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Abstract. Efficiently guiding humans in indoor environments is a challenging
open problem. Due to recent advances in mobile robotics and natural language
processing, it has recently become possible to consider doing so with the help
of mobile, verbally communicating robots. In the past, stationary verbal robots
have been used for this purpose at Microsoft Research, and mobile non-verbal
robots have been used at UT Austin in their multi-robot human guidance
system. This paper extends that mobile multi-robot human guidance research
by adding the element of natural language instructions, which are dynamically
generated based on the robots’ path planner, and by implementing and testing
the system on real robots.
Generating natural language instructions from the robots’ plan opens up a va-
riety of optimization opportunities such as deciding where to place the robots,
where to lead humans, and where to verbally instruct them. We present exper-
imental results of the full multi-robot human guidance system and show that
it is more effective than two baseline systems: one which only provides humans
with verbal instructions, and another which only uses a single robot to lead
users to their destinations.

Keywords: Multi Robot Coordination · Natural Language · Human Robot
Interaction · Indoor Navigation

1 Introduction

Finding one’s way in an unfamiliar office building, university, or hospital can be a
daunting task. Even when provided with navigational instructions, the lack of an in-
door localization system, and the lack of reliable pedestrian odometry makes it difficult
for humans to successfully follow them. Following instructions is efficient for short se-
quences, but memorizing a long sequence of instructions is difficult, and the tendency
to make mistakes increases with the length of the instruction sequence and the com-
plexity of the environment.

As service robots become increasingly abundant in large buildings [12, 4], and
steadily more capable of autonomous navigation, there has been growing interest in
using them to guide humans in buildings. However, for safety reasons, even state-
of-the-art service robots still travel much slower than the average human; therefore,
following them is reliable but tedious. Additionally, robots have difficulties changing
floors and opening doors.
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To mitigate these problems, we developed a system of mobile robots that provides
guidance to newcomers to the GDC building at UT Austin. Once a visitor approaches
one of the robots and requests to reach a goal location, the system calculates the
shortest path to the desired destination, and then, based on the characteristics of
each region of the path, decides where a robot will lead the person and where verbal
instructions will be provided. The characteristics that are considered for each region
are: (i) the length of the path through that region, (ii) the region’s traversability by a
robot, and (iii) the probability of a human going wrong there.

The use of multiple robots allows for separate intervals of leading and instructing
within a single navigational path. The robots that are used in this research are the
BWIBots (See Figure 1), a custom-built fleet of robots that are part of the Building
Wide Intelligence (BWI) project [8]. The generation of natural language navigational

Fig. 1. Three BWIBots used in this study.

instructions is based on the robot’s planned path and a map annotated with landmarks.

We empirically tested the system on human participants who were not familiar
with the GDC building, and measured the time it took them to reach a given goal
location. Empirical results show that compared to baselines of instructions only and
leading only, the combination of leading and instructing provides the best results in
terms of minimizing the time to destination and maximizing the success rate.

The remainder of the paper is structured as follows. Section 2 reviews related
work. Section 3 formally defines the problem, and Section 4 outlines our approach to
optimally solving it. Section 5 describes the technical details of implementing of the
system on the BWIBots. Section 6 presents the natural language instruction generation
module. Section 7 details the experimental evaluation and discusses the results, and
Section 8 concludes.
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2 Related Work

Previous studies of the multi-robot human guidance problem developed a central sys-
tem whose goal is to guide a person to the destination efficiently, while limiting the
robots’ time away from their background tasks [6], and later extended it to multiple
concurrent guidance tasks [7]. Both of these systems did not make use of natural lan-
guage instructions, but rather used arrows on the screen to indicate the position of
the next robot the human should go to. We extend this research by adding natural
language instructions, and by applying and testing the system on real robots.

Another relevant project used a single stationary robot to give verbal instructions
inside a building [1]. The paper provides some valuable insights and directions for
future work regarding the effectiveness of the robot’s generated instructions. The au-
thors discuss the challenge of communicating long paths, which result in directions
that are difficult for the listener to understand and retain. We propose to mitigate this
challenge by using multiple mobile robots which enable breaking up long instruction
sequences to shorter, and more user-friendly ones. This paper ([1]), and others [5],
highlight the use of landmarks as navigational waypoints – a technique we leverage in
our work.

Generating natural language navigational instructions has been attempted using
a Seq-to-Seq network that was trained on a dataset of human generated instructions
for navigating a grid-world domain [2]. Other approaches such as the top performing
one in the GIVE 2.5 challenge [10], a competition for natural language generation
systems that guide human users through solving a task in a virtual environment, use
a template-based method [3]. We use a similar template-based method for generating
natural language instructions.

3 Problem Definition

Our problem formulation is similar to that of the Multi-Robot Human Guidance
(MRHG) problem [6]. A MRHG problem begins when a human approaches a robot
and requests assistance to reach a destination in the building, and ends when the
destination is reached. At our disposal we have a team of mobile robots that can au-
tonomously navigate the building. The problem we are studying is how to efficiently
utilize them to guide humans to their desired destination in the building as quickly as
possible.

Unlike Khandelwal et al. [6], where the set of available guidance actions were
either Direct (Display a directional arrow on the display interface of a robot) or Lead
(Have the human follow a robot as it navigates to a required location), in our system
the robots are augmented with the ability to generate and vocalize natural language
instructions and therefore use the action Instruct instead of Direct.

Our primary objective is to minimize the time it takes the human to reach the
destination. Khandelwal et al. [6] also considered minimizing the robots’ time away
from their background tasks as a secondary objective, which we do not actively try to
optimize for. However by simply supplementing the robots with the Instruct action,
the system is able to reduce the robots’ leading time and consequently improve this
secondary objective as well.
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The notations we use and assumptions we make are as follows. The environment,
E, in which guidance assistance is required is a fully connected space which is divided

into a set of non overlapping domains D such that E =
⋃|D|

i=1 di. Each domain, di ∈ D
has one robot ri ∈ R assigned to perform a background task in that domain.

A guidance task, T (o, g) is a request by a human to get from origin location o to
goal location g. We assume that at the time a guidance task is created, the human
and one robot are co-located at origin o.

The robots can communicate with each other and announce that a new guidance
task needs to be performed. We assume that the environment is divided into domains
which are small enough to enable the robots to get into the required position in their
domain in time to support a high priority guidance task, once it is communicated. The
robots can navigate the environment autonomously with an average speed of vr. We
assume that humans travel at an average speed of vh, and that vh > vr.

We assume that robots have a map of the environment and can use it to plan the
shortest path, p, from origin to goal. The map is divided into a set of regions, L, which
correspond to rooms, corridors, elevators, and open spaces, each with attributes of:
physical dimensions, neighboring regions, how traversable this region is to a robot,
and what is the probability of a human going wrong there while following navigational
instructions. Each domain contains several regions. We denote the subset of regions of
L that contain path p as Lp.

The robots can reach any given location reliably, i.e., do not make any wrong
turns. However, for the robots, some regions are more traversable than others, e.g,
the elevator, or the very busy regions are difficult to navigate through. We denote the
traversability of region lj for a robot as trvj . The harder a region is to traverse, the
lower its trv value will be.

Regarding humans, we assume and validate the following assumption empirically:
given a set of navigational instructions, humans have some probability of going wrong
in every region, and that probability increases as the length of the instruction sequence
increases. We denote the inherent navigational complexity of region lj for a human as
cmpj . The dynamic parameter that represents the number of previously consecutive
instructed regions before lj is denoted as cirj . The actions that a robot can take to
guide a human are:
– Lead - The robot asks the human to follow it as it navigates to a desired destination.
– Instruct - The robot generates and vocalizes natural language instruction from its

current location to a desired destination.
The robots chose one action per region.

We assume that action durations are not fixed and are dependent on the state
i.e, the complexity of the region and the number of consecutive previously instructed
regions. We also assume that when navigating to a location in a building, humans will
eventually reach their destination even if they take a wrong turn, at the expense of
longer travel time. This assumption allows us to trade off state transition probabilities
with action durations, i.e., if a human is given navigational instructions from origin
to goal, and the regions in the path have some probability of going wrong, the human
will reach the goal successfully but the time it takes to traverse these regions will be
directly affected by the respective probabilities of going wrong. We assume that the
time required to say the instructions for a single region is constant and equals tc.
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Thus, the MRHG can be formulated as a stochastic planning algorithm where the
goal is to find the plan that results in the shortest time in expectation.

Formally, the MRHG problem is: Given a guidance task T (o, g) in environment
E, populated by a set R of robots, each located in its respective domain, find an
optimal sequence of actions that will minimize the human’s expected time to reach
the destination goal g. Denoting tj as the time estimation per region lj in the shortest
path p from o to g:

min
∑
lj∈Lp

tj S.T.

– Only one consecutive lead sequence per robot.
– The robot can use the lead action only at the start of its guidance sequence.
– A robot can only lead in its domain, but can instruct through other domains.
– When a robot instructs to a region in another robot’s domain, a transition occurs

and requires the robot in that domain to navigate to that region and wait for the
human there to start its portion of the guidance task.

– The number of transitions is limited to the number of domains (and robots) in the
path.

4 Optimal MRHG Problem Solver

In this section we outline our approach to optimally solve a guidance task T (o, g) for
the MRHG problem. First, by using the robot’s planner we calculate the shortest path
p from o to g. Second, we calculate for each region in the path, lj ∈ Lp, the length of the
path through that region length(p, lj). Third, the solver calculates a time estimation
for each possible combination of Lead/Instruct for each robot. In order to calculate the
time estimate for a path, we dynamically calculate the additional time per region that
is a result of it being in a long chain of consecutive instructed regions. The parameter
that represents the number of previously consecutive instructed regions for region lj is
denoted as cirj . Since a robot is located in transition regions, the probability of going
wrong there is reduced by a factor denoted as the robot observably factor, rof . The
time estimation per region, tj , is calculated as follows:

tj =


(length(p, lj)/vr)/trvj if action = Lead

(length(p, lj)/vh) · cmpj · (cirj + 1) + tc if action = Instruct

(length(p, lj)/vh) · cmpj · (cirj + 1)/rof + tc if Transition at lj

For a region where a Transition occurs, the probability of going wrong is reduced
since we place a robot at the intersection of the two regions and it is harder to miss it
as opposed to other less noticeable landmarks.

Finally, the solver chooses the action combination that results in the shortest time.
It runs a branch-and-bound search on the tree of possible combinations saving the
current minimal combination time and abandoning combinations that result in longer
times. This approach speeds up computation compared to brute force search and
allows for real-time optimization of paths with up to 10 regions, i.e., without creating
an awkward pause in the dialog.
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5 Robot Implementation

In this section, we briefly describe the hardware design of the BWIBots [8] used in
this study. The robotic platform is built on top of the Segway RMP mobile base.
The robots are equipped with a Hokuyo lidar (for navigation and obstacle avoidance),
a Blue Snowball microphone, and a speaker (for conducting the dialog). One of the
robots is equipped with a Kinova MICO arm (useful for gesturing the initial orientation
of the very first sequence).

On the non-armed robots, a Dell Inspiration computer executes all necessary com-
putation and doubles as a user interface. For the arm robot, an Alienware computer
is used. The robots’ mobile Segway base is reinforced with additional 12V Li-Ion bat-
teries to power the base, arm, computer, and sensors for up to 6 hours of continuous
operation. The software architecture used on the BWIBots is built on top of the Robot
Operating System (ROS) framework [9]. It includes a custom built layered architec-
ture that spans high level planning to low level motion control and allows autonomous
navigation in our department building.

Multi-robot communication is achieved using the rosbridge suite and Node.js pack-
ages running on a central server, and passing ROS messages between the different ROS
masters that manage each individual robot. Robot-spoken instructions are delivered
using Google’s WaveNet text-to-speech [11]. 1

6 Generating Natural Language Instructions

In this section we present the system for generating natural language instructions for
indoor navigation. Given a starting point, ending point, and an annotated map, our
system produces landmark-based instructions to a goal location. These instructions
are generated by translating the robot’s planned path into an intermediate abstract
syntax, and then into natural language, using a template-based method [3]. In order to
validate the quality of the generated instructions, we conducted a preliminary human
study comparing our system’s generated instructions to human-generated ones. For
human directions, we asked a student who was very familiar with the building, but
not with our system, to generate instructions as if someone had asked him how to get
there.

Twenty five participants each traveled to four different locations on the GDC third
floor after receiving random combinations of human/robot-generated instructions. Af-
ter each trial, participants answered six questions, each on a 6-point semantic differ-
ential scale, each measuring one metric of the quality of the instructions. The metrics
were: understandability (“How easy was it to understand the instructions?”), mem-
orability (“How easy was it to remember the instructions?”), informativeness (“How
much information did the instructions provide?”), efficacy (“How easily did you ar-
rive at the destination?”), usefulness of landmarks (“How helpful were the landmarks
provided in the instructions?”), and naturalness (“How natural did the instructions
sound?”).

1 The BWI code is open source and can be found here: https://github.com/utexas-bwi.
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Our system was ranked within 0.75 points of the human generated instructions for
each metric, with no statistically significant differences found for understandability
(p=0.089) memorability (p=0.367) and informativeness (p=0.289). Most importantly,
we timed all participants through each trial and found no statistically significant dif-
ferences between human- versus robot-generated instructions, according to two-sample
t-tests. Thus, following the results of this preliminary system validation, we concluded
that our instruction generating module provides sufficiently effective instructions to
be used in the full MRHG system.

7 Experiments

Setup - To study the performance of this system, we chose a typical navigation
task facing a newcomer to the building. The path starts from the GDC entrance
hall and ends in front of an office on the third floor. We recruited 30 participants
with no prior knowledge of the building, (12 male, 18 female, ages 12-58), from the
UT Austin campus by fliers, email, and word of mouth. We conducted a two-condition
inter-participant study contrasting the MRHG condition to the Instructions condition,
defined as follows. The participants were divided into two groups. The first 15 were only
given instructions by the robot and had to follow those instructions to the best of their
abilities. The results from this group were used both as a benchmark for the full multi-
robot system, and as a means of tuning the parameters for the probability of people
going, based on the frequency of that occurrence in each region. These parameters were
later used by the MRHG optimization module to determine where to lead and where
to instruct. The other 15 participants interacted with the full MRHG system which
utilized 3 robots to lead and instruct the humans to the goal. As another benchmark,
we timed a single robot as it navigated from the origin to the destination, averaged over
15 runs. This was done to simulate a Leading only guidance solution. A visualization of
the path can be seen in Figure 2 and a demo video of the BWIBots performing a MRHG
task with verbal instructions can be viewed here https://youtu.be/5MSdMwfw6QI.
Results - We collected data on the time it took participants to complete each section
of the path, if and where they went wrong, and had them fill out a short survey on
their impression of the interaction. The time it took to wait and go up the elevator
was deducted from all the trials.

Five participants in the instructions-only case got lost and never made it to the
destination, whereas all of the MRHG participants made it to the goal, a large dif-
ference in success rate of 66% vs. 100%. The participants who went wrong could not
remember the entire sequence of instructions, and at some point they got lost and
took a wrong turn.

In terms of timing, the Leading condition was the slowest with an average of 206
seconds. Next was the Instructions condition with 164 seconds on average. The fastest
was the MRHG condition with 156 seconds on average. The difference in timing be-
tween the Instructions (164s) and the MRHG (156s) condition was not statistically
significant (p=0.254). However, this does not account for the fact that 5 Instructions
participants failed to reach the destination: we stopped timing their runs once they
gave up. Note that this does not contrast our assumption that humans eventually reach
the destination since we did not allow participants to ask for additional instructions.



8 Harel Yedidsion et al.

Atrium

3rd Floor

Robot2

Human

Robot1

Robot3

Elevator

Elevator

Fig. 2. In this example, a human approaches a robot in the atrium and asks for guidance to
an office on the 3rd floor, marked with a star. The robot calculates a plan to optimally guide
the human using two other robots through 10 regions. Solid lines represent Lead and dashed
lines represent Instruct regions. Regions are colored uniquely.

To account for this effect, we add a penalty by assigning them the average time for
the participants who got lost but kept looking and eventually reached the destination.
For the adjusted Instructions + Penalty case we get an average of 183 seconds which
is statistically significantly different from the MRHG condition *(p=0.026) for a two
sample t-test. The Leading condition took 206 seconds on average and is statistically
significantly difference from MRHG **(p=0.003).2 A bar chart of the results is shown
in Figure 3.

Participants responded to a post-interaction survey of their reactions to the inter-
action. The questions on the survey were chosen specifically to measure the utility of
the robots in this task as well as users’ enjoyment of the interaction. Questions were
posed on a 5-point scale. The survey results were somewhat inconclusive. On the one
hand, the MRHG participants ranked the robots as more friendly (p=0.064), useful
(p=0.329), helpful **(p=0.003) and intelligent (p=0.085). They also ranked the inter-
action to feel more natural (p=0.06) than the Instructions participants ranked their
interaction. On the other hand, they ranked the interaction to feel longer (p=0.054),
and the instructions harder to remember **(p=0.000), follow **(p=0.000), and un-
derstand **(p=0.004) compared to the ranking provided by the Instructions partici-
pants. This result is surprising considering that 100% of the Instructions participants
requested that the robot repeat the instructions and a third of them didn’t make it

2 We mark by * the paired measures for which there is significance at p ≤ 0.05 and ** for
measures at p ≤ 0.01.
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Fig. 3. Comparison of the average time for each guidance method. Error bars represent one
standard deviation above and below the average.

to the destination. We emphasize that no participant witnessed both the cases, and
conclude that more testing should be conducted to establish the perceived ease-of-use
of the system. The survey results can be seen in Figure 4.
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How helpful were
the robots?

How natural was
the interaction?

How useful were
the robots?

How friendly were
the robots?
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the robots seem?

Survey Results

Instructions MRHG

Fig. 4. Survey results of MRHG and Instructions participants.

8 Conclusions

In this study we developed a system for guiding humans in indoor environments that in-
tegrates multi-robot coordination with natural-language instruction generation, which,
to the best of our knowledge, is the first system to do so. The system optimizes the
guidance process by choosing the robots’ locations, the regions through which they lead
and the regions through which they instruct, in order to minimize the human’s travel
time. The instruction-generation module uses the robots’ navigational path planner
coupled with a landmark annotated map to generate natural language instructions.

The full MRHG system was tested on human participants and performed better
than the Instructions benchmark in terms of both success rate and time to destination.
It also outperformed the Leading benchmark in terms of time to destination.

This project showed, for the first time, that using natural language generation
is beneficial in multi-robot human guidance systems. In this study we focused on
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generating natural language instructions based on the robots’ planned path which is
the shortest path in terms of distance, but might not be the shortest path to guide a
human through as there might be a longer path that is easier to guide through. Future
work might consider extending this study by optimizing over all possible paths.
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