
In IEEE International Conference on Robotics and Automation (ICRA 08),
Pasadena, CA, May 2008.

Negative Information and Line Observations

for Monte Carlo Localization

Todd Hester and Peter Stone

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712

{todd,pstone}@cs.utexas.edu

Abstract— Localization is a very important problem in
robotics and is critical to many tasks performed on a mobile
robot. In order to localize well in environments with few
landmarks, a robot must make full use of all the information
provided to it. This paper moves towards this goal by studying
the effects of incorporating line observations and negative infor-
mation into the localization algorithm. We extend the general
Monte Carlo localization algorithm to utilize observations of
lines such as carpet edges. We also make use of the information
available when the robot expects to see a landmark but does
not, by incorporating negative information into the algorithm.
We compare our implementations of these ideas to previous
similar approaches and demonstrate the effectiveness of these
improvements through localization experiments performed both
on a Sony AIBO ERS-7 robot and in simulation.

I. INTRODUCTION

Knowledge about one’s location in the world is a pre-

requisite for many common tasks. For example, a tourist

with a map of Paris who is trying to meet a friend at

the Eiffel tower may try to plan a route, but can only

do so after locating himself on the map. Observing and

noting one’s relative location to another landmark on the

map, such as Notre Dame, is a particularly useful clue.

From two observations of this kind, the tourist can figure

out his position unambiguously. However, in the absence

of such clear landmarks, more ambiguous information can

also be useful. For example, observing a river indicates that

one’s location is somewhere along the river bank without

identifying exactly where. Similarly not observing Notre

Dame constrains one’s possible locations.

Robot localization is the challenge of enabling a mobile

robot to determine its location on a map of its environment

based on its observations and knowledge of its past actions.

Many approaches to this problem only use observations of

distinct landmarks located in a specific location [1], [2], [3].

Generally, localization algorithms use observations of the

world to update their belief of the pose of the robot in

the environment. This pose is then adjusted by odometry

estimates based on the robot’s actions. Two of the most

popular approaches to this problem are Kalman filtering [4],

and particle filtering, or Monte Carlo localization (MCL) [5],

[6]. In this paper, we focus on the MCL approach because

of its ease of implementation and ability to represent multi-

modal pose hypotheses. In this approach, the robot’s pose

is represented by a set of particles, which are updated and

moved at each time step based on the robot’s observations

and movements.

This paper presents two main enhancements to the general

MCL algorithm, as applied to vision-based legged robots.

First, we extend Hoffmann et al.’s method [2], [7] for

using negative information by making it more robust to

errors where visible landmarks go undetected. Second, we

incorporate line observations into the probability updates

of the algorithm. Line observations have previously been

incorporated into MCL by Röfer et al. [8], [9]. Our approach

differs from theirs by using lines as atomic entities instead

of using individual line pixels. We also make some small but

significant enhancements to the re-seeding and re-sampling

portions of the algorithm. We show that the combination of

these components improves the localization accuracy of the

robot.

II. BACKGROUND

In this section we introduce our implementation of the

general MCL algorithm [5], [6] that has been applied suc-

cessfully to vision-based legged robots in the past [1], [2],

[3], [8], [9]. In MCL, the robot’s belief of its current pose

is represented by a set of particles, each of which has a

hypothesis of a possible pose of the robot. Each particle is

represented by 〈h, p〉 where h = (x, y, θ) is the particle’s

pose and p represents the probability that the particle’s pose

is the pose of the robot. The weighted distribution of the

particle poses represents the overall belief of the robot’s pose.

Our implementation of MCL is shown in Algorithm 1,

which takes as parameters the set of particles P , the odome-

try update m, the set of observations O, and the set of known

landmarks L. At each time step, the particles are updated

based on the robot’s actions and perceptions. The pose of

each particle is moved according to odometry estimates of

how far the robot has moved since the last update. The

odometry updates take the form of m = (x′, y′, θ′), where

x′ and y′ are the distances the robot moved in the x and

y directions in its own frame of reference and θ′ is the

angle that the robot has turned since the last time step.

The odometry update to the particles is shown on line 2

of Algorithm 1.

Algorithm 1 MCL(P,m, O,L)

1: for all i ∈ P do

2: hi ← hi + m
3: pi ← 1
4: for all o ∈ O do

5: l← from o
6: if l is a distinct point landmark then

7: pi ← pi· DISTINCT-LM-PROB(i, o, L)

8: else if l is an ambiguous point landmark then

9: pi ← pi· AMBIGUOUS-LM-PROB(i, o, L)

10: else if l is a distinct line landmark then

11: pi ← pi· DISTINCT-LINE-PROB(i, o, L)

12: else {l is an ambiguous line landmark}
13: pi ← pi· AMBIGUOUS-LINE-PROB(i, o, L)

14: end if

15: end for

16: end for

17: P ←RESAMPLE-PARTICLES(P) (Eq. 6)

18: P ←RESEED-PARTICLES(P,O)

19: P ←RANDOM-WALK(P)

20: (pose, conf)← WEIGHTED-AVERAGE(P)

21: Return (pose, conf)

For the use of this algorithm, we classify the types of

landmarks that can be observed in two dimensions. The

first dimension classifies landmarks as either point or line

landmarks. Point landmarks only exist at one point, while

line landmarks can include carpet edges or the edge of a

sidewalk, where it can be difficult to determine where along

the line the robot is. The second dimension describes whether

landmarks are distinct or ambiguous. Distinct landmarks are

uniquely identified, while ambiguous landmarks can be part

of a set of similar looking landmarks, such as identical

looking doors in a hallway. This taxonomy provides us with

four different types of landmarks: distinct points, ambiguous

points, distinct lines, and ambiguous lines.

After the odometry update, the probability of each particle

is updated using the robot’s perceptions. The probability of

the particle is set to be p(O|h), which is the likelihood of the

robot obtaining the observations that it did if it were in the

pose represented by that particle. The robot’s observations

at each time step are defined as a set O of observations

o = (l, d, θ) to different landmarks, where l is the landmark

that was seen, and d and θ are the the observed distance

and angle to the landmark. For each observation o that the

robot makes, the likelihood of the observation based on the

particle’s pose is calculated based on its similarity to the

expected observation ô = (l̂, d̂, θ̂), where d̂ and θ̂ are the

the expected distance and angle to the landmark based on

the particle’s pose. The likelihood p(O|h) is calculated as

the product of the similarities of the observed and expected

measurements using the following equations:

rd = d− d̂ (1)

sd = e−r2

d
/σ2

d (2)

rθ = θ − θ̂ (3)

sθ = e−r2

θ
/σ2

θ (4)

p(O|h) = sd · sθ (5)

Here sd is the similarity of the measured and observed

distances and sθ is the similarity of the measured and

observed angles. The likelihood p(O|h) is defined as the

product of sd and sθ. Measurements are assumed to have

Gaussian error and σ2 represents the standard deviation of

the measurement. The measurement variance affects how

similar the observed and expected measurement must be to

produce a high likelihood. For example, σ2 is higher for

distance measurements than angle measurements when using

vision-based observations, which results in angles needing to

be more similar than distances to achieve a similar likelihood.

The measurement variance also differs depending on the type

of landmark observed.

The calculation of the likelihood values for each

type of landmark observed is done by the calls to

the functions DISTINCT-LM-PROB, AMBIGUOUS-LM-PROB,

DISTINCT-LINE-PROB, and AMBIGOUOUS-LINE-PROB in

Algorithm 1. These functions differ in the way they de-

termine the expected observations ô to use in equations 1

to 5. DISTINCT-LINE-PROB and AMBIGUOUS-LINE-PROB

calculate the probability update for an observation of a line

and are explained in section III-B. DISTINCT-LM-PROB uses

equations 1 through 5 to calculate the probability update

for an observation of a distinct point landmark, which is

the product of the likelihoods of the measured distance

and angle. AMBIGUOUS-LM-PROB is explained below. The

product of the likelihood values of all the observations is

assigned as the new probability of the particle.

For observations of ambiguous landmarks, the specific

landmark being seen must be determined to calculate the

expected observation ô = (l̂, d̂, θ̂) for its likelihood calcu-

lations. With a set of ambiguous landmarks, the likelihood

of each possible landmark is calculated and the landmark

with the highest likelihood is assumed to be the seen

landmark. The particle probability is then updated using

this assumption. This probability is calculated by the call

to AMBIGUOUS-LM-PROB on line 9 of Algorithm 1.

Next the algorithm re-samples the particles on line 17

of Algorithm 1. Re-sampling replaces lower probability

particles with copies of particles with higher probabilities.

The expected number of copies that a particle i will have

after re-sampling is

n×
pi∑n

j=1
pj

(6)

where n is the number of particles and pi is the probability of

particle i. This step changes the distribution of the particles

to increase the number of particles at the likely pose of the

robot.

After re-sampling, new particles are injected into the

algorithm through the use of re-seeding on line 18 of

Algorithm 1. Histories of landmark observations are kept

and averaged over the last three seconds. When two or

more landmarks observations exist in the history, likely

poses of the robot are calculated using triangulation. Lower

probability particles are replaced by new particles that are

created with these poses [10].

The pose of each particle is then updated using a ran-

dom walk where the magnitude of the particle’s adjustment

is inversely proportional to its probability (line 19). Each

particle’s pose h is updated by adding w = (i, j, k) where

(i, j, k) are defined as:

i = MAX-DISTANCE · (1− p) · random(1) (7)

j = MAX-DISTANCE · (1− p) · random(1) (8)

k = MAX-ANGLE · (1− p) · random(1) (9)

The MAX-DISTANCE and MAX-ANGLE are parameters that

are used to set the maximum distance and angle that the

particle can be moved during a random walk and random(1)
is a random real number between 0 and 1. This process

provides another way for particles to converge to the correct

pose without re-sampling.

Finally, the localization algorithm returns an estimate of

the pose of the robot based on an average of the particle

poses weighted by their probability (line 20). The algorithm

also returns the standard deviation of the particle poses. The

robot may take actions to improve its localization estimate

when the standard deviation of the particle poses is high.

III. ENHANCEMENTS

The focus of this paper is on specific improvements we

made to the observation model for negative information and

line observations. These improvements greatly improve the

localization ability of the robots. Our implementation of

negative information is based on the work of Hoffmann et al.

[2], [7]. We make some modifications to their algorithm to

make it more suitable for use on robots in situations where

the robot may frequently miss an observation of a landmark

that it should have seen. We have also extended the MCL

algorithm to utilize line observations in its updates. Our use

of line observations is simpler than previous algorithms [8],

[9], but very effective at localizing the robot. In addition to

adding information from observations of these landmarks,

we have also made some modifications to the re-sampling

and re-seeding in the algorithm.

In our implementation of the MCL algorithm, re-sampling

is only performed every n action-perception cycles1. This in-

frequent re-sampling prevents the particles from converging

quickly to an incorrect pose for the robot [6]. The probability

of the particles based on the most recent observations is used

for the purpose of re-sampling. Informal experiments showed

it to be more effective to use the probabilities based on only

the most recent observations rather than all the observations

since the last re-sampling was performed.

Our previous implementation of re-seeding [1] only used

distinct point landmarks for triangulation. Our new algorithm

improves upon this by using ambiguous landmarks for re-

seeding as well. When one of the observations used for

triangulation is an observation of an ambiguous landmark,

1All the experiments in this paper were run with n = 20.

triangulation is performed for all the possible landmarks and

the pose that matches the observations the best is selected.

Due to the extra calculation required to calculate poses for

ambiguous landmarks, re-seeding is only performed every m
action-perception cycles2.

A. Negative Information

Negative information is used when an observation is

expected but does not occur. If the robot is not seeing

something that it expects to, then it is likely not where it

thinks it is. When starting from a situation where particles

are scattered widely, many particles can be eliminated even

when no observations are seen because they expect to see

a landmark. For each observation that is expected but not

seen, the particle is updated based on the probability of not

seeing a landmark that is within the robot’s field of view. It

is important to note that the robot can also miss observations

that are within its view for reasons such as image blurring

or occlusions, and these situations need to be considered

when updating a particle’s probability based on negative

information.

Algorithm 2 shows the calculation of the probability

update for a particle based on negative information, which

is based on the work of Hoffmann et al. [2], [7]. The

first step is to calculate which landmarks are expected to

be seen from each particle pose. For every combination of

particle and possible observation, we can calculate if the

landmark should be within the field of view of the robot if

the robot were at that particle’s pose. Using the pose of the

particle, we can calculate ô = (l̂, d̂, θ̂), which is the expected

distance and angle to landmark l̂. These coordinates can be

transformed into coordinates in the robot’s camera image

using a transformation matrix (line 6 of Algorithm 2). If the

landmark should exist within the camera’s image, then the

robot expects to see that landmark from that particle’s pose

(line 7).

In Hoffmann et al.’s implementation of this algorithm [2],

[7], the probability of not seeing the expected observation

is calculated and that value is used as the update for the

particle in the observation model. In practice, however, this

method can be risky. A single observation of a landmark that

is within view can be missed very easily for many different

reasons. For example, it is quite easy for observations to be

missed due to motion distortion of the images.

To make our method more robust to missed observations

of landmarks that really are within the robot’s field of view,

we keep a count for each particle of how many consecutive

frames the robot expected to see a landmark (line 8) and

the number of consecutive frames that the landmark was not

seen (line 4). We define u to be the probability of missing

one observation of a landmark that is within the robot’s

view. The particle is updated with negative information only

when the robot had expected and not seen the landmark for t
consecutive frames (line 15-17 of Algorithm 2). In this case,

the particle’s probability is updated with ut. The experiments

2All the experiments in this paper were run with m = 15.

Algorithm 2 NEGINFO-PROB(i, O, L)

1: p← 1
2: for all l ∈ L do

3: if l /∈ O then

4: Increment notseenl

5: Calculate ô = (l̂, d̂, θ̂)
6: (x, y)← Transformation of (d̂, θ̂)
7: if (x, y) within camera image dimensions then

8: Increment expectedl

9: else

10: expectedl = 0
11: end if

12: else

13: notseenl = 0
14: end if

15: if notseenl >= t and expectedl >= t then

16: p← p · ut

17: end if

18: end for

19: Return p

in this paper use t = 5, which was determined through

experimentation. Lower values make the algorithm respond

more quickly to missed observations, but can also result in

poor localization if the robot misses many observations of

landmarks that are within view. This method can be reduced

to Hoffmann et al.’s method by setting t = 1.

B. Line Observations

Observations of lines can provide very good information

to the localization algorithm. Although we cannot determine

where along the line the robot is, the observation provides

information about the robot’s orientation and distance to the

line. This information can be very valuable to the robot,

especially when other observations are infrequent.

In previous work, Röfer et al. [8], [9] integrated lines

into their observation model by using individual line pixels.

They discretized the world into 2.5 centimeter grids and pre-

calculated the angle to the closest line pixel for each grid cell.

When the robot sees a line, some line pixels are randomly

selected and the probability update is made based on the

difference between the angles to the selected line pixels and

the expected angle to the closest line pixel provided by the

lookup table.

Our implementation updates particles based on observa-

tions of the lines as atomic entities instead of using individual

line pixels. This approach allows us make better use of the

information provided by the orientation of the lines, as well

as freeing us from having to pre-calculate tables of expected

line pixel observations for every location in the world. We

fit lines to the line pixels in the image and update our model

using the observations of these lines.

Algorithm 3 shows the DISTINCT-LINE-PROB method

called on line 11 of Algorithm 1 that calculates the prob-

ability update for a particle i based on line observations.

For each observed line, we calculate o = (l, d, θ) to the

Algorithm 3 DISTINCT-LINE-PROB(i, o, L)

1: p← 1
2: l← from o
3: pt← closest point on l
4: (d, θ)←distance and angle to pt
5: p̂t← closest point on l̂
6: (d̂, θ̂)←distance and angle to p̂t
7: rd ← |d− d̂| (Eq. 1)

8: sd ← e−r2

d
/σ2

d (Eq. 2)

9: rθ ← |θ − θ̂| (Eq. 3)

10: sθ ← e−r2

θ
/σ2

θ (Eq. 4)

11: p← sd · sθ (Eq. 5)

12: Return p

closest point on the observed line (lines 3-4). We calculate

the expected observation ô = (l̂, d̂, θ̂) to the closest point

on the line from the particle’s pose (lines 5-6). Next we

determine the likelihood of seeing this line on lines 7-11

of the algorithm. We update the probability of the particle

with this likelihood (line 12). Thus the lines are used in

the same way as point observations, by comparing expected

and observed distances and angles to a point. AMBIGUOUS-

LINE-PROB is a simple extension to DISTINCT-LINE-PROB

that uses the likelihood of the most likely line similar to

AMBIGUOUS-LM-PROB.

IV. EXPERIMENTAL RESULTS

Our experiments will show the benefits of adding neg-

ative information and line observations to the localization

algorithm. Localization accuracy improves when these com-

ponents are used as compared to our baseline algorithm.

In addition, we will show that they are particularly useful

when the robot is kidnapped, or moved from one location to

another.

A. Experimental Setup

Experiments were performed using the setup from the

RoboCup four legged league [11]. Robocup is a useful

testbed for this research because the field that the robots

play on includes distinct and ambiguous point landmarks

as well as ambiguous line landmarks. Games in the four

legged league are played between two teams of four Sony

AIBO robots on a 3.6 by 5.4 meter field. The field has two

uniquely colored beacons, one on either side of the field, as

well as different colored goals at each end of the field. There

are also lines on the field, which provide both ambiguous

point landmarks (line intersections) as well as ambiguous

line landmarks. The four legged league has previously served

as a useful testbed for localization research [1], [3], [7], [8].

The experiments were run on a Sony AIBO ERS-7 robot

[12] which is roughly 280 mm tall and 320 mm long. The

AIBO has 20 degrees of freedom. Images are captured at

30 frames per second from the CMOS color camera in the

robot’s head. All computation is performed on the robot.

Further experiments were performed in simulation. The

UT Austin Simulator [13] works at the localization level

of abstraction and does not attempt to simulate real world

physics or vision. At each time step, the simulator expects

high level movement commands, which it uses to update the

robot’s pose. In return, it provides a set of observations O
to the robot by providing simulated distances and angles to

landmarks. The simulator calculates which landmarks should

be within the field of view of the robot and returns simulated

observations to these landmarks with Gaussian noise added.

The simulator will also randomly ”miss” observations of

landmarks some percentage of the time.

B. Localization Accuracy Experiments

Our first set of experiments took place on the actual robot

and involved measuring the accuracy of the robot’s localiza-

tion by having it go to a target pose. We ran experiments

with four different versions of the described localization

algorithm. We tested the algorithm with all combinations of

negative information and line observations being on and off.

The purpose of these experiments was to isolate the effects

of the different components of the localization algorithm and

see their effects on the localization accuracy of the robot.

BLUE GOAL

YELLOW GOAL

Fig. 1. Experiment Target Poses

In these experiments,

the robot self-localized

and went to 14 different

poses on the field, shown

in Figure 1. The robot

moved towards its target

pose and stopped after

it believed it had been

within 10 centimeters

and 10 degrees of the

target pose for at least

half of a second. Once the

robot got into position,

we measured its distance

and angle from the target

pose. We performed ten

runs of the experiment for

each algorithm.

To account for the fact that the robot was not attempting

to get to the exact pose, we compared the robot’s actual

pose with its belief of its pose. Once the robot stopped in

place, it did one head scan and output its belief of its true

pose. Table I shows the error between the robot’s belief and

its actual pose along with p-values comparing each method

to the baseline method using a one-tailed Student’s t test.

Results that are significantly better (p < 0.05) are in bold.

The robot localized best when both negative information and

line observations were used, performing significantly better

than the baseline algorithm in distance errors. The algorithm

with only line observations on was also significantly better

than the baseline algorithm.

C. Robot Kidnapping Experiments

Negative information can be particularly useful in situa-

tions where the robot is kidnapped. A robot kidnapping is

anytime the robot is moved from one location to another

Algorithm Belief Error
Negative Distance p- Angle p-
Information Lines (cm) value (deg) value

Off Off 17.67 − 5.39 −

On Off 15.57 0.103 5.16 0.358

Off On 13.62 0.010 5.08 0.381

On On 13.38 0.014 4.40 0.104

TABLE I

REAL ROBOT ERROR IN POSE BELIEF

Algorithm Belief Error
Neg. Distance p- Angle p- Recovery p-
Info. Lines (cm) value (deg) value Time (sec) value

Off Off 46.04 − 15.8 − 7.76 −

On Off 42.29 < 10
−6 14.0 < 10

−7
7.53 0.35

Off On 41.19 < 10
−8

15.3 0.11 6.35 0.01

On On 36.74 < 10
−29 14.2 < 10

−5 5.86 < 10
−3

TABLE II

SIMULATED KIDNAPPING EXPERIMENT

without its knowledge. This situation occurs whenever a

robot is picked up and moved, or when it collides with

something. Since the robot is no longer in the location that

it thinks it is, it should expect to see landmarks that are no

longer in its field of view. We ran an experiment in simulation

in which the robot followed a figure eight path around the

field for 2 hours. Every 30 seconds, the robot was kidnapped

and placed in the center of the field at a random orientation.

Table II shows the average distance and angular error in

the robot’s localization estimate over the course of the two

hour experiment along with p-values calculated using a one-

tailed Student’s t test. Results that are significantly better

than the baseline method (p < 0.05) are shown in bold. Once

again, the method using both negative information and line

observations performed the best and was significantly better

than the baseline method. It was also significantly better than

both intermediate methods in distance errors.

In addition to the average distance and angular error,

Table II shows the average time it took the robot to recover

from being kidnapped. The kidnap recovery time is defined

as the time it takes the robot to achieve a localization error

of less than 20 cm and 20 degrees after being kidnapped.

The algorithm using both negative information and line

observations performed the best. Both this method and the

method using only line observations were significantly better

than the baseline method.

By changing the threshold of missed observations t from

5 to 1, we were also able to run Hoffmann et al.’s version of

negative information on the kidnapped robot experiment in

simulation. Table III shows the results of the kidnapped robot

experiment for our fully implemented algorithm with t = 5
and using Hoffmann et al.’s version with t = 1. Our method

performed significantly better in terms of both distance and

angular errors.

V. DISCUSSION

Our experiments showed the benefits of utilizing negative

information and line observations in a Monte Carlo local-

ization algorithm. In all of our experiments, the version of

the algorithm with both components turned on performed the

Algorithm Belief Error
Distance p- Angle p-

(cm) value (deg) value

Our Method (t = 5) 36.74 − 14.2 −

Hoffmann (t = 1) 40.11 < 10
−5

15.5 < 10
−3

TABLE III

SIMULATED COMPARISON TO HOFFMANN ET AL.’S METHOD

best. Adding these components to the algorithm allows it to

make full use of all of the information in the environment.

Every observation is used to update the robot’s belief of its

pose, and missed observations are also used to update the

robot’s pose estimates.

Negative information and line observations proved to be

especially useful in situations where the robot has been

kidnapped. Both intermediate methods were significantly

better than the baseline method in distance error. The method

combining the two approaches gained the benefits of each,

with improvement close to double that of either component

alone. It is interesting to note that using negative information

caused more improvement in angular errors than using line

observations. We hypothesize that this is caused by negative

information being used whenever a landmark goes out of

view while the robot is scanning its head. Particles with

incorrect pose orientations might still expect the landmark

to be within view and would be updated with negative

information. Another interesting aspect of these results is

that the method with negative information does not perform

as well in recovery time as the one using line observations.

Negative information informs the robot when it has been

kidnapped, but is not sufficient for the robot to re-localize

itself after the kidnapping.

The comparison to Hoffmann et al.’s algorithm showed

that our method was significantly better in distance and

angular errors. Hoffmann et al.’s method got some benefit

from negative information as its errors were less than that

of using only line observations, however their method did

not gain as much from negative information as ours. Their

method was not as robust as ours to missed observations,

as it would update particles with negative information after

a single missed observation, which could be caused by any

number of factors such as motion distortion. These faster

negative updates to particles can create poorer localization

estimates when missed observations are frequent.

The localization algorithm presented in this paper was

used on the UT Austin Villa robot soccer team during the

four legged league competition at RoboCup 2007. In addition

to the experiments performed in this paper, the success of

this algorithm on the robots during actual game situations

show its effectiveness. Our team made the quarterfinals in the

competition, and based on informal observations, accurate

localization was an important aspect of that success. In

particular, the localization algorithm’s ability to keep the goal

keeper in place in front of the goal showed its accuracy.

VI. CONCLUSION

In this paper, we presented two main improvements to

the Monte Carlo localization algorithm. Each improvement

in isolation improves localization moderately, and taken

together, they significantly improve localization accuracy

when compared to a baseline MCL implementation. First,

we extended the algorithm that previously used only point

landmarks to use information from line observations as well.

Second, we used negative information for localization pose

updates, extending Hoffmann et al.’s method [2], [7] by

adding a threshold of the number of frames an observation

must be missed before the particles are updated. In addition

to these two changes, we made some small but significant

improvements to the re-seeding and re-sampling portions of

the algorithm. Our contributions are fully implemented both

on a Sony ERS-7 robot and in simulation. Detailed empirical

results show that these improvements are beneficial to mobile

robot localization.

ACKNOWLEDGEMENTS

The authors would like to thank the UT Austin Villa robot soccer team
for developing the code base used in this work. We would especially like
to thank Mohan Sridharan for the vision code and Gregory Kuhlmann for
the simulator. Thanks as well to Daniel Stronger, Nate Kohl, and Michael
Quinlan for their advice on this research. This research is supported in part
by NSF CAREER award IIS-0237699 and ONR YIP award N00014-04-1-
0545.

REFERENCES

[1] M. Sridharan, G. Kuhlmann, and P. Stone, “Practical vision-based
monte carlo localization on a legged robot,” in IEEE International

Conference on Robotics and Automation, April 2005.
[2] J. Hoffmann, M. Spranger, D. Göhring, and M. Jüngel, “Exploiting the

unexpected: Negative evidence modeling and proprioceptive motion
modeling for improved markov localization.” in RoboCup, 2005, pp.
24–35.

[3] D. Stronger and P. Stone, “A comparison of two approaches for
vision and self-localization on a mobile robot,” in IEEE International

Conference on Robotics and Automation, April 2007.
[4] J. Borenstein, H. R. Everett, and L. Feng, Navigating Mobile Robots:

Systems and Techniques. Natick, MA, USA: A. K. Peters, Ltd., 1996.
[5] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localiza-

tion for mobile robots,” in IEEE International Conference on Robotics

and Automation (ICRA99), May 1999.
[6] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT Press,

2005.
[7] J. Hoffmann, M. Spranger, D. Göhring, and M. Jüngel, “Making use of

what you don’t see: Negative information in markov localization,” in
IEEE/RSJ International Conference of Intelligent Robots and Systems,
2005.

[8] T. Röfer, T. Laue, and D. Thomas, “Particle-filter-based self-
localization using landmarks and directed lines.” in RoboCup, ser.
Lecture Notes in Computer Science, A. Bredenfeld, A. Jacoff, I. Noda,
and Y. Takahashi, Eds., vol. 4020. Springer, 2005, pp. 608–615.

[9] T. Röfer and M. Jüngel, “Fast and robust edge-based localization in
the sony four-legged robot league,” in 7th International Workshop on

RoboCup, 2003.
[10] S. Lenser and M. Veloso, “Sensor resetting localization for poorly

modelled mobile robots,” in IEEE International Conference on

Robotics and Automation (ICRA), 2000.
[11] “Robocup 4 legged league.” [Online]. Available: http://www.tzi.de/

4legged/bin/view/Website/WebHome
[12] “Sony aibo ers-7.” [Online]. Available: http://esupport.sony.com/US/

perl/model-home.pl?mdl=ERS7&LOC=3
[13] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann,

M. Sridharan, and D. Stronger, “The UT Austin Villa 2004 RoboCup
four-legged team: Coming of age,” The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, Tech. Rep. UT-AI-
TR-04-313, October 2004.

