type of reward func-
tion is based entirely upon reaching the ultimate goal
(Monte Carlo). In this case, an agent charts the ac-
tual (long-term) results of its policy. However if goal
achievement is infrequent, a reward function based on
intermediate reinforcement may be needed. The latter
was the case in the robotic soccer domain.

2.3 Action Selection

As in all RL techniques, the issue of exploration vs.
exploitation is important for TPOT-RL. Particularly
since the target concept can shift due to teammates
learning and changing their policies, or due to changes
in policies of opponents (if any), it is important for

1This discounting replaces γ that is often used in RL
paradigms.

agents to gather information about the value of ac-
tions that are currently considered sub-optimal by the
value function. Any standard exploration heuristic,
such as the randomized Boltzmann exploration strat-
egy (Kaelbling et al., 1996), could be used.

2.4 Summary

In order to apply TPOT-RL to particular learning
problems, as we do in Section 4, the following functions
and variables must be specified within the domain:

• The action-dependent feature function e and its
range U .

• The partition function P and its range M .
• The reward function R including variables Qmax

and tlim.
• The learning rate α.

3. Network Routing

TPOT-RL has previously been applied to learn ef-
fective behaviors in one team-partitioned, opaque-
transition domain, namely simulated robotic soc-
cer (Stone & Veloso, 1999). We identify network rout-
ing as another team-partitioned, opaque transition do-
main. We use a modified version of a publicly available
packet routing simulator (Boyan & Littman, 1994).

In this simulator, a network at time t consists of:

• A set of nodes N = {n0, . . . , nm−1}, |N | = m.
Each node ni consists of a queue of packets Kni

⊆
K, |Kni

| = kt,ni
at time t. As packets are intro-

duced into and removed from the queue, Kni
, and

consequently kt,ni
, changes over time.

• A set of links L ⊆ {(ni, nj)|ni, nj ∈ N} connect-
ing pairs of nodes. From any node ni, Lni

⊆ N is
the set of links from ni: Lni

= {n ∈ N |(n, ni) ∈
L}. |Lni

| = lni
. All links are bidirectional:

(ni, nj) ∈ L → (nj , ni) ∈ L.

• A set of packets K = {k0, . . . , kzt−1}, |K| = zt at
time t. Each packet ki is introduced at a source
node kisource

∈ N and travels towards its desti-
nation node kidest

∈ N . The packet also stores
the time at which it left its source, kistime

, and
when it arrives, the time at which it reaches its
destination kidtime

. kipath
⊆ L is an ordered list of

links along which ki has traveled from kisource
to

its current position along with the times at which
it has traversed each link. As packets are intro-
duced into and removed from the network, K, and
consequently zt, changes over time.

• A node capacity Cnode indicating the maximum
number of packets allowed in a node’s packet
queue: ∀i, kt,ni

≤ Cnode.

• A network capacity Cnet indicating the number
of packets that can be active at one time in the
network: zt ≤ Cnet.

Two other parameters affecting the simulation are tl
which is the time it takes a packet to traverse a link
and tn which is the time it takes for a node to process
one packet. If at time t, packet k enters the queue Kni

at node ni, it will stay there for kt,ni
tn seconds. tl, tn,

Cnode, and, Cnet all apply uniformly in the network.

The packet routing problem can be viewed as a mul-
tiagent collaborative problem by modeling each node
as having an independent agent which makes the rout-
ing decisions at that node. The agents act as a team
as they try to cooperate in sending packets through
the network as efficiently as possible. The domain is
team-partitioned since each agent learns only a policy
at its own node: the function P partitions the state
space based, in part, on the node at which each agent is
situated. Prior research indicates that distributed net-
work control is advantageous even in high-speed net-
works (such as ATM networks) in which centralized
control is possible (Horikawa et al., 1996).

Network routing is opaque-transition because agents
cannot see a packet’s route after sending it. Agents’
actions are chained, with each agent able to affect
which agent will act next, but with no control beyond
that. Agents get no short-term reward for their actions
and cannot track the transitions in the environment.

Nonetheless, the team of agents can learn to effectively
route packets by observing locally observable state in-
formation (network traffic). The action-dependent fea-
ture function e in our implementation of TPOT-RL for
network routing provides useful local information that
correlates with the long-term reward: e returns the
amount of recent network traffic on the links leading
from an agent’s node.

Another feature of network routing is that the world
changes dynamically in a manner beyond the team’s
control: the distribution of packets introduced into the
network can change.

4. TPOT-RL for Network Routing

4.1 State Generalization

As defined in Section 2.1, the function f : S 7→ V

generalizes the state space based on two components:
an action-dependent feature function e : S × A 7→ U

and a coarse partitioning function P : S 7→ M . Given
a state s ∈ S from which the agent at node ni is faced
with the decision of routing packet kj :

M = N × N (|M | = m2)

P (s) = (ni, kjdest
)

Using this partitioning function P , the agent at node
ni learns to act only in the cases that P (s) =
(ni, kjdest

) for some j: the space is partitioned evenly
among the m agents, with each getting m partitions.

The action-dependent feature function e : S × A 7→ U

is defined as follows. A is the set of actions available
and is represented in terms of the nodes to which a
packet can be sent. Thus A = N . However, the agent
at node ni may only use the actions in Lni

⊆ N—the
set of links from node ni. The elements of

U = {high, low}

reflect the network activity over a particular link in
the last activity window time units. An agent can
store the link activity along all of the links from its
node since it is either the sender or the recipient of all
packets sent along these links.

Define τ(s, a, activity window) as the number of
packets sent along the link corresponding to action a in
the last activity window simulated seconds divided
by activity window. Then if action a is the act of
sending a packet along link l,

e(s, a) =

{

high if τ(s, a, activity window) ≥ C

low if τ(s, a, activity window) < C

We use activity window = 100 and C = .5. Notice
that e is an action-dependent function since it depends
on the proposed action of sending a packet along link
l. It is also based entirely upon local information avail-
able to agents that maintain internal state, collecting
traffic statistics over time.

This state generalization reduces a huge state space to
the point that agents can store Q-values in a lookup
table. In our implementation, the entire state space in
our experiments has more than 103000 states (Stone,
2000). However, with |U | = 2, |A| ≤ 3, and |M | = m2

the total number of Q-values for the team to learn is at
most 6m2, with each agent learning no more than 6m
values. In our experiments reported below, m = 12.
Therefore each agent must learn only 72 Q-values.

4.2 Value Function Learning

As per equation 2, agents learn Q(v, a)—the value of
taking action a when in a state s such that f(s) = v—
by receiving a reward r via a reward function R. In

this case, if v indicates that node n is trying to send a
packet k on its way to node kdest (P (s) = (n, kdest)),
then Q(v, a) is meant to estimate the time that it will
take for the packet to reach node kdest. Thus agents
aim to take actions that will lead to minimal r.

R is almost entirely based on the actual time that the
packet k takes to travel from node ni to kdest. When
k successfully arrives at kdest, the agent at node kdest

can examine the times at which it left each node along
its path from ksource as stored in kpath. From this
information, it can deduce the time taken from each
node along the path given the action taken at that
node. Then periodically, every update interval sec-
onds, the nodes in the network update each other on
the long-term results of their actions.

Thus, after the agent at node ni sends a packet ki

along link l at time tki,l, the agent at node ni receives
reward r equal to the time it took for the packet to
eventually reach its destination kidest

: r = kidtime
−

tki,l. In this case, the goal of each node is to minimize
its reward r (which can therefore be thought of as a
“cost”). Notice that this formulation of the reward
function R is entirely goal oriented—in general, there
is no opportunity for the agent at node ni to observe a
packet’s progress on the way to its destination. Thus,
this implementation of TPOT-RL uses a Monte Carlo
learning strategy.

However, there is one exception. Especially at the
early stages of learning when actions are mostly ran-
dom, a packet often returns to a node from whence it
came at some interval t later than it last left the node.
In this situation, the agent at that node infers that the
previous action a taken on this packet was ineffective
and generates an intermediate reward r = Q(v, a) + t,
thus increasing the cost estimate Q(v, a).

To put a bound on the timing of rewards, r is bounded
by Qmax. That is, if a node takes longer than Qmax to
arrive, r = Qmax. A node can assume that the packet
did not arrive in this time if it has not heard about
its arrival after Qmax+ update interval simulated
seconds. Therefore, tlim = Qmax+ update interval.
In our experiments, we use update interval = 10,
Qmax = 2000, and tlim = 210.

Finally, after the agent at node n takes action a on a
packet k destined for node kdest and receives reward r,
Q((e(s, a), (n, kdest)), a) is updated according to equa-
tion 2 with learning rate α = .02. Thus, even though
we average all reward values achieved as a result of
taking an action in a given state, each new exam-
ple accounts for 2% of the updated Q-value: rewards
achieved further in the past are weighted less heavily.

4.3 Action Selection

In our network routing implementation of TPOT-RL,
we use optimistic initialization and no deliberate ex-
ploration: Q-values are all initialized to low values
(0 or the shortest path length between nodes) and
agents always choose the action with the lowest Q-
value. Thus, each action is tried at least once. We
find the total exploitation strategy to be effective, pre-
sumably because as unsuccessful actions are repeated,
their costs increase due to network congestion, thus
causing agents to try the other alternatives periodi-
cally. Should exploration become necessary, we could
easily switch to a probabilistic action-selection strat-
egy, as in the previous TPOT-RL application.

5. Empirical Results

5.1 Experimental Setup

All of our experiments use a network architecture
(node and link patterns) as shown in Figure 1. The
nodes are numbered for reference in the text. Pack-
ets are injected into the network at random intervals
according to a Poisson distribution at an average rate
of 3 per simulated second. We create three different
traffic patterns within this network by controlling the
distributions of sources and destinations of injected
packets. Our traffic patterns are controlled by two
variables: p6, the probability that a new packet is des-
tined for node 6; and fs, the frequency with which the
traffic pattern switches (i.e. number of simulated sec-
onds between pattern switches). In our experiments,
we use p6 = .25 and fs = 10,000. The three traffic
patterns we define are:

1 2 3 4 5

0 6

7 8 9 10 11

Figure 1: The network architecture used for our experi-
ments. The nodes are numbered for reference in the text.

Top-heavy: With probability p6, the injected
packet has node 6 as its destination and a
random source; with probability 1 − p6, the
injected packet has source and destination
chosen randomly (without replacement) from
the set of nodes {1,2,3,4,5}.

Bottom-heavy: With probability p6, the in-
jected packet has node 6 as its destination
and a random source; with probability 1−p6,
the injected packet has source and destina-
tion chosen randomly from the set of nodes
{7,8,9,10,11}.

Switching: Every fs simulated seconds, the
traffic pattern switches between the top-
heavy and bottom-heavy patterns.2

In all of our experiments, we use Cnode = Cnet = 1000,
tn = tl = 1.0. We test several different packet routing
strategies under the different traffic patterns defined
above. We define the strategies in terms of what the
agent at node n does when trying to route packet k to
its destination kdest. It must choose from among the
possible links in Ln.

Shortest (SHRT): k is sent along the link that
would get it to kdest in the fewest number of
hops. Shortest paths are precomputed and stored
based on the network topology. If more than one
link would lead along paths of the same shortest
length, one such link is chosen randomly.

Hand-coded (HAND): We designed a policy to
work well with the top-heavy traffic pattern.

• When kdest = 6, if n ∈ {7, 8, 9, 10, 11}, k is
sent along the shortest path towards node
6 (along the bottom of the network in Fig-
ure 1). Otherwise, (n ∈ {0, 1, 2, 3, 4, 5}) k

is sent to a node in the set {6, 7, 8, 9, 10, 11}
from where it can then continue along the
shortest path to node 6. Note that in all cases
k can be sent to a node in this set in one hop.

• When kdest ∈ {1, 2, 3, 4, 5}, k is sent along the
shortest path (along the top of the network).

• Similarly, when kdest ∈ {7, 8, 9, 10, 11}, k is
sent along the shortest path (along the bot-
tom of the network).

We expect this policy to do fairly well with the
top-heavy traffic pattern since the traffic is dis-
tributed fairly evenly among the top and bottom
portions of the network. Packets headed for node
6 (p6 = 25% of the packets) use the bottom, while
other packets use the top of the network.

Q-routing (QROUT): This strategy is the Q-
routing algorithm (Littman & Boyan, 1993). We
use the developers’ exact implementation for test-
ing. We use the default learning rate of η = 0.7.
Q-routing is not the best known approach in this
domain. We compare against it as another learn-
ing approach which performs respectably and
whose implementation by its creators is available
in the simulator we use. Q-routing has the same

2Such traffic patterns might be observed due to the op-
posite day/night cycles in Asia and the U.S.

action space as TPOT-RL, and the same inputs
except for the action-dependent feature τ .3

TPOT-RL: This strategy is the one described in de-
tail in Sections 4.1–4.3.

Stored Q-routing and TPOT-RL policies can be loaded
and used exclusively with no further learning allowed.
We use this technique for testing purposes.

It should be noted that Q-routing and TPOT-RL op-
erate under slightly different assumptions. TPOT-
RL relies on transmission of packet arrival time from
the eventual destination node to all other nodes that
routed the packet (TD(1) or Monte Carlo); in Q-
routing, nodes only get “expected-time-to-go” infor-
mation from neighboring nodes (TD(0)). The feed-
back packets traverse one link each in Q-routing, while
they traverse multiple links in TPOT-RL. However,
Q-routing requires such information to be transmit-
ted after each packet is sent, while in TPOT-RL, the
feedback can be bundled and transmitted arbitrarily
infrequently (by adjusting update interval) or op-
portunistically when network load is low, allowing for
a tradeoff between communication overhead and rate
of learning. Thus each approach has its advantages
and disadvantages in terms of overhead.

5.2 Experiments

This section presents empirical results verifying the
effectiveness of TPOT-RL in the network routing do-
main. First we present comparisons of the different
routing strategies in a top-heavy traffic pattern. Then
we describe the effects of testing the resulting poli-
cies on the bottom-heavy traffic pattern. Finally, we
present our results from training policies on the switch-
ing traffic and testing their generalization across the
three traffic patterns.

5.2.1 Top-Heavy Traffic

First, we tested the four different routing strategies
under top-heavy network traffic conditions. We chart
both the average delivery time of the packets and the
average number of hops per packet. Results are tabu-
lated over intervals of 100 simulated seconds (see Fig-
ure 2). In this and all other TPOT-RL runs, unless
specified otherwise, |U | = 1: under constant condi-
tions, TPOT-RL can be effective even without the help

3We tried augmenting Q-routing’s feature space to in-
clude τ so that it could learn from the state as TPOT-
RL. Doing so caused Q-routing’s performance to degrade
slightly. So we did not augment Q-routing’s state space for
the experiments reported in this paper.

of action-dependent features. Figure 2 shows averages
over 10 runs with error bars.

By definition, SHRT produces the minimum possible
hops per packet, but it exhibits a continual increase in
average delivery time as the network fills up and the
nodes’ packet queues lengthen. SHRT is not shown
in the right graph in Figure 2 since it quickly goes off
the scale, ending up at over 250 seconds. HAND also
outperforms TPOT-RL in terms of number of hops,
but in terms of the real measure of interest—delivery
time—TPOT-RL and HAND do not perform signifi-
cantly differently. TPOT-RL achieves its performance
by sending some packets along longer, less congested
paths. The remainder of the results in this section are
presented in terms of average delivery time.

0 0.5 1 1.5 2 2.5 3

x 10
4

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

A
ve

ra
ge

 N
um

be
r

of
 H

op
s

Simulator Time

QROUT

HAND

TPOT−RL

SHRT

0 0.5 1 1.5 2 2.5 3

x 10
4

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

Simulator Time

QROUT

HAND

TPOT−RL

Figure 2: Average number of hops (left) and delivery time
(right) in a network with top-heavy traffic.

5.2.2 Bottom-Heavy Traffic

Figure 3 (left) illustrates the results of running policies
designed or trained for top-heavy traffic under bottom-
heavy conditions. Results represent averages over 100
runs with error bars shown. The solid bars show aver-
age traffic delivery time for SHRT, HAND, QROUT,
and TPOT-RL under top-heavy traffic.4 These num-
bers are the same as the end-results shown in Figure 2.
As noticed above, the HAND, QROUT, and TPOT-
RL strategies all perform well, having been designed
or trained for these conditions.

However, when the resulting policies are tested under
bottom-heavy traffic conditions, none of them perform
well. In these runs (hollow bars), the policies trained
for the top-heavy case are used with no additional
learning. Of course the SHRT and HAND policies,
which are not learned, are constant throughout.

4QROUT and TPOT-RL exhibit similar results (6.0
and 3.9 average delivery time respectively) under uniform
traffic conditions. Since it was specifically designed for top-
heavy traffic, HAND does significantly worse (470). As
would be expected, SHRT does the best under these con-
ditions (3.3).

5.2.3 Switching Traffic

While we would not expect a policy trained exclusively
under top-heavy network traffic conditions to general-
ize to bottom-heavy conditions, we would like a policy
trained under switching conditions, since it includes
periods of both other traffic patterns, to generalize
across all three. Figure 3 (right) shows the results of
HAND, QROUT, and TPOT-RL under all three traffic
patterns. Here, TPOT-RL is run with |U | = 2: agents
can implement different policies under different local
traffic conditions. Note that Q-routing always routes
packets based solely on their destinations.

0.5
0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

top−heavy
bottom−heavy

SHRT HAND QROUT TPOT−RL 0.5
0

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

top−heavy
bottom−heavy
switching

HAND QROUT TPOT−RL

Figure 3: Fixed policies running in different traffic pat-
terns. (left) The QROUT and TPOT-RL policies are
trained under top-heavy conditions. (right) They are
trained under switching conditions.

In all the learning cases, a trial consists of first train-
ing a policy under switching network traffic for 300,000
simulated seconds and then fixing the policy for test-
ing. Results are averaged over 1000 trials.

Figure 3 (right) clearly shows the advantage of TPOT-
RL. Since HAND is designed explicitly for top-heavy
traffic, it fails as expected in other conditions. Sim-
ilarly, QROUT is forced to adapt to one traffic pat-
tern at the expense of the other. Some of the time,
it optimizes its performance for top-heavy conditions,
causing its results to look like those of HAND. Other
times, it optimizes for bottom-heavy conditions, lead-
ing to exactly the opposite performances under top
and bottom-heavy conditions. Therefore, error bars
on this graph would go completely off the scale.

On the other hand, TPOT-RL takes advantage of its
action-dependent feature function to find correlations
between local information and long-term reward. In
this case, TPOT-RL is able to perform well under all
traffic conditions with a single policy.

6. Discussion and Conclusion

TPOT-RL applies in domains in which there are mul-
tiple agents organized in a team; there are opaque
state transitions; there are too many states and/or
not enough training examples for traditional RL tech-
niques; and the target concept is non-stationary.

It relies on a long-range reward signal and action-
dependent features. TPOT-RL was has been applied
to robotic soccer and now to network routing. Other
domains to which TPOT-RL could potentially be ap-
plied are information networks, distributed logistics,
and rescue missions. In all of these team-partitioned,
opaque-transition domains, a team of agents works to-
gether towards a common goal, but each individual
agent only executes a portion of the actions along the
path to the goal. Agents can control their own des-
tinies only intermittently and at irregular intervals.

The most challenging aspect of environments for which
TPOT-RL is designed is the opaque-transition charac-
teristic. Q-routing requires that agents have or learn
at least an approximate model of the state transitions
resulting from its actions. Even the partially observ-
able Markov decision process (POMDP) (Kaelbling
et al., 1996) framework, which is designed for prob-
lems with hidden state, relies on agents having some
knowledge of state transitions: POMDPs assume that
agents know when the system has transitioned to a new
state and a new action can be taken. Thus reward can
be passed back through the state-action trajectory.

It has been previously shown that undiscounted Monte
Carlo credit assignment (actual return) works in non-
Markov decision processes when using “direct” RL,
but not using TD or discounted rewards (Pendrith &
McGarity, 1998). TPOT-RL takes advantage of this
fact, although it does not in general use full trajec-
tories as the source of reward: in the robotic soccer
implementation, reward was based on the change in
the environment over a limited time period.

The experiments in this paper are conducted in an ab-
stract network routing simulator using a single, simple
network topology. In addition, the algorithm against
which TPOT-RL is compared is not the best known
approach in this domain. As such, we do not present
TPOT-RL as an industrial-strength network router,
and we do not claim that TPOT-RL dominates any
other algorithm under all conditions. Rather, this
paper demonstrates that TPOT-RL can achieve re-
spectable results in a domain different from its original
application domain and therefore warrants further in-
vestigation as a general multiagent learning technique.

Aside from Q-routing, another approach to network
routing in the same simulator is inspired by an ant
metaphor (Subramanian et al., 1997). Ants crawl
backwards over the network to discover link costs and
shortest paths. This system adds an overhead cost of
sending the ant packets through the network.

Similarly inspired by the ant metaphor, AntNet (Caro

& Dorigo, 1998) agents traverse a routing network
and write information at the nodes reflecting their ex-
perience of the current network status. Within the
framework presented in that work, TPOT-RL is a dis-
tributed, adaptive, non-minimal (i.e. packets do not
necessarily always go along minimal cost paths), and
optimal (i.e. the objective is to optimize the entire
network’s performance as opposed to any individual
packet’s traversal time) routing algorithm.

In addition to testing TPOT-RL in more com-
plex routing scenarios, future work includes applying
TPOT-RL to still more distributed, opaque-transition
domains such as information networks, distributed lo-
gistics, and rescue missions.

References

Boyan, J. A., & Littman, M. L. (1994). Packet routing in
dynamically changing networks: A reinforcement learn-
ing approach. Advances In Neural Information Process-
ing Systems 6. Morgan Kaufmann Publishers.

Caro, G. D., & Dorigo, M. (1998). AntNet: Distributed
stigmergetic control for communications networks. Jour-
nal of Artificial Intelligence Research, 9, 317–365.

Horikawa, K., Aida, M., & Sugawara, T. (1996). Traf-
fic control scheme under the communication delay of
high-speed networks. Proceedings of the Second Inter-
national Conference on Multi-Agent Systems (pp. 111–
117). Menlo Park, California: AAAI Press.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Artificial
Intelligence Research, 4, 237–285.

Littman, M., & Boyan, J. (1993). A distributed reinforce-
ment learning scheme for network routing (Technical Re-
port CMU-CS-93-165). Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA.

Pendrith, M. D., & McGarity, M. J. (1998). An analysis of
direct reinforcement learning in non-markovian domains.
Proceedings of the Fifteenth International Conference on
Machine Learning (pp. 421–429). Morgan Kaufmann.

Stone, P. (2000). Layered learning in multiagent systems:
A winning approach to robotic soccer. MIT Press.

Stone, P., & Veloso, M. (1999). Team-partitioned, opaque-
transition reinforcement learning. Proceedings of the
Third Annual Conference on Autonomous Agents (pp.
206–212). ACM Press.

Subramanian, D., Druschel, P., & Chen, J. (1997). Ants
and reinforcement learning: A case study in routing in
dynamic networks. Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence. San
Francisco, CA: Morgan Kaufmann.

