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Abstract. This paper considers the problem of recognizing spontaneous
human activities from a robot’s perspective. We present a novel dataset,
where data is collected by an autonomous mobile robot moving around
in a building and recording the activities of people in the surroundings.
Activities are not specified beforehand and humans are not prompted to
perform them in any way. Instead, labels are determined on the basis
of the recorded spontaneous activities. The classification of such activi-
ties presents a number of challenges, as the robot’s movement affects its
perceptions. To address it, we propose a combined descriptor that, along
with visual features, integrates information related to the robot’s actions.
We show experimentally that such information is important for classify-
ing natural activities with high accuracy. Along with initial results for
future benchmarking, we also provide an analysis of the usefulness and
importance of the various features for the activity recognition task.

1 Introduction

Robots are becoming increasingly sophisticated, and are bound to become per-
vasive in humans’ every-day lives. To effectively collaborate with humans, it
is useful for a robot to understand their activities and intentions automatically.
This understanding is especially important in human-robot interaction scenarios:
if the robot can properly interpret the behavior of humans, its communication
with them will be facilitated. For example, in our scenario, a robot moves in a
building monitoring the environment. If it could recognize when a person needs
help, or whether someone wants to talk to it to ask for directions, or if it is being
ignored, its social skills would improve dramatically.

Most existing datasets available to assess activity recognition methods are
recorded from a still camera, and they comprise surveillance [10] or sports videos
[13]. Others are composed of cinema movies or Youtube videos [9]. Yet others
are recorded by asking the participants to perform specific activities [8]. None of
these datasets perfectly reflect the types of human activities a robot is likely to
perceive when interacting with people. In this work, we present a dataset taken
from a robot’s perspective, where the camera moves according to the robot’s
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movements, and the activities are performed spontaneously by humans, often in
relation to the presence or behavior of the robot. A few datasets do exist that
have been recorded from a robot’s perspective [17, 14, 3], even though the robots
they used were not fully autonomous. Such datasets were collected by asking
participants to perform specific actions. This lack of spontaneity may lead to a
low recognition rate when the same activities are executed by people who are
not asked to perform them. Besides, there is no guarantee that the chosen staged
actions are those that people would naturally perform in front of a robot.

In contrast, our dataset was collected by a mobile robot, able to localize itself
and navigate autonomously, moving in a populated environment, and recording
people’s actions. During the dataset collection, the robot moved autonomously,
so that the behavior of the humans was not influenced by any external presence.
The recorded data was then analyzed, and the action categories were determined
by the activities spontaneously executed by the subjects. This dataset presents
some unique characteristics: 1) There can be multiple people in the scene at
the same time, each doing something different; 2) There may be occlusions;
3) Actions are performed at different scales and with different body orientations;
4) The robot moves continuously, therefore, there is ego-motion in the scene;
5) Some actions occur more often, while others are very rare, thus the data is
highly unbalanced. As we show empirically in the experimental section, these
characteristics make learning from our dataset very challenging. To the best of
our knowledge, this is the first dataset recorded in such a spontaneous manner.

In this paper, the new dataset is exploited to tackle a human activity recog-
nition task, even though it can be useful for different learning tasks as well.
Unlike the previous action recognition methods, which limited their analysis
to visual descriptors, we also explore features that are directly related to the
robot’s behaviors and movements, which, in this particular setting, influence its
perceptions.

Our contribution is twofold. First, we present a new problem and make pub-
licly available a novel challenging dataset recorded ‘in the wild’ from a robot’s
perspective. Second, we use this dataset to tackle an activity learning task. We
provide results obtained using several state-of-the-art descriptors for the pur-
pose of future benchmarking. We also present an analysis of the usefulness and
importance of the various features for this specific task. In particular, we show
that, in this setting, exploiting data associated with the robot’s point of view
consistently improves the results obtained when using only visual features.

2 Related Work

Since the early ‘90s, the computer vision research community has produced a
plethora of methods for recognizing human activities (see [1] for a review). In
most early approaches the video stream is captured by one or more stationary
cameras, e.g., [2]. Methods have also been proposed for human activity recogni-
tion in movies [9], where the camera is not always stationary. In some studies,
the camera is attached to a person and data is collected as the person performs



a variety of activities, e.g., playing a sport [7], or interacting with others [5].
The primary focus of this past research has been on developing efficient and in-
formative features that enable activity recognition using off-the-shelf supervised
machine learning algorithms.

Most relevant to this paper are studies in which video streams were captured
by a robot. Such studies are relatively new and include the works of [15, 17, 14,
3]. For example, [17] describes an experiment in which 8 participants are asked
to perform 9 activities in front of a teleoperated robot. The data is subsequently
used for the development of an activity classification system. Similarly, in [14],
8 participants are asked to perform up to 7 activities in front of a teddy-bear
equipped with a camera and mounted on a rolling chair. In [3], the researchers
include a larger number of activities (18) performed by 5 participants.

Most robot-centric human activity recognition methods, including the ones
described above, are subject to several limitations: 1) The activities are pre-
specified by the experimenters; 2) The activities are performed by a relatively
small number of people (typically 5-8) who are recruited to participate to the
dataset collection; 3) The robot is typically either stationary or teleoperated.
The present study overcomes these limitations in several significant ways. Our
robot uses its autonomous navigation capability in a large and dynamic human-
inhabited environment, as opposed to a structured laboratory environment. This
results in much more realistic, but also more challenging, video streams. Also,
the activities in our study were spontaneously performed by a large number of
people who interacted with the robot, as opposed to the standard methodology
of asking participants to perform certain actions.

3 Dataset

The robot used to record the dataset is shown in Fig. 1. It was built on top of
the Segway Robotic Mobility Platform with an added caster wheel to keep the
robot level to the ground. The robot’s sensors include a Hokuyo URG-04LX laser
rangefinder, used for mapping and localization, and a Kinect RGB-D (version
1.0) camera, used for obstacle avoidance. For this specific experiment, the robot
was also equipped with the newer Kinect 2.0 RGB-D camera, which was used for
visual person detection and tracking. The robot uses a hierarchical task-planning
software architecture [18] based on the Robot Operating System [12].

The robot collected data by autonomously patrolling through an undergrad-
uate and a graduate student lab which were connected by a doorway. To collect
the dataset, the robot traversed the environment for 1-2 hours per day, for 6
days. Over the course of the experiment, the robot travelled a total of 14.037
km. As soon as the Kinect 2.0 detected a person, our program started recording
all the information described in the next paragraph and summarized in Table 1.
Many people just ignored the robot or passed by it. Others engaged in various
interactions such as blocking it, waving at it, or taking a picture of it. At the
end, we labeled the actions into a number of categories that we observed at least
6 times in the recorded videos. The labeling was carried out by two authors of



Fig. 1: An overview of our system. Descriptors on visual (VIS), velocity (VEL) and
distance (DIS) information are extracted, quantized, concatenated and finally fed to

the classifier.

this paper; therefore, it is subjective, prone to errors or different interpretations.
The resulting activity categories are: approach, block, pass by, take picture, side

pass, sit, stand, walk away, wave. There were several more, e.g., three persons
approached the robot and pretended to punch it, or started to dance in front
of it, but they were too rare and were not included in our subsequent analysis.
Notably, the Kinect performance in tracking is not perfect, especially when the
robot moves continuously. It may happen, for instance, that a wall, or a chair,
or a column is recognized as a person. These samples are gathered in the class
false, which is used in the classification procedure as well. In total, there are 10
class labels and 1204 selected samples. We plan, however, to record several more
hours of activities in the future and expand the released dataset as more data
becomes available.

For each video we provide RGB images (3-channel images of dimension 512×
424), depth images (16-bits, 1-channel images of dimension 512× 424), and the
position of the skeletal joints for each person, in 3D and on the image. Some
images extracted from our dataset can be observed in Fig. 2. Each video segment
is also annotated with the robot’s position and orientation in the map, estimated
using Monte-Carlo Localization as implemented in ROS, and the robot’s raw
odometry information, computed by the Segway RMP ROS driver. Each video
has been annotated with an activity label, assigned as described in the previous
paragraph. This feature set constitutes the first main contribution of this paper,
and we intend for it to be useful to the community. While our analysis focuses
on human activity recognition, the dataset can be used for other tasks as well.



Table 1: Raw features provided in the newly collected dataset.

Features Dimension Range Sampling Rate (Hz)

RGB images 512×424×3 {0,255} 50
Depth images 512×424 {0,65535} 50

3D Joints 21x3 R 50
2D Joints 21x2 {0,512}×{0,424} 50

Robot’s pose on the map 7 R 1.5
Robot’s odometry 7 R 100

Activity label 1 {1,10} –

4 Activity Recognition

We use the newly collected dataset to carry out an activity recognition experi-
ment. In this setting, the task of the robot is to annotate a video with the correct
activity label. The raw recorded data was too highly dimensional to be used as
direct input to a classifier. Hence, we manipulated the raw sensory data to ob-
tain higher-level feature descriptors. In particular, this section describes what
descriptors have been extracted, and how they have been quantized, so that each
video is represented by a single vector. Our main proposition is to concatenate
robot-centric descriptors – i.e. descriptors related to the robot’s perspective –
with visual features, as we hypothesize that they will improve the performance
of the classifier. Figure 1 shows an overview of the recognition system.

Visual Features : We extract five different visual descriptors and we compare
them in the experimental evaluation section. The first one has been proposed
in [16], and builds a histogram of the joints in 3D (HOJ3D). The second one
has been presented in [6], and computes the covariance of the joint positions
over time (COV). The third one has been described in [3], and generates His-
tograms of Direction Vectors (HODV). The fourth one is based on raw depth
images and has been published in [11] (HON4D). Finally, we rely on a simple
descriptor that builds a matrix of pairwise relations between joints. We will
refer to it as the Pairwise Relation Matrix (PRM). The intuition behind this
descriptor is that, while absolute joint positions are not translation invariant,
their relations are independent from the absolute position of the person. At the
same time, they provide a good representation of the skeleton configuration. Let
J = (j1(t), j2(t), . . . , jm(t)) be the set of 3D joints tracked by the Kinect at time
t. We build a m × m matrix R(t) for each frame t, where m is the number of
joints. Each element of R(t) is equal to

R(t)i,k = ||ji(t)− jk(t)||. (1)

Since the resulting matrix is symmetric, we use only the values under the diag-

onal, therefore the final descriptor belongs to R

m(m− 1)

2 .



Human-Robot Velocity Features : The movements of a person as perceived
by the robot are different from his or her movements with respect to an absolute
point of view. For example, consider the motion of a person walking away from
the robot. We hypothesize that the robot’s perception of this movement will
depend on how the robot itself is moving. If the robot is still, it will perceive
the walk away movement as it is, but if it is moving towards the person at high
speed, it may perceive the person as approaching it. To avoid this ambiguity,
we need to know how the human is moving with respect to the robot using an
absolute point of reference. Let pr

h
(t) ∈ R

3 be the position of the human with
respect to the robot at time t, as perceived from the Kinect sensor. Then, let
pm
r (t) ∈ R

3 be the position of the robot with respect to its starting point at time
t, and Rm

r
(t) ∈ R

3×3 be the rotation matrix describing the orientation of the
robot with respect to the starting point. It is possible to compute the position
pm

h
(t) of the human with respect to the starting point at time t as follows:

[

pm

h
(t) 1

]

=

[

Rm
r
(t) pm

r
(t)

T

0 1

] [

pr

h
(t)

T

1

]

. (2)

At this point, we compute the velocity vector between pairs of successive frames
as follows:

xd(t) =
pm

h
(t+ 1)− pm

h
(t)

||pm

h
(t+ 1)− pm

h
(t)||

. (3)

This quantity represents the real direction in which the human moves with re-
spect to the robot. Since we do not need the last coordinate, which is always 0
(the robot and the person move on a plane), xd(t) ∈ R

2.

Human-Robot Distance Features : Different activities present similar visual
and motion properties, but may be distinguished on the basis of where the person
is with respect to the robot. For instance, some humans tried to block the robot
standing in front of it; their pose, however, is very similar to the pose of those
persons that ignore the robot and stand at a certain distance from it. Therefore,
we incorporate the distance between the human and the robot retrieved from
the Kinect sensor for each frame, taking the hip joint as the point of reference.
The human-robot distance descriptor belongs to R.

Feature Quantization : The feature vectors that have been extracted for
each frame (or from each pair of successive frames, in case of the Human-Robot
Velocity feature vector) are quantized using k-means and represented using Bag
Of Words (BOW), so that they generate a single feature vector for each video. A
different dictionary is built for each descriptor. We then concatenate the feature
vectors in a single vector, obtaining the final descriptor for each video, which
belongs to R

∑
n

s=1
ks , where ks is the size of the dictionary for the s-th descriptor.



Table 2: Comparison among different features and their combination

Method
Visual
only

Visual +
HR Velocity +
HR Distance

Visual +
HR Velocity +
HR Distance +

Robot Pose

COV [6] 0.3287 0.4397 0.4642
HOJ3D [16] 0.5135 0.6327 0.6507
HODV [3] 0.6242 0.6493 0.6605

PRM 0.5474 0.6597 0.6716
HON4D [11] 0.7558 0.7629 0.7642

5 Experimental Results

This section presents a comprehensive evaluation of feature descriptors and their
combinations on our dataset for the activity recognition task. We present results
using non-linear SVM with χ2 kernel, since other kernels (e.g., linear, Gaussian,
polynomial and intersection) and other classifiers (e.g., Naive Bayes, Random
Forests) achieved comparable or worse results. We perform a stratified 6-fold
cross validation, and we repeat the procedure 10 times, to take into account the
randomness of the dictionary learning stage. As we anticipated, the dataset is
very unbalanced with respect to the activity labels (i.e., some activities are much
more frequent than others), thus the recognition accuracy is not a good mea-
sure to judge classification performance. Instead, we report the Cohen’s kappa
coefficient [4], which compares the classifier accuracy against chance accuracy:

K =
Pr(a)− Pr(e)

1− Pr(e)
, (4)

where Pr(a) is the probability of correct classification by the classifier, and Pr(e)
is the probability of correct classification by chance.

Visual Features Comparison We assessed the 5 visual descriptors listed in
Sec. 4, and we used default parameters to compute all of them. The descriptors
reported in [11], [6] and [3] do not need a dictionary learning stage as they already
represent the entire video; they belong to R

22680, R1953 and R
567 respectively.

For the other two (PRM and HOJ3D [16]), we set the number of dictionary
atoms to 300. The second column of Table 2 reports the results achieved by
the different visual descriptors. Notably, the only depth-based descriptor that
we have tested, HON4D [11], gets the highest kappa coefficient. In this specific
case, where the Kinect is moving continuously, the joint estimation procedure
is probably not as reliable as in situations where the Kinect is stable, while the
depth images are probably not as affected by the robot’s movements as the joint
estimation algorithm. Hence, this result may be due to the fact that HON4D is
computed on the raw depth images, and does not use joints at all.



Table 3: Precision, Recall and F-1 score of each activity class

Activity Num HON4D PRM
Samples Precision Recall F-1 Precision Recall F-1

Picture 6 – 0 – – 0 –
Wave 12 – 0 – – 0 –
False 608 0.8845 0.9645 0.9227 0.8322 0.9378 0.8818
Block 23 0.7273 0.3130 0.4377 0.5167 0.1348 0.2138
Pass by 153 0.7993 0.8641 0.8304 0.7318 0.8510 0.7869
Walk away 68 0.9394 0.8662 0.9013 0.8652 0.8588 0.8620
Approach 33 0.5970 0.3636 0.4520 0.4817 0.2394 0.3198
Sit 150 0.8483 0.8273 0.8377 0.8196 0.7480 0.7822
Stand 106 0.6433 0.6840 0.6630 0.4875 0.4425 0.4639
Side pass 45 0.7817 0.3978 0.5272 0.6036 0.2267 0.3296

Results with Robot-Centric Descriptors We hypothesize that, in this set-
ting, robot-centric descriptors are useful to improve the performance of visual
descriptors. To evaluate this hypothesis, we concatenate the robot-centric de-
scriptors described in Sec. 4 with visual features. Table 2 reports the results ob-
tained by this concatenation in the third column: when robot-centric descriptors
are concatenated with visual features, the kappa statistics improves consistently.
The fourth column of Table 2 shows the classification rate as the robot’s pose in
the map is concatenated with the distance and velocity robot-centric features.
Notably, making use of the robot’s position increases the kappa rate even fur-
ther. This may be because some activities are more likely to occur in certain
regions of the map than at other locations.

Finally, Table 3 provides precision, recall and F1-score of each class using the
two best combination of descriptors (HON4D + robot-centric descriptors, and
PRM + robot-centric descriptors). Even though HON4D performs significantly
better than PRM, it is unable to correctly classify the activities picture and wave,
for which we get 0 true positives and 0 false positives, therefore the symbol ”–”
in the table. This is probably due to the fact that those are the classes with
the smallest number of examples (6 and 12 respectively). For the same reason,
the precision and recall on the actions with many samples are relatively high,
while those on the actions with a few samples are low. This suggests that if the
dataset was more balanced, the results would be more homogeneous. However,
the fact that the dataset is unbalanced is one of the natural effects derived from
recording activities in the wild. Therefore, learning activities when the number
of samples per class differs a lot is one of the challenges of our dataset.

6 Conclusion

This paper considers a new, realistic problem in the field of robot-centric activity
recognition: classifying spontaneous activities from a mobile robot’s perspective.
Unlike previous works, activities are not specified beforehand, and humans are



Fig. 2: Examples extracted from our newly recorded dataset. Top: shots of stationary
activities. Bottom: action pass by. The robot moves forward and then turns.

not asked to perform them. Instead, an autonomous, mobile robot moved around
in a building full of people, and recorded their spontaneous behaviors. The robot
was left to act alone, therefore the persons who encountered it were not influ-
enced by our presence. All the recorded data was successively analyzed, and the
activity classes were determined from the observed videos. To the best of our
knowledge, there is no dataset in the literature like the one we are proposing. We
plan to release it upon publication, as we expect it to be useful to the commu-
nity. To obtain satisfactory results on this data, visual features were concatenated
with supplementary information directly related to the robot’s movements. We
showed experimentally that these descriptors consistently improve the results
obtained using only visual features. We plan to use the new dataset as a plat-
form to test various learning tasks, different learning algorithms, and multiple
combinations of features.

Future work includes using the activity recognition system for ‘activity-
aware’ navigation. For instance, when the robot recognizes that someone is tak-
ing a picture of it, it stops and waits until the activity is finished. We also plan
to use multiple labels, since sometimes a certain action cannot be described
by a single one. Finally, an important future direction is analyzing ‘two-way’
interactions, during which the robot reacts back to the human.
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