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Abstract— This paper presents a self-improving lifelong
learning framework for a mobile robot navigating in differ-
ent environments. Classical static navigation methods require
environment-specific in-situ system adjustment, e.g. from hu-
man experts, or may repeat their mistakes regardless of how
many times they have navigated in the same environment.
Having the potential to improve with experience, learning-
based navigation is highly dependent on access to training
resources, e.g. sufficient memory and fast computation, and
is prone to forgetting previously learned capability, especially
when facing different environments. In this work, we propose
Lifelong Learning for Navigation (LLfN) which (1) improves
a mobile robot’s navigation behavior purely based on its own
experience, and (2) retains the robot’s capability to navigate
in previous environments after learning in new ones. LLfN is
implemented and tested entirely onboard a physical robot with
a limited memory and computation budget.

I. INTRODUCTION

Classical mobile robots are designed to be adaptive to dif-
ferent navigation environments by in-situ adjustment of the
underlying navigation system, such as by sensor calibration
[1] or by parameter tuning [2]. However, without adjustment
from expert knowledge, the untuned system may repeat the
same mistakes (e.g. stuck in the same bottleneck) even
though it has navigated in the same environment multiple
times.

Recent success in using machine learning for mobile robot
navigation indicates the potential of improving navigation
performance from a robot’s past experience in the same
environment [3]. When facing different navigation environ-
ments, however, learning methods cannot generalize well to
unseen scenarios: They must re-learn to navigate in the new
environments. More importantly, the learned system is prone
to catastrophic forgetting, which causes the robot to forget
what was learned in previous environments [4].

This paper introduces a Lifelong Learning for Naviga-
tion (LLfN) framework that addresses the aforementioned
challenges: Instead of learning from scratch, the naviga-
tion policy is initialized through a classical navigation al-
gorithm, whose navigation performance does not improve
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Fig. 1: Three navigation environments: An initial navigation
policy navigates well most of the time (green), but occa-
sionally behaves suboptimally (red, e.g. moving extremely
slowly or getting stuck). Lifelong Learning for Navigation
learns a complementary policy deployed in conjunction with
the initial policy, which gradually eliminates the suboptimal
behaviors in the current environment while not diminishing
performance in previous environments. During deployment,
the learned policy is mostly used in the red segments.

with increasing experience. The robot is able to identify
its suboptimal actions and learn from them. The navigation
performance then improves in a self-supervised manner.
When facing different navigation environments, the naviga-
tion policy is able to learn to adapt to new environments,
while not forgetting how to navigate in previous ones. LLfN
is implemented entirely onboard a physical robot with limited
memory and computation, and demonstrated to allow the
robot to navigate in three different environments (Figure 1).
The main contributions of the paper are:
• A self-improvement strategy that complements an initial

static planner to dynamically increase navigation perfor-
mance with more experience, deployed in conjunction
with the initial planner to minimize learning overhead;

• A lifelong learning scheme that allows a robot to navi-
gate in new environments while not forgetting previous
ones; and

• An implementation of the Lifelong Learning for Nav-
igation framework entirely onboard a physical robot
platform with limited memory and computation.

II. RELATED WORK

This section first reviews how classical and learning-
based methods improve navigation performance and adapt to
different navigation environments, and then briefly discusses
recent successes in the continual learning community.

a) Classical Navigation: Classical navigation systems
[5]–[8] are designed to be applicable to a wide variety of
environments, but they are usually static, operating under
a fixed set of pre-specified hyper-parameters and therefore



lacking the ability to improve with experience and adapt
to a specific environment. Parameter Tuning is the current
practice to address the aforementioned problems [9], which
requires human experts’ intuition, experience, and trial-and-
error. To reduce the reliance on expert knowledge, Xiao et
al. [2] proposed to improve navigation for a given environ-
ment (defined as “context”) by tuning parameters through
Behavior Cloning (BC) from teleoperated demonstration.
In most cases, tuning requires human knowledge, either in
the form of direct tuning or of navigation demonstrations.
Furthermore, once tuned, the static navigation system lacks
the ability to further improve with more experience or adapt
to new environments. In contrast, the proposed Lifelong
Learning for Navigation does not require human knowledge
and can dynamically improve with more navigation experi-
ence when facing new environments.

b) Learning-based Navigation: Data-driven machine
learning techniques have also been widely applied to navi-
gation problems [10]–[18]. As for physical robot navigation,
learning approaches typically either imitate an expert [19],
[20] or learn from trial-and-error using reinforcement learn-
ing [3], [21]. While these learning methods enable improve-
ment in a specific environment with increased navigation
experience, if the agent were to be placed in multiple
environments in a sequential fashion, which is common in
real-world navigation, learning methods may not generalize
well and can easily forget the past knowledge. By contrast,
LLfN explicitly considers how to prevent forgetting and
increase generalization. From a lifelong learning perspective,
Wyeth and Milford [22] studied continual mapping for
navigation and Wang et al. [23] improved generalization
in vision-language navigation. Both methods focus on the
problem of where to navigate instead of how to navigate.
To the best of the authors’ knowledge, no existing work has
tackled lifelong/continual learning of navigation behaviors
across different navigation environments. We conjecture that
unconstrained offboard computation resources, e.g., memory,
power, and time, allow learning from an extensive body of
training data pre-collected in different environments. How-
ever, for onboard resource-constrained robot platforms with-
out pre-collected supervised data, learning how to navigate in
new environments while not forgetting previous ones requires
further research, and is the focus of this work.

c) Lifelong/Continual Supervised Learning: Lifelong
or continual learning studies the problem of learning in an
ongoing fashion. One of the earliest attempts at lifelong
learning originates from the robotics community [24]. Ring
[25] provides the earliest introduction to continual learning
in reinforcement learning problems. Recently, much progress
has been made for continual learning with neural networks.
There are mainly three categories of approaches: 1) use
regularization to prevent the learned weights from deviating
too much from the old weights [26], [27]; 2) train a gener-
ative model to recover old data for joint optimization [28];
and 3) adopt a dynamic network architecture for learning
more tasks [29], [30]. Among the above approaches, the first
approach applies to a fixed capacity network, which is often

much more computationally efficient than training a genera-
tive model or adopting a dynamic network architecture. This
computational efficiency is essential for learning onboard
resource-constrained mobile robot platforms. Specifically,
when a few past data points can be saved, Gradient Episodic
Memory (GEM) [31] can be very efficient and powerful.
All these methods demonstrate success on continual image
classification problems, but there remains much room for
studying continual learning in other applications like in
robotics, especially when supervised labels from human
experts are not available a priori. It is worth to note lifelong
learning’s resemblance to transfer learning [32]. However, in
addition to transfer learning’s focus on forward transfer (how
previous knowledge can help learning the current task), LLfN
also considers backward transfer (how learning the current
task can maintain or improve performance of old ones).

III. BACKGROUND

Lifelong Learning for Navigation (LLfN) aims to address
a novel variant of the standard navigation problem in which
the agent learns to improve navigation performance online
with increasing experience, or across environments, under a
limited memory budget. We think of this problem variant as
the “lifelong navigation” problem.1 In this section, we first
present the problem setup of lifelong navigation and the nota-
tion we use in this work. We then leverage a lifelong learning
algorithm previously used in continual image classification
for the LLfN framework.

A. Problem Setup and Notation

The high-level objective of lifelong navigation can be
summarized as learning to navigate in a sequence of m
environments {Ei}mi=1.2 In each of those environments, the
robot aims at navigating from one fixed start point to another
fixed goal point. We assume a fixed global planner (e.g.
Dijkstra’s algorithm [33], A* [34] or D* [35]) generates a
path connecting start and goal, and while navigating, the
robot needs to produce motion commands which follow
this global path, observe its kinodynamic constraints, and
avoid obstacles. Whenever the agent advances to Ek, it no
longer has access to {E}k−1i=1 . Within the environment Ek,
the agent, at each time step t, computes a motion command
at ∈ A ∼ πθ(st), where st ∈ S is the agent’s state,
πθ is a policy parameterized by θ. After executing at, the
agent advances to st+1 and the process continues. During the
learning phase, the agent will have a limited onboard memory
size n, i.e. maximally n pairs of (st, at) can be stored at
any moment. Once the agent has seen all m environments,
its performance is evaluated on the same m environments.

1We define “lifelong navigation” in the sense of learning navigation with
increasing experience, across environments, rather than in the literal sense,
i.e. navigation over extended periods of time.

2Informally, an environment is a contiguous space consists of similar
distribution of obstacles where the optimal navigation behavior does not
vary much. We intentionally design the simulated and physical environments
to be very different to magnify the effect with and without LLfN.



B. Gradient Episodic Memory

The key challenge of continual learning is catastrophic
forgetting, i.e. an agent forgets what it learned previously
when adapting to a new environment. The phenomenon is
especially prominent when feature-rich parametric models,
i.e. neural networks, are used as the underlying learning
module. To address catastrophic forgetting, we use Gradient
Episodic Memory (GEM) [31] within our Lifelong Learning
for Navigation paradigm described in Section III-A. From a
high-level perspective, GEM prevents forgetting by ensuring
each update will not increase the loss on previous tasks. Note
that GEM allows new experience to improve performance
on old tasks. Specifically, assume the agent has already
seen environments up to Ek−1 and the learned policy is
πθk−1

. GEM assumes the agent keeps a small memory buffer
B = {Mi}i<k that, for each previous environment Ei, stores
a few exemplary data points Mi. GEM then optimizes the
following objective:

min
θ
`(πθ, Ek), s.t. `(πθ,M) ≤ `(πθk−1

,M), ∀M ∈ B,
(1)

where `(π,X) is the loss function that evaluates performance
of π on data X .3 For instance, in a regression task where we
aim to predict the regression label a from a given state s,
then `(πθ, X) = E(s,a)∼X ||πθ(s)− a||2. To efficiently solve
the above optimization, GEM observes that the constraints
are satisfied as long as 1) the new θ is initialized from θk−1,
and 2) at each optimization step, the loss on previous tasks
does not increase. Assume the optimization steps are small,
we can determine whether a new update increases the loss on
a previous task by computing the inner product between the
gradients on the current and previous tasks. For example, the
loss on a previous task will only increase if the inner product
is negative. The optimization problem then becomes

min
θ
`(πθ, Ek), s.t. 〈∂`(πθ, Ek)

∂θ
,
∂`(πθ,M)

∂θ
〉 ≥ 0, ∀M ∈ B.

(2)

In practice, to solve Equation (2), GEM uses stochastic
gradient descent with a modified gradient. In particular,
denote g = ∂`(πθ,Ek)

∂θ and gi =
∂`(πθ,Mi)

∂θ , ∀i < k. Then,
GEM finds the update direction g̃ by solving:

g̃ = argmin
z
||g − z||2, s.t. 〈z, gi〉 ≥ 0, ∀i < k. (3)

The above optimization is already in a nice quadratic form,
but the decision variable g̃ has the same dimension as θ,
which can be millions for deep architectures. Fortunately, its
dual problem is only associated with k − 1 variables and
can be efficiently solved by standard quadratic programming
solvers. Formally, the dual problem of (3) is

v∗ = argmax
v

vTGTGv + gTGv s.t. v ≥ 0 ∈ Rk−1,

where G = −[g1, g2, . . . , gk−1] is a matrix having −gi as its
columns. As a result, the final g̃ = GT v∗+g and the update

3Here we abuse the notation so that `(π, E) refers to the loss evaluated
on data generated from environment E .

rule is θ ← θ − αg̃, where α is the learning rate. GEM has
no requirement for dynamically expanding the parameter size
and often requires very few exemplar data points from past
experience to maintain the learned behavior. Therefore, GEM
is particularly suitable for robot navigation tasks since mobile
robots often have very limited onboard memory resources.

IV. LIFELONG LEARNING FOR NAVIGATION

Intuitively, catastrophic forgetting is caused by the
dilemma of overwriting old knowledge when learning new
things. In real-world navigation, it is unlikely that the
agent needs to keep learning new things every second. The
agent can easily navigate in many places with classical
approaches and only have trouble navigating in particular
scenarios (e.g. the green and red path segments in Figure
1). As a result, we regard Lifelong Learning for Navigation
(LLfN) as a framework that learns an auxiliary planner
πθ to assist a classical planner π0 only for navigating
those difficult instances. Moreover, updating πθ should min-
imally influence the past learned behaviors. To achieve
this goal, the agent should be able to first identify those
“difficult” scenarios, i.e. identify in what particular states
s does the agent generate suboptimal motion commands.

Fig. 2: Learning from (s′, a′)
helps improve the navigation
performance around s.

In addition, since we
do not assume access
to expert demonstrations,
the agent must keep
sampling motion com-
mands until it overcomes
the difficulty around s.
Then, by looking at the
trajectories around s, the
agent should be able to
identify a good behavior, i.e. a state-action pair (s′, a′), such
that learning from (s′, a′) will increase the agent’s proba-
bility of overcoming the difficulty around s (see Figure 2).
Next, we list the key components of the LLfN framework
and then explain how we use them.
• An initial sampling-based navigation planner π0 and a

learnable policy πθ, parameterized by θ.
• A scoring function D : S ×A → R that evaluates how

good an action a is at the state s, i.e. larger D(s, a)
indicates a is a better action at s.

• A streaming memory buffer Bstream that stores the past
T -step trajectory, i.e. Bstream = {sj , aj}tj=t−T+1.

• A per-environment memory Mk : |Mk| = n/k (n is
the memory budget) that stores the exemplar training
data (self-generated data that are worth learning from)
from environment Ek. The entire memory before enter-
ing Ek is therefore a set of sets: B = {Mi}i<k.

• An algorithm Acorrect that given a recent suboptimal
behavior (s, a) ∈ Bstream, finds exemplar training data
(s′, a′) ∈ Bstream such that learning from (s′, a′) im-
proves the navigation performance at s.

• A continual learning algorithm Acl that updates πθ given
Mk and B. Acl should retain performance on previous
environments.



With the above components, the agent will be manually
placed at fixed start locations of a sequence of m different
environments, in each of which it navigates to a fixed goal,
keeps identifying suboptimal behaviors, and improves upon
them while preserving its past knowledge.4 The pipeline of
LLfN is summarized in Algorithm 1.

Algorithm 1 Lifelong Learning for Navigation (LLfN)

1: Inputs: π0, πθ, D, Acorrect, Acl, Emk=1, and a threshold η.
2: B ← ∅, Bstream ← ∅, and initialize θ0 randomly
3: // Training
4: for environment k = 1 : m do
5: Mk ← ∅
6: while navigating in Ek do
7: progress to state st and generate at ∼ π0(st)
8: execute at and update Bstream with (st, at)
9: let p = bt− T/2c and select (sp, ap) ∈ Bstream

10: if D(sp, ap) < η then
11: (s′, a′) = Acorrect(sp,Bstream)
12: update Mk with (s′, a′)
13: end if
14: end while
15: θk ← Acl(πθk−1

,Mk,B) . Lifelong learning
16: Shrink B to size (n− |Mk|) and B = B ∪ {Mk}
17: end for
18: // Execution
19: while navigating in E do
20: progress to state st
21: generate a0 ∼ π0(st), â ∼ πθk(st)
22: execute at = argmaxa∈{a0,â}D(st, a)
23: end while

In Algorithm 1, the history memory buffer B and the
streaming memory buffer Bstream are initialized to empty,
and πθ to a random policy in line 2. Upon entering Ek
(line 4), the per-environment memory Mk is initialized to
empty (line 5). While learning to navigate in Ek (line 6),
when the agent progresses to a state st (line 7), it executes
the motion command at ∼ π0(st) and saves the state-action
pair (st, at) to the streaming buffer Bstream (lines 7-8). Then,
the agent looks at the mid-point5 of the recent trajectory
(sp, ap) ∈ Bstream (line 9) and evaluates its score D(sp, ap)
(line 10). If the score is below a pre-defined threshold η,
then we regard (sp, ap) as suboptimal and use Acorrect to
identify a nearby state-action pair (s′, a′) ∈ Bstream, learning
from which could potentially help improve the navigation
performance around s (line 11). In practice, we implement D
with the extracted heuristics from DWA which discriminates
recovery behaviors from regular ones (see Section V-A for
details). In other words, suboptimal actions are the ones that
trigger DWA’s recovery behavior.

Intuitively, if we search state-action pairs around (sp, ap)
that have scores above the threshold η, and find the state-

4It may be possible for the agent to automatically detect environment
shift, but we leave that for future work.

5By looking at the midpoint (sp, ap), we search the neighboring behav-
iors (within T/2 steps) for (s′, a′).

action pair (s′, a′) that has the most similar state to sp,
then learning from (s′, a′) could potentially help the agent
navigate from sp. Therefore, we propose that Acorrect selects
(s′, a′) according to

(s′, a′) = argmax
(s,a)∼Bstream

sim(s, sp) s.t. D(s, a) ≥ η, (4)

where sim(s, sp) measures how similar s is to sp. What
we really want is to learn from (s, a∗), where a∗ is the
optimal motion command at state s and is unknown by the
policy. Here, (s′, a′) serves as the nearest neighbor to (s, a∗).
The underlying intuition is that taking the same action in
similar states should result in similar scores. Inversely, the
similarity score indicates how confident we are that learning
from the nearest neighbor (s′, a′) can actually help the agent
successfully navigate sp, provided that D(s′, a′) ≥ η. In our
implementation, the state consists of raw sensor readings,
such as LiDAR, so the negative Euclidean distance −||s′ −
sp||2 is a reasonable measure of similarity. Importantly,
although it is possible that within Bstream, no state-action pair
has sufficiently similar state to sp, learning from the nearest
neighbor (s′, a′) is not detrimental to πθ since D(s′, a′) ≥ η.
In line 12, (s′, a′) is stored toMk. Note thatMk is also size-
constrained, i.e. |Mk| ≤ n/k. So if adding (s′, a′) exceeds
the memory budget, we remove the (s′, a′) ∈ Mk with
the lowest similarity score to their own corresponding s.
By doing so, Mk eventually consists of state-action pairs
that most likely contribute to improvement of navigation
performance. In line 15, the agent updates its knowledge with
the current Mk, using the continual learning algorithm Acl,
while preserving what it has learned before by considering B.
In particular, to continually update πθ, we adopt the Gradient
Episodic Memory (GEM) as Acl. Specifically, we would like
to solve

θk = argmin
θ

`(πθ,Mk) subject to

〈∂`(πθ,Mk)

∂θ
,
∂`(πθ,M)

∂θ
〉 > 0, ∀M ∈ B.

(5)

Here `(πθ,M) = E(s,a)∈M||a − πθ(s)||2, is the standard
behavior cloning objective. The optimization in Equation (5)
will then be solved with stochastic gradient descent using the
same method shown in Equation (3). Finally, due to online
learning, we shrink B by removing entries with the lowest
similarity score to their own corresponding s and append
data from Mk to B (line 16).

For executing the learned policy from LLfN, the only
change is that given the state st, we compute both a0 ∼
π0(st) and â ∼ πθ(st) and execute the action with the
highest score (lines 19-23). For description simplicity, we
learn once per environment in Algorithm 1. However, in
practice, the method can be easily extended to learn multiple
times while navigating in the same environment.

V. EXPERIMENTS

LLfN is tested in simulated and physical experiments. We
hypothesize that through LLfN (1) navigation performance
can improve as the robot gathers more experience within a



single environment, and (2) navigation in new environments
can be learned while not forgetting how to navigate well in
previous ones.

A. Robot Platform and Implementation

Clearpath Jackal, a four-wheeled differential-drive un-
manned ground vehicle, is used for both simulated and
physical experiments. The robot is equipped with a laser
scanner to perceive surrounding obstacles and runs the
basic Robot Operating System (ROS) move base naviga-
tion stack. While the global planner is based on Dijkstra’s
algorithm [33], the local planner uses DWA [6], a sampling-
based planner which may fail to sample feasible actions if not
being properly tuned for the deployment environment. We
fix the global planner and improve the local DWA planner
using LLfN. We include the local goal provided by the
global planner as part of the state, along with LiDAR input.
Based on the local DWA planner as an initial policy (π0),
LLfN learns to complement this π0 and improve navigation
performance in multiple environments. When the sampling-
based DWA cannot find feasible motion, it starts recovery
behavior, including rotation in place or backing up [9]. LLfN
first improves navigation by eliminating those sub-optimal
behaviors and producing alternative motions for a given
environment. Second, it allows the robot to adapt to new
environments while still remembering previous ones.

The learning problem is formulated as finding a policy
πθ that maps from the current state s, which includes
LiDAR input (720- and 2095-dimensional for simulated and
physical experiments, respectively) and local goal ((x, y),
1m away on the global path), to the action a, i.e. the linear
velocity v and angular velocity ω. In our implementation, the
scoring function D prioritizes actions proposed by DWA,
if they result in a steady forward motion (v ≥ 0.15m/s,
which is slightly larger than the minimal v = 0.1m/s
to overcome friction). Importantly, all recovery behaviors
from the DWA planner, including slowing down, turning
in place, and moving backward, result in v < 0.15m/s.
So with the above definition, D will classify all recovery
behaviors as suboptimal. Future works can investigate other
implementations of D, or even learning it on the fly. If DWA
fails to find feasible actions and would have started to execute
recovery behaviors, the learned policy πθ takes over. We
acknowledge this implementation makes the scoring function
D not always accurate, e.g. it is possible that D may prefer a
bad action by πθ when π0 produces recovery behaviors. But
in practice we observe LLfN remains effective even with
such a simple D.

In consideration of limited onboard resources, we imple-
ment a streaming buffer Bstream as a regular queue to store
300 online streaming data points sequentially, and a separate
memory Mk as a priority queue to save exemplar training
data in the current environment. The number of data points
within B∪{Mk} is also constrained to 300. The buffer sizes
are empirically determined as the minimal value to assure
efficient learning. For every sub-optimal action generated
by DWA at a certain state, we compute a similarity score

(a) Env. 1 (b) Env. 2 (c) Env. 3

Fig. 3: Simulated Navigation Environments: Green segments
are primarily traversed using the initial policy π0, while red
segments are mostly traversed using the learned planner πθ.

between this state and all states in the streaming buffer
with a successful action (L2-norm of the LiDAR reading
difference). We replace the data point of lowest similarity
score in the training buffer with that from the streaming
buffer. The onboard data memory overhead to implement
LLfN is at most a total of 600 data points.

B. Simulated Experiments

The effect of LLfN is first studied with extensive simulated
trials. The simulated Jackal has a SICK LMS111 laser
scanner onboard providing 270◦ 720-dimensional laser scan.
The three simulated navigation environments are shown in
Figure 3, where the robot navigates from a fixed start to
a fixed goal in the environment. Env. 1’s dense obstacles
require fast response for obstacle avoidance; In Env. 2, the
robot needs to keep a slow and consistent pace to drive
through the narrow passage; Env. 3 requires the robot to slow
down to make a sharp turn to enter the other room smoothly.

The robot is placed at its start location in each environ-
ment, and the learned policy πθ to be tested is selected
manually. We use the initial policy π0 to execute three trials
in each of the three navigation environments to collect the
training data. π0 (DWA) can eventually navigate through,
given sufficient time to recover, re-sample, and re-plan.

To test in-environment learning improvement, training data
of each given environment is divided into 5 segments and
incrementally presented to the learner. For example, the first
training buffer for learning is constructed from the first one-
fifth of the robot’s experience, the second from the first
two-fifths, etc. The last training buffer is from the entire
experience. Note all these training buffers contain only 300
data points, who have the highest similarities to those states
where the initial policy performs sub-optimally, given the
presented navigation experience. Therefore, 6 incrementally
learned navigation policies are produced, including the initial
policy and the five policies learned from seeing 1/5, 2/5, ...,
5/5 of the training data from three training trials. Then the
robot starts to learn the next navigation environment. For
cross-environment learning, we use Sequential Training and
the proposed LLfN. Sequential Training first uses the training
buffer of environment 1. Starting with the final policy trained
from environment 1, it sequentially trains on the training
buffer of environment 2, before moving on to the training
buffer of environment 3. In LLfN, while training environment
2, it only uses 150 data points from training buffer 2 with the
highest similarity score, and still keeps a memory of 150 data
points with the highest similarity score from training buffer
1 to assure new gradient updates won’t increase the loss of



Fig. 4: Simulation Results: Each subplot (row i, column j)
shows navigation performance with respect to increasing ex-
perience (x-axis), being trained using the jth and deployed in
the ith environment. (Since there is no previous environment
for Env. 1 and Train 1, both curves are the same.)

environment 1. While training on environment 3, 100 data
points with the highest similarity score for each environment
are used, to avoid forgetting environment 1 and 2.

We implement a small neural network of three hidden
layers with 64 hidden neurons each, to compute linear and
angular velocity based on the LiDAR input and local goal.
After training, we evaluate the navigation performance in
terms of traversal time in the current and previous envi-
ronments. Each policy is executed three times, resulting
in a total of 198 evaluation trials. We report the mean
and standard deviation of the performance in Figure 4. If
the robot is not able to reach the goal, e.g. gets stuck, a
penalty time of 100s is given. Within each environment,
LLfH is able to decrease traversal time with increasing
learning experience. Across environments, LLfH learns new
environments with increasing data while avoids catastrophic
forgetting of previous ones. Sequential Training can improve
navigation performance of a given environment when being
presented the data from that particular environment, faster
than LLfN. However, navigation performance in previous
environments deteriorates with increasing experience in the
current environment. The catastrophic forgetting is apparent
in the diverging red line (Sequential Training) from the
green line (LLfH). Note that the learned policies are used
in conjunction with the initial policy in both cases.

C. Physical Experiments

LLfN is also implemented on a physical Jackal robot.
In the physical experiments (Figure 1), we use the same
setup, while all computation is done onboard the robot using
an Intel Core i5-4570TE CPU. The physical Jackal has a
Velodyne LiDAR, whose 3D point cloud data is converted
to 360◦ 2095-dimensional laser scan. We design the physical
test environments such that the goal of one environment
smoothly transitions to the start of the next. Therefore the
robot can traverse through all three environments in one shot.
For training, we manually label the current environment for
the learner. During deployment, the robot uses only one πθ
for each traversal.

DWA Sequential
Training LLfN Individual

Models

Env. 1 Time 38.36±1.69 39.11±6.45 28.32±1.85 30.17±0.97
Rec./Col. 1.8/0 1.4/0.6 0/0 0/0

Env. 2 Time 28.05±3.48 49.41± 13.94 19.98±1.07 23.41±0.66
Rec./Col. 1.4/0.2 1.25/0.8 0/0 0/0

Env. 3 Time 39.80±6.39 21.12±1.17 21.80±1.51 21.12±1.17
Rec./Col. 2.2/0.2 0/0 0/0 0/0

TABLE I: Physical Results after Training on 3 Environ-
ments: Time (in s), Number of Recovery Behaviors (Rec.)
and Collisions (Col.).

In the physical experiments, we compare LLfN with three
baselines: DWA, Sequential Training, and Individual Models.
Sequential Training and LLfN are conducted in the same
way as in the simulated experiments. Individual Models
are checkpoints of Sequentially Trained models up to the
corresponding environment. Since these Individual Models
do not suffer from forgetting, they serve as the best models
in Sequential Training. In contrast, the Sequentially Trained
model is the final model after training on all 3 environments
(thus ends up being much more effective on Environment
3 than Environment 1 or 2). The downside of Individual
Models is that the number of models increases with the
number of environments. Thanks to the constraint on data
size, training each model takes less than two minutes on
the robot’s onboard CPU. We deploy the trained models to
navigate in the three environments. For each method, the
robot navigates each environment five times, resulting in a
total of 60 physical trials. Table I reports the mean execution
time for each environment with standard deviation and
average number of recovery behaviors (Rec.) and collisions
(Col.). DWA exhibits the most recovery behaviors, because
whenever the robot fails to sample a feasible motion, it
starts recovery behavior. One collision happens in one of the
environment 2 and 3 trials. Applying the model sequentially
learned on environment 1, 2, and 3 causes catastrophic
forgetting of the first two environments. It leads to longer
execution time and higher standard deviation, with frequent
recovery behaviors and collisions. LLfN can successfully
avoid catastrophic forgetting: It achieves a similar time to
the Individual Models approach in environment 3, while, sur-
prisingly, it outperforms Individual Models in environment 1
and 2 in terms of average time. One possible explanation is
that the LLfN model has good backward transfer ability after
gathering more diverse experience. Utilizing extra training
data and models specifically trained for each environment,
the Individual Models approach is more stable (lowest stan-
dard deviation).6

VI. CONCLUSION

In this paper, we propose and implement the first self-
supervised Lifelong Learning for Navigation framework
(LLfN). Building upon an initial static sampling-based model
predictive control policy, which does not improve with
increasing navigation experience, the robot is able to self-
identify sub-optimal actions, search for similar scenarios

6Video of representative trials of the four methods: www.youtube.
com/watch?v=ja_Rjc63xiY&t=68s.
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where good actions are performed, learn from those data,
and improve navigation in a continual manner. Furthermore,
in a multi-environment setting, LLfN is able to adapt to new
environments, while not forgetting previous ones. Extensive
simulated trials are performed to test LLfN’s in-environment
and cross-environment learning capability. The entire LLfN
is also implemented and tested on limited computational
resources onboard a physical robot and operates in real time
without requiring any off board computation. One interesting
future direction is to extend the current simple heuristic-
based scoring function to a more general formulation, e.g.
in terms of a learnable value function. Then the scoring
function will not depend on heuristics specific to the initial
policy (DWA in our case). One shortcoming of the current
framework is that when the base policy π0 is incompetent
everywhere, LLfN will fail to learn. Therefore future research
can investigate adding active exploration when π0 is always
incompetent. Other interesting directions include investigat-
ing better methods to prioritize experiences for updating the
online buffers with a limited budget and extending LLfN to
address dynamic obstacles.
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