
In IEEE International Conference on Robotics and Automation (ICRA 2012),
St. Paul, Minnesota, USA, May 2012.

RTMBA: A Real-Time Model-Based Reinforcement

Learning Architecture for Robot Control

Todd Hester, Michael Quinlan, and Peter Stone

Department of Computer Science

The University of Texas at Austin

{todd,mquinlan,pstone}@cs.utexas.edu

Abstract—Reinforcement Learning (RL) is a paradigm for
learning decision-making tasks that could enable robots to learn
and adapt to their situation on-line. For an RL algorithm to
be practical for robotic control tasks, it must learn in very few
samples, while continually taking actions in real-time. Existing
model-based RL methods learn in relatively few samples, but
typically take too much time between each action for practical
on-line learning. In this paper, we present a novel parallel
architecture for model-based RL that runs in real-time by
1) taking advantage of sample-based approximate planning
methods and 2) parallelizing the acting, model learning, and
planning processes in a novel way such that the acting process is
sufficiently fast for typical robot control cycles. We demonstrate
that algorithms using this architecture perform nearly as well as
methods using the typical sequential architecture when both are
given unlimited time, and greatly out-perform these methods
on tasks that require real-time actions such as controlling an
autonomous vehicle.

I. INTRODUCTION

Robots have the potential to solve many problems in soci-

ety by working in dangerous places or performing jobs that

no one wants. One barrier to their widespread deployment is

that they are mainly limited to tasks where it is possible

to hand-program behaviors for every situation they may

encounter. Reinforcement learning (RL) [1] is a paradigm

for learning sequential decision making processes that could

enable robots to learn and adapt to their environment online.

An RL agent seeks to maximize long-term rewards through

experience in its environment.

RL has been applied to a few carefully chosen robotic

tasks that are achievable with limited training and infre-

quent action selections [2], or allow for an off-line learning

phase [3]. However, none of these methods allow for contin-

ual learning on the robot running in its environment. For RL

to be practical on tasks requiring lifelong continual control

of a robot, such as low-level control tasks, it must meet at

least the following two requirements: 1) it must learn in very

few samples (be sample efficient); and 2) it must take actions

continually in real-time, even while learning.

Model-based methods such as R-MAX [4] are a class of

RL algorithms that meet the first requirement by learning

a model of the domain from their experiences, and then

planning a policy on that model. By updating their policy

using their model rather than by taking actions in the world,

they limit the number of real world samples needed to learn.

However, most existing model-based methods fail to meet the

second requirement because they take significant periods of

wall-clock time to update their model and plan between each

action. These action times are acceptable when learning in

simulation or planning off-line, but for on-line robot control,

actions must be given at a fixed, fast frequency. Some model-

based methods that do take actions at this fast frequency have

been applied to robots in the past [3], [5], but they perform

learning off-line during pauses where they stop controlling

the robot entirely. DYNA [6], which does run in real-time,

uses a simplistic model and is not very sample efficient.

Model-free methods can learn in real-time, but often take

thousands of potentially expensive or dangerous real-world

actions to learn: they meet our second requirement, but not

the first.

The main contribution of this paper is a novel RL

architecture, called Real-Time Model Based Architecture

(RTMBA), that is the first to exhibit both sample efficient

and real-time learning. It does so by leveraging sample-

based approximate planning methods, and most uniquely,

by parallelizing model-based methods to run in real-time.

With RTMBA, the crucial computations needed to make

model-based methods sample efficient are still performed,

but threaded such that actions are not delayed. We compare

RTMBA with other methods in simulation when they are all

given unlimited time for computation between actions. We

then demonstrate that it is the only algorithm among them

that successfully learns to control an autonomous vehicle,

both in simulation and on the robot. RTMBA has been

implemented and publicly released as a ROS package at:

http://www.ros.org/wiki/rl-texplore-ros-pkg.

II. BACKGROUND

We adopt the standard Markov Decision Process (MDP)

formalism of RL [1]. An MDP consists of a set of states S, a

set of actions A, a reward function R(s, a), and a transition

function P (s′|s, a). In each state s ∈ S, the agent takes an

action a ∈ A. Upon taking this action, the agent receives a

reward R(s, a) and reaches a new state s′, determined from

the probability distribution P (s′|s, a).
The value Q∗(s, a) of a state-action (s, a) is an estimate

of the expected long-term rewards that can be obtained from

(s, a) and is determined by solving the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)max
a′

Q∗(s′, a′) (1)

Fig. 1. A diagram of how model learning and planning are typically
interleaved in a model-based agent.

where 0 < γ < 1 is the discount factor. The agent’s goal is to

find the policy π mapping states to actions that maximizes the

expected discounted total reward over the agent’s lifetime.

The optimal policy π is then:

π(s) = argmaxaQ
∗(s, a) (2)

Model-based RL methods learn a model of the domain

by approximating R(s, a) and P (s′|s, a). The agent then

computes a policy by planning on this model with a method

such as value iteration [1]. RL algorithms can also work

without a model, updating action-values only when taking

them in the real task. Generally model-based methods are

more sample efficient than model-free methods, as their

sample efficiency is only constrained by how many samples

it takes to learn a good model.

Figure 1 shows the typical model-based RL architecture.

When the agent receives a new state and reward, it updates

its model with the new transition 〈s, a, s′, r〉; plans exactly

on the updated model (i.e. with a method such as value

iteration); and returns an action from its policy. Since both

the model learning and planning can take significant time,

this algorithm is not real-time. Alternatively, the agent may

update its model and plan on batches of experiences at a time,

but this requires long pauses to perform the batch updates.

The DYNA framework [6] presents an alternative to this

approach. It incorporates some of the benefits of model-

based methods while still running in real-time. DYNA saves

its experiences, and then performs k Bellman updates on

randomly selected experiences between each action. Instead

of performing full value iteration between each action as

above, its planning is broken up into a few updates between

each action. However, it uses a simplistic model (saved expe-

riences) and thus does not have very good sample efficiency.

In the next section, we introduce a novel parallel architecture

to allow more sophisticated model-based algorithms to run

in real-time regardless of how long the model learning or

planning may take.

III. THE ARCHITECTURE

We make two main modifications to the standard model-

based paradigm that, together, allow it to run in real-time: 1)

we limit planning time by using approximate instead of exact

planning; 2) we parallelize the model learning, planning,

and acting such that the computation-intensive processes are

spread out over time.

First, instead of planning exactly with value iteration,

RTMBA uses an anytime algorithm for approximate planning.

Fig. 2. A diagram of the Real-Time Model Based Architecture (RTMBA)

It follows the approach of [7] and [8] (among others) in

using a sample-based planning algorithm from the Monte

Carlo Tree Search (MCTS) family (such as UCT [9]) to plan

approximately. These planners simulate trajectories (rollouts)

from the agent’s current state, updating the values of the sam-

pled actions with the reward received. The agent performs

as many rollouts as it can in the given time, with its value

estimate improving with more rollouts. These methods can

be more efficient than dynamic programming approaches in

large domains because they focus their updates on states the

agent is likely to visit soon rather than iterating over the

entire statespace.

Second, since both the model learning and planning can

take significant computation (and thus also wall-clock time),

we take the straightforward but novel approach of placing

both of those processes in their own parallel threads, shown

in Figure 2. A third thread interacts with the environment,

receiving the agent’s new state and reward and returning the

action given by the agent’s current policy. Pseudo-code for

all three threads is shown in Algorithm 1. By de-coupling

this action thread from the time-consuming model-learning

and planning processes, RTMBA releases the algorithm from

the need to complete the model update and planning between

actions. Now, it can return an action immediately when one

is requested by the environment, while still selecting actions

based on the most recent models and plans available. RTMBA

enables the agent to take advantage of multi-core processors

by running each thread on a separate core.

For the three threads to operate properly, they must

share information while avoiding race conditions and data

inconsistencies. The model learning thread must know which

new transitions to add to its model, the planning thread must

access the model being learned, the planner must know what

state the agent is currently at, and the action thread must

access the policy being planned. RTMBA uses mutex locks

to control access to these variables, as summarized in Table I.

The action thread receives the agent’s new state and

Algorithm 1 Real-Time Model-Based Architecture (RTMBA)

1: procedure INIT ⊲ Initialize variables

2: Input: S,A
3: Initialize s to a starting state in the MDP

4: agentState← s; updateList← ∅
5: Initialize M to empty model

6: UCT⇒INIT()
7: end procedure

8: procedure MODELLEARNINGTHREAD

9: loop

10: while updateList = ∅ do

11: Wait for experiences to be added to list

12: end while

13: tmpModel← M⇒COPY

14: tmpModel⇒UPDATE-MODEL(updateList)
15: updateList← ∅
16: M ← tmpModel
17: end loop

18: end procedure

19: procedure PLANNINGTHREAD

20: loop ⊲ Loop forever, performing rollouts

21: UCT⇒SEARCH(M,agentState, 0)
22: end loop

23: end procedure

24: procedure ACTIONTHREAD

25: loop

26: Choose a← argmax
a
Q(s, a)

27: Take action a, Observe r, s′

28: updateList← updateList ∪
〈

s, a, s′, r
〉

29: s← s′

30: agentState← s
31: end loop

32: end procedure

Variable Threads Use

updateList Action, Store experiences to

Model Learning be updated into model

agentState Action, Set current state

Planning to plan from

Q(s, a) Action, Update policy used

Planning to select actions

M Planning, Latest model

Model Learning to plan on

TABLE I

MUTEX PROTECTED VARIABLES, ALONG WITH THEIR PURPOSE AND

WHICH THREADS USE THEM.

reward, and adds the new transition experience, 〈s, a, s′, r〉,
to the updateList to be updated into the model. It then sets

the agent’s current state in agentState for the planner and

returns the action determined by the agent’s value function,

Q. When it is time to act, the action thread returns an

action quickly. Although updateList, agentState, and Q

are protected by mutex locks, updateList is only used by the

model learning thread between model updates, agentState is

only accessed by the planning thread between each rollout,

and Q is under individual locks for each state. Thus, any

given state is freely accessible most of the time. When the

planner is using the state the action thread wants, it releases

it immediately after updating the values for that state.

The model learning thread checks if there are any expe-

riences in updateList to be added to its model. If there

are, it makes a copy of its model to tmpModel, updates

tmpModel with the new experiences, clears updateList,

and replaces the original model with the updated copy. The

other threads can continue accessing the original model while

the copy is being updated, since only the swapping of the

models requires locking the model mutex. After updating the

model, the model learning thread repeats, checking for new

experiences to add to the model.

The model learning thread can incorporate any type of

model learning in the call on line 14, such as a tabular

model [4], Gaussian Process regression [5], or random

forests [10] (as used in this paper). Depending on how long

the model update takes and how fast the agent is acting, the

agent can add tens or hundreds of new experiences to its

model at a time, or it can wait for long periods for a new

experience. When adding many experiences at a time, full

model updates are not performed between each individual

action. In this case, the algorithm’s sample efficiency is likely

to suffer compared to that of sequential methods, but in

exchange, it continues to act in real time.

The planning thread uses any MCTS planning algorithm

to plan approximately (we use a variant of UCT). The

thread retrieves the agent’s current state (agentState) and its

planner performs a rollout from that state. The rollout queries

the latest model, M , to update the agent’s value function.

The thread repeats, continually performing rollouts from the

agent’s current state, even between action queries. With more

rollouts, the algorithm’s estimates of action values improve,

resulting in more accurate policies.

IV. EXPERIMENTS

To demonstrate the effectiveness of RTMBA, we performed

experiments on two problems. Our first experiments measure

the cost of parallelization in terms of environmental reward

compared to a traditional sequential architecture. We use a

simulated domain, which can wait as long as necessary for

the agent to return an action (or it can execute actions as fast

as the algorithm returns them). Our second set of experiments

measures the performance gains due to parallelization on an

autonomous vehicle, where real-time actions are absolutely

necessary. We perform experiments, both in simulation and

on the robot, that show that existing sequential approaches

are not a viable option on this type of problem.

A. Mountain Car

Our first experiments were performed in the Mountain

Car domain [1]. Mountain Car is a continuous task, where

the agent controls an under-powered car that does not have

enough power to drive directly up the hill to the goal. Instead,

it must go up the opposite slope to gain momentum first. The

agent has three actions, accelerating it leftward, rightward,

or not at all. The agent’s state is made up of two features:

its POSITION and VELOCITY. The agent receives a reward of

−1 each time step until it reaches the goal, when the episode

terminates with a reward of 0. We discretized both state

features into 100 values each, and ran the algorithms on the

discretized domain. Following the evaluation methodology of

Hester and Stone [10], each algorithm was initialized with

one experience (〈s, a, s′, r〉 tuple) of the car reaching the

goal to jump-start learning.

We ran experiments with a typical model-free RL algo-

rithm (Q-LEARNING [11]), DYNA, two sequential model-

based methods, and RTMBA. We ran two versions of DYNA:

-600

-500

-400

-300

-200

-100

 0

 0 10 20 30 40 50

A
v
e

ra
g

e
 R

e
w

a
rd

Episode Number

Mountain Car

(a) Average reward per episode. Results are aver-
aged over a 4 episode sliding window.

-600

-500

-400

-300

-200

-100

 0

 0.1 1 10 100 1000 10000 100000

A
v
e

ra
g

e
 R

e
w

a
rd

 /
 E

p
is

o
d

e

Time (s)

Mountain Car

Q-Learning
Dyna

RT-Dyna 25Hz
Sequential VI

Sequential MCTS
RTMBA 10Hz
RTMBA 25Hz

RTMBA 100Hz

(b) Average reward versus clock time. Each line
starts when the first episode was completed (ex-
cept Q-LEARNING, which completed 270 episodes
after 0.1 seconds). The x-axis is in log scale.

-300

-250

-200

-150

-100

-50

 0 2 4 6 8 10 12 14 16 18

R
e

w
a

rd

Episode Number

Mountain Car: Multiple vs. Single Core

RTMBA - Multiple Cores
RTMBA - Single Core

Sequential MCTS - Multiple Cores

(c) Multiple Core Experiments. Results are aver-
aged over a 4 episode sliding window.

Fig. 3. Average rewards of the algorithms on Mountain Car, averaged over 30 trials.

DYNA performed updates on 1,000 saved experiences be-

tween each action; and RT-DYNA performed as many updates

as it could while returning actions at 25 Hz. The sequential

methods varied in their planning; one used value iteration

for exact planning and one used MCTS for approximate

planning. We modified MCTS to use UCT action selection [9],

eligibility traces, and to generalize values across depths in the

search tree. Between each action, the two sequential methods

performed a full model update, then planned on their model

by running value iteration to convergence or running MCTS

for 0.1 seconds. We compared these algorithms with RTMBA

using the same version of MCTS, running at three different

action rates: 10 Hz, 25 Hz, and 100 Hz. All of the model-

based algorithms acted greedily with respect to a random

forest model of the domain, similar to the approach of Hester

and Stone [10]. We ran 30 trials of each algorithm, with

Q-LEARNING run for 2,000,000 episodes, DYNA for 4,000

episodes, and the remaining methods run for 1,000 episodes.

Each trial was run on a single core of a machine with 2.4 -

2.66 GHz Intel Xeon processors and 4 GB of memory.

Our aim was to compare the real-time algorithms with the

sequential methods when they were given the time needed to

fully complete their computation between each step. Thus we

can examine the performance lost by the real-time algorithms

due to acting quickly. In contrast, the model-free methods

could act as fast as they wanted, resulting in learning that

took little wall clock time but many more samples. In these

experiments, the environment waited for each algorithm to

return its action, benefiting the sequential algorithms. This is

only possible in simulation, whereas on a robot, the action

rate is defined by the robot rather than the algorithm.

Figure 3(a) shows the average reward per episode for

each algorithm over the first 50 episodes in the domain and

Figure 3(b) shows the reward plotted against clock time

in seconds (note the log scale on the x axis). The first

plot shows that the two sequential methods perform better

than RTMBA in sample efficiency, in particular, receiving

significantly more reward per episode than RTMBA running

at 25 and 100 Hz over the first 5 episodes (p < 0.05).
RTMBA running at 10 Hz did not perform significantly

worse than the sequential method using MCTS. However,

Figure 3(b) shows that better performance of the sequential

methods came at the cost of more computation time. For

the sequential methods, switching from exact to approximate

planning reduces the time to complete the first episode from

1541 to 142 seconds, but the MCTS method is still restricted

by the need to perform complete model updates between

actions. This restriction is removed with RTMBA, and all

three versions using it complete the first episode within 20

seconds. In fact, all three RTMBA methods start performing

well after 90 seconds, likely because they all took this much

time to learn an accurate domain model. Compared with the

sequential methods, RTMBA is only slightly worse in sample

efficiency, while acting much faster.

The model-free approaches, Q-LEARNING and DYNA, se-

lect actions extremely quickly and converge to the optimal

policy in less wall clock time than any version of RTMBA.

However, Figure 3(a) shows that they are not as sample effi-

cient. While RTMBA converges to the optimal policy within

tens of episodes, DYNA takes approximately 650 episodes

to converge, and Q-LEARNING takes approximately 22,000.

Although RT-DYNA performs more planning updates between

actions than DYNA, it is still not as sample efficient as

TEXPLORE, taking approximately 300 episodes to converge.

These methods learn in less wall clock time simply because

they can take many more actions than RTMBA in a given

amount of time. On an actual robot, it will not be possible

to take actions faster than the robot’s control frequency, and

the poor sample efficiency of these methods will result in

longer wall clock learning times as well. In comparison,

RTMBA learns in fewer samples, meeting our requirement

of high sample efficiency even while running at reasonable

robot control rates between 10 and 100 Hz.

In addition to enabling real-time learning, another benefit

of RTMBA is its ability to take advantage of multi-core

processors, because each parallel thread can run on a separate

core. We ran experiments comparing the performance of

RTMBA when running on one versus multiple cores. These

experiments were performed on a machine with four 2.6 GHz

AMD Opteron processors. Figure 3(c) shows the average

reward per episode for these experiments, running at 25 Hz.

For comparison, we ran the sequential method using MCTS as

a planner on the multi-core machine. It had unlimited time

for model updates and then planned for 0.04 seconds (the

same time given to RTMBA for both computations). Since the

sequential architecture only has a single thread, it only used

a single core even on the multi-core machine. Meanwhile,

RTMBA utilized three processors with each thread running on

its own core. Using the extra processors allowed the parallel

version to perform more model updates and planning rollouts

between actions than the single core version. Due to these

advantages, the multi-core version performs better than the

single core version, receiving significantly more rewards on

every episode (p < 0.005). In addition, it performs better

than the sequential method on episodes 3 to 14 (p < 0.01),
possibly because its model is not changing every step.

These results demonstrate that the algorithms using

RTMBA accomplish both requirements set forth in the in-

troduction (sample efficiency and real-time action selec-

tion), while existing model-free and model-based methods

only accomplish one of the two requirements. We have

demonstrated that while using approximate planning reduces

the time required by model-based methods, they do not

reach real-time performance without RTMBA. Agents using

RTMBA achieved similar sample efficiency to the sequential

methods, while acting in real-time. Next, we look at how the

algorithms compare on a task that requires real-time actions.

B. Autonomous Vehicle

Fig. 4. The vehicle.

Our next task was to control

an autonomous vehicle. Here,

actions must be taken in real-

time, as the car cannot wait for

an action while a car stops in

front of it. This task was the

main motivator for the creation

of RTMBA. To the best of our

knowledge, no prior RL algo-

rithm can learn in this domain in real time: with no prior

data-gathering phase for training a model. These experiments

take place on the Austin Robot Technology autonomous

vehicle [12], and on its simulation in ROS stage [13]. The ve-

hicle is an Isuzu VehiCross (Figure 4) that has been upgraded

to run autonomously by adding shift-by-wire, steering, and

braking actuators to the vehicle.

The agent’s goal was to learn to drive the vehicle at a

desired velocity by controlling the pedals. The RL agent’s

state was the desired velocity of the vehicle, the current

velocity, and the current position of the brake and accel-

erator pedals. Desired velocity was discretized into 0.5 m/s

increments, current velocity into 0.1 m/s increments, and the

pedal positions into tenths of maximum position. The agent’s

reward at each step was −10 times the error in velocity in

m/s. Each episode was run at 20 Hz (the frequency that the

vehicle receives new sensations) for 10 seconds. The agent

had 5 actions: one did nothing, two increased or decreased

the brake position by 0.1 while setting the accelerator to 0,

and two increased or decreased the accelerator position by

0.1 while setting the brake position to 0.

The autonomous vehicle software uses ROS [13] as the

underlying middleware. We created an RL Interface node

that wraps sensor values into states, translates actions into

actuator commands, and generates reward. This node uses a

standard set of messages to communicate with the learning

algorithm , similar to the messages used by RL-GLUE [14].

At each time step, it computes the current state and reward

and publishes them as a message to the RL agent. The

RL agent can then process this information and publish an

action message, which the interface will convert into actuator

commands. Whereas the RL agents using RTMBA respond

with an action message immediately after receiving the state

and reward message, the sequential methods may have a

long delay to complete model updates and planning before

sending back an action message. In this case, the vehicle

continues with all the actuators in their current positions until

it receives a new action message.

We ran the first experiment in the ROS stage simulation

with the vehicle starting at 2 m/s with a target velocity of 7

m/s. Figure 5(a) shows the average rewards per episode for

this task. Again the model-free methods cannot learn the task

within the given number of episodes. As before, planning

approximately with MCTS is better than performing exact

planning, but using RTMBA is better than either. In only a few

minutes, RTMBA learns to quickly accelerate to and maintain

a velocity of 7 m/s.

Next, we evaluated RTMBA on the full velocity control

problem, with starting and target velocities selected randomly

from between 0 and 11 m/s. Figure 5(b) shows the reward

accrued by the RL agent on each episode in the simulator

while learning this task. For comparison, we show the

reward that would be received by the PID controller that

was previously used for controlling the car’s velocity. The

previous controller was hand-tuned for performance on the

actual car. The learned controller received more reward than

the PID controller after episode 350, which equates to about

1 hour of driving. It was significantly better than the PID

controller (p < 0.005) after episode 750.

After testing in simulation, we ran 5 trials of learning in

real-time on the physical vehicle, learning to drive at 5 m/s

from a start of 2 m/s. Figure 5(c) shows the average rewards

over 20 episodes. In all 5 trials, the agent learned the task

within 11 episodes, which is less than 2 minutes of continual

driving time. In 4 of the trials, the agent learned the task in

only 7 episodes. This experiment shows that RTMBA enables

agents to learn robot control tasks that require high sample

efficiency and continual real-time action selection.

V. RELATED WORK

Batch methods such as experience replay [15] and

LSPI [16] improve the sample efficiency of model-free meth-

ods by saving experiences and re-using them in periodic

batch updates. However, these methods typically run one

policy for a while, stop to perform their batch update, and

then repeat. While these methods take breaks to perform

computation, RTMBA continues taking actions in real-time

even while model and policy updates are occurring.

-20000

-15000

-10000

-5000

 0

 0 10 20 30 40 50

A
v
e

ra
g

e
 R

e
w

a
rd

Episode Number

Simulated Vehicle Velocity Control from 2 to 7 m/s

Q-Learning
Dyna

RTMBA
Sequential VI

Sequential MCTS

(a) Control from 2 to 7 m/s in simulation. Results
are averaged over a 4 episode sliding window.

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 R

e
w

a
rd

Episode Number

Simulated Vehicle Control between Random Velocities

Learned Policy
PID Controller

(b) Control between random velocities in simu-
lation. Results are averaged over a 50 episode
sliding window.

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0 5 10 15 20

R
e

w
a

rd

Episode Number

Physical Vehicle Velocity Control from 2 to 5 m/s

(c) Control from 2 to 5 m/s on the actual vehicle,
averaged over 5 trials.

Fig. 5. Average rewards of the algorithms controlling the autonomous vehicle. Each episode consisted of 10 seconds of vehicle control.

DYNA [6] takes a similar approach to these methods,

performing small batch updates between actions. DYNA-2 [7]

extends DYNA to use UCT as its planning algorithm. This

improves the performance of the algorithm compared to

DYNA. However, to be sample-efficient, DYNA-2 must have

a good model learning method, which may require large

amounts of computation time between action selections.

Gaussian Process RL is a sample efficient model-based

algorithm that uses Gaussian Process regression to compute

the model and the policy [5]. The algorithm learns to control

a physical cart-pole device with very few samples, but it runs

in batch mode, pausing for 10 minutes of computation after

every 2.5 seconds of action.

The Horde architecture [17] is an approach to real-time

learning on robots than learns to predict or maximize the

values of many different sensors in parallel, while running

in real-time on a robot that is following a different policy.

However, it cannot use these predictions as a model to plan

better policies, and is not particularly sample efficient, as it

takes 8.5 hours to learn a light-following policy.

Walsh et al. [8] combine model-based methods with

sample-based planning. In order to maintain the RL methods’

PAC-MDP guarantees, they create a more conservative ver-

sion of UCT that guarantees ǫ-accurate policies and is nearly

as fast as the original UCT. However, they still perform model

and planning updates sequentially, rather than in real-time.

These methods all have drawbacks; they either have pauses

in learning to perform batch updates, or require complete

model update or planning steps between actions. None

of these methods accomplish both goals of being sample

efficient and acting continually in real-time.

VI. CONCLUSION

For RL to be practical for continual, on-line learning on

a broad range of robotic tasks, it must both (1) be sample-

efficient and (2) learn while taking actions continually in

real-time. This paper introduces a novel parallel architecture

for model-based RL that is the first to enable an agent to

act in real-time while maintaining the sample efficiency of

model-based RL. It uses sample-based approximate planning

and performs model learning and planning in parallel threads,

while a third thread returns actions at a rate dictated by

the task. In addition, RTMBA enables RL algorithms to take

advantage of the multi-core processors available on many

robotic platforms. Our experiments, in simulation and on a

real robot, demonstrate that RTMBA is necessary for learning

on robots that require fast real-time actions. RTMBA is imple-

mented and freely available for use as a ROS package. Our

ongoing research agenda includes testing RTMBA on other

robotic platforms, as well as testing other model learning

and MCTS planning algorithms within the framework.

ACKNOWLEDGMENTS

This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported in part
by NSF (IIS-0917122), ONR (N00014-09-1-0658), and the FHWA
(DTFH61-07-H-00030).

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[2] N. Kohl and P. Stone, “Machine learning for fast quadrupedal loco-
motion,” in AAAI, 2004.

[3] A. Ng, H. J. Kim, M. Jordan, and S. Sastry, “Autonomous helicopter
flight via reinforcement learning,” in NIPS 16, 2003.

[4] R. Brafman and M. Tennenholtz, “R-Max - a general polynomial time
algorithm for near-optimal reinforcement learning,” in IJCAI, 2001.

[5] M. Deisenroth and C. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” in ICML, June 2011.

[6] R. Sutton, “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in ICML, 1990.

[7] D. Silver, R. Sutton, and M. Müller, “Sample-based learning and
search with permanent and transient memories,” in ICML, 2008.

[8] T. Walsh, S. Goschin, and M. Littman, “Integrating sample-based
planning and model-based reinforcement learning,” in AAAI, 2010.

[9] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in ECML, 2006.

[10] T. Hester and P. Stone, “Real time targeted exploration in large
domains,” in ICDL, August 2010.

[11] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
University of Cambridge, 1989.

[12] P. Beeson, et al., “Multiagent interactions in urban driving,” Journal

of Physical Agents, vol. 2, no. 1, pp. 15–30, March 2008.
[13] M. Quigley, et al., “ROS: an open-source robot operating system,” in

ICRA Workshop on Open Source Software, 2009.
[14] B. Tanner and A. White, “RL-Glue : Language-independent software

for reinforcement-learning experiments,” JMLR, vol. 10, Sep. 2009.
[15] L.-J. Lin, “Reinforcement learning for robots using neural networks,”

Ph.D. dissertation, Pittsburgh, PA, USA, 1992.
[16] M. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal

of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.
[17] R. Sutton, et al., “Horde: A scalable real-time architecture for learning

knowledge from unsupervised sensorimotor interaction,” in AAMAS,
2011.

