
Machine Learning for On-Line Hardware Reconfiguration

Keywords: Adaptive systems, Autonomous agents, Applications

Abstract

As computer systems continue to increase in com-
plexity, the need for AI-based solutions is becom-
ing more urgent. For example, high-end servers
that can be partitioned into logical subsystems and
repartitioned on the fly are now becoming avail-
able. This development raises the possibility of re-
configuring distributed systems online to optimize
for dynamically changing workloads. However it
also introduces the need to decide when and how
to reconfigure. This paper presents one approach
to solving this online reconfiguration problem. In
particular, we learn to identify, from only low-level
system statistics, which of a set of possible config-
urations will lead to better performance under the
current unknown workload. This approach requires
no instrumentation of the system’s middleware or
operating systems. We introduce an agent that is
able to learn this model and use it to switch config-
urations online as the workload varies. Our agent
is fully implemented and tested on a publicly avail-
able multi-machine, multi-process distributed sys-
tem (the online transaction processing benchmark
TPC-W). We demonstrate that our adaptive con-
figuration is able to outperform any single fixed
configuration in the set over a variety of work-
loads, including gradual changes and abrupt work-
load spikes.

1 Introduction
Recent advances in hardware development have made adap-
tive hardware reconfiguration possible. For example, proces-
sors and/or memory may be dynamically added to or removed
from a running system[Quinteroet al., 2004]. This capabil-
ity adds more flexibility to systems operation but raises the
challenge of determiningwhen andhow to reconfigure. This
paper establishes that automated adaptive hardware reconfig-
uration can significantly improve overall system performance
when workloads vary.

In previous research[Withheld, 2005], we established that
there is apotential to improve system performance by recon-
figuring CPU and memory resources in a benchmark transac-
tion processing system. In particular, we demonstrated that

no single configuration is best for all workloads and intro-
duced an approach tolearning which configuration is most
effective for the current workload based on low-level system
statistics. Although this work established that on-line recon-
figuration should, in principle, improve performance, to the
best of our knowledge it has not yet been established that on-
line hardware reconfiguration actually produces a significant
improvement in overall performance in practice.

This paper uses a learned model to establish just that.
Specifically, we train a robust learned model of the predicted
performance of different hardware configuations, and then
use this model to guide an online agent to perform reconfigu-
rations. We show that this agent is able to make a significant
improvement in performance when tested with a variety of
workloads, as compared to static configurations.

Additionally, a framework is described that allows for gen-
eral testing of adaptive agents. Our system allows for on-
the-fly reconfiguration, driven by a generic agent. Two in-
stantiations of this agent are implemented: the learning agent
described above and an omniscient agent used to modify the
configuration at the optimal time so as to provide the perfor-
mance limit for any adaptive agent implementation.

The remainder of this paper is organized as follows. The
next section gives an overview of our experimental testbed.
Section 3 details our methodology in handling unexpected
workload changes, including the training of our agent (Sec-
tion 3.1) and the experiments used to test the agent (Sec-
tion 3.2). Section 4 contains the results of our experiments
and some discussion of their implications. Section 5 gives an
overview of related work, and Section 6 concludes.

2 Experimental Testbed and System Overview
Large servers are now available that can be partitioned into
one or more logical subsystems[Quinteroet al., 2004]. Each
of these logical systems has some amount of memory and
processors available to it, enabling it to operate as if it were
an independent physical machine. By allowing each logical
subsystem to run its own instance of the operating system,
they are prevented from interfering with each other through
resource contention.

Furthermore, these servers can be flexibly configured to al-
locate different amounts of memory and processing resources
to the logical subsystems. Hardware is also available that al-
lows a single physical system to partition itself into one or

more logical systems at a sub-processor level; that is, where a
logical system may only be permitted to use as little as110 of
a processor on the physical hosting system[Quinteroet al.,
2004].

Because reconfigurable hardware is not (yet)easily avail-
able, the research reported in this paper simulates reconfigu-
ration of logical subsystems on multiple desktop computers.
The remainder of this section gives a high-level overview of
the testbed setup. A brief description of the TPC-W bench-
mark and a discussion of some modified specifications in our
testbed can be found in Section 2.1. The software packages
we use are given in Section 2.2. The hardware and simula-
tion of sub-processor partitioning and reconfiguration areex-
plained in Section 2.3. Finally, an overview of the implemen-
tation of the tuning agent is presented in Section 2.4. Further
testbed and system details can be found in[Withheld, 2006].

2.1 TPC-W
The TPC-W Benchmark is a standardized benchmark put out
by the Transaction Processing Performance Council.1 It is
designed to determine the relative performance of a System
Under Test (SUT) when used to run an online bookstore. The
benchmark operates by having an external machine or set of
machines, the Remote Browser Emulators (RBEs), run a set
of Emulated Browsers (EBs). These browsers represent indi-
vidual customers of an online bookstore. The customers may
browse through the store, view products, perform searches,
and sometimes place orders.

There are a total of 14 dynamically generated web pages
that can be retrieved. These pages are divided into six brows-
ing pages and eight ordering pages. The probability of a cus-
tomer moving from a given page to any other page is well de-
fined by the specification, and each page has its own response
time requirement. There are three defined workloads, called
mixes: theshopping mix, thebrowsing mix, and theordering
mix. The differences between these mixes is summarized in
Table 1.

Mix
Browsing Shopping Ordering

Browsing pages 95% 80 50
Ordering pages 5% 20 50

Table 1: Expected access percentages of different pages for
the TPC-W mixes, specified by[Garcia and Garcia, 2003].

A single run of the benchmark consists of a ramp-up pe-
riod, followed by a measurement interval. Results are usually
summaries with a single measure of throughput—Web Inter-
actions per Second (WIPS). WIPS are the average number of
page requests that return in a second during the measurement
interval.

Commercially built and tested systems that publish perfor-
mance results often have large numbers of machines in com-
plex setups. For simplicity, this work considers the situation
where there is one database server (back-end) and one web

1TPC-W has recently been replaced by TPC-App, previously
known as TPC-W version 2.

RBE

Database
Server

Back−end

Tuning Agent

Application
Server

Server
Image

Front−end

EB

EB

EB

Figure 1: The 3 machines used in the physical setup.

server (front-end), as illustrated in Figure 1. Although our
system produces WIPS numbers, reported in Section 4 that
are significantly less than on such a commercial system (due
largely to the corresponding difference in processing power
and memory), they are not out of the ordinary for experimen-
tal systems.

The TPC-W specification places some strict restrictions on
various facets of the system. One example is that most pages
contain a set of random promotional items displayed at the
top; these items are expected to be randomly selected each
time the page is generated. We relax this requirement: in our
implementation, a set of items is cached for 30 seconds and
reused for all pages desiring these promotional items during
that time period.

Some other specifications that are modified are:� Relationship between the number of EBs and the re-
ported WIPS: We run substantially more EBs than per-
mitted with the intention of overloading the system.� Initial population of the database: We use a small initial
dataset to introduce contention in the database.� Web Interaction Response Time (WIRT) constraints
are ignored: Because we are attempting to maximize
throughput, we do not want to ignore results that violate
the constraints; ongoing work uses this as a secondary
metric.

The primary reason these specifications are modified is that
our intention is to overwhelm the system, whereas the TPC-
W specifications are explicitly designed to prevent this from
happening. Nonetheless, we use TPC-W because it is a con-
venient way of generating realistic workloads.

2.2 Software
A TPC-W implementation requires three software modules to
support the SUT and drive the benchmark: a database server,
an application server, and an image server. The implementa-
tion in this research uses PostGreSQL 8.0.4 as the database
server. The front-end uses Apache Jakarta Tomcat 5.5.12 as
a combined application server and image server. The Java
code run by the application server to generate the web pages
(and interface with the database) is derived from the code
freely available from the University of Wisconsin PHARM
project [Cain et al., 2001]. This code implements both the
servlets and a Java RBE, which is used to run the benchmark.
Slight modifications are necessary to work with Tomcat and

PostGreSQL. The servlets are modified to make use of lim-
ited caching of data and to use a limited number of connec-
tions to the database. The number of connections is controlled
by a Java semaphore. Because this semaphore is sometimes
in heavy demand on the system, the option to force fairness
is enabled. Finally, a new administrative servlet is imple-
mented whose sole function is to change this semaphore to
allow more or fewer connections to the database. The number
of connections to the database is one reconfigurable option on
the system.

Additionally, two modifications are made to the RBE. First,
inabilities to connect to the front-end and connection timeouts
are retried, rather than being treated as a fatal error. Also,
the EB generation code is modified to support a combination
of EBs running different mixes and to allow the workload to
change during the measurement interval.

2.3 Hardware

The physical setup of the system uses 3 identical Dell Preci-
sion 360n machines. Each machine has a 2.8 GHz processor
and 2 GB RAM. The machines are networked using built-
in gigabit ethernet interfaces and a gigabit ethernet switch.
As illustrated in Figure 1, one machine acts as the back-end
database machine, one machine is the front-end web server,
and one machine drives the benchmark by hosting the RBE.
Additionally, this machine hosting the RBE also runs the tun-
ing agent. In a true reconfigurable system, this agent would
likely run on an independent system.

Though these computers are physically distinct in prac-
tice, they are meant to represent logical partitions of a sin-
gle reconfigurable computer with a total of 2.8 GHz process-
ing power and 2 GB RAM. To simulate partitioning of one
such machine into a front-end and back-end machine, CPU
power is artificially constrained using a highly favored, pe-
riodic busy-loop process. Similarly, memory is constrained
through a process using the Linuxmlock() subroutine. Con-
straints are specified such that, overall, one full 2.8 GHz pro-
cessor and 2GB of RAM are available for use by the front-end
and back-end combined. For example, when the front-end is
allowed to use 1.8 GHz, the back-end has 1.0 GHz available.

By using both of these constraining processes simultane-
ously, simulation of any desired hardware configuration is
possible. Additionally, the processes are designed to change
the system constraints on the fly, so we can simulate recon-
figuring the system. In order to ensure that we never exceed
the total combined system resources, we must constrain the
“partition” that will be losing resources before granting those
resources to the other “partition.”

2.4 The tuning agent

The tuning agent handles real-time reconfiguration. There are
three phases to the reconfiguration. First, the number of al-
lowed database connections is modified, if specified. Once
this completes, any CPU resources being moved are con-
strained on the machine losing CPU and added to the other;
then memory is removed from the donor system and added to
the receiving system. Each step completes before the next is
begun.

While true reconfigurable systems often have a dedicated
connection of some sort (parallel, serial, dedicated ethernet,
etc.) between the tuning agent and the system, ours is re-
stricted to communication over the shared ethernet. On a
heavily loaded system, this restriction can delay the recon-
figuration tasks significantly. To avoid this delay, the tuning
agent maintains a favored, persistent connection to each ma-
chine, so that reconfiguration can take precedence over the
database and web server.

There are two types of tuning agents we simulate. The first
is an omniscient agent, which is told both the configuration
to switch to and when the reconfiguration should occur based
on perfect knowledge. The omniscient agent is used to obtain
upper bound results when there is a known set of configura-
tions that will maximize the performance of the system, thus
allowing us to have a known maximum performance against
which to compare.

The second agent is one that makes its own decisions as to
when to alter the configuration. This decision can be based on
a set of hand-coded rules, a learned model, or any number of
other methods. The agent we discuss in this paper is based on
a learned model that uses low-level system statistics to predict
the better option of two configurations. This learned version
of the tuning agent is discussed in detail in Section 3.1

3 Handling Workload Changes
While provisioning resources in a system for a relatively pre-
dictable workload is a fairly common and well-understood
issue[Oslakeet al., 1999], these static configurations can
perform very poorly under a completely different workload.
For example, there is a common phenomenon known as the
“Slashdot effect”. In this situation, an established but often
little-known site is featured on a news site such as Slashdot.
This site is then inundated by users linking from the news ar-
ticle. We consider the situation where this site is an online
store with a set of loyal customers regularly ordering prod-
ucts. As such, it would be configured for that expected work-
load. The large number of users appearing, who often have
no intention of ordering any products, can overwhelm a site
that is not prepared for this unexpected change in workload.
We call this situation aworkload spike.

In addition to such drastic changes, the situation where the
workload gradually changes is also possible and must be han-
dled appropriately.

Unfortunately, in practice, the workload is often not an ob-
servable quantity to the system. It is possible to instrument
the system in various ways to help observe part or all of the
workload. For example, instrumentation could be added to
the middleware to indicate which web pages are being fetched
in real-time. The percentage of each page would be an indi-
cator of the workload. Alternately, the system could be mod-
ified to analyze the TCP/IP stream flowing between the two
systems, or between the webserver and the users. Statistics
output from this analyzer could form an interpretation of the
workload

However, previous work[Withheld, 2005] has shown that
low-level operating system statistics can be used instead to
help analyze the workload and suggest what configuration

should be used. These system statistics have the advantage
of not requiring any instrumentation to be added to the mid-
dleware. By using out-of-the-box versions of middleware, the
system allows for easy replacement of any part of the system
without the need for significant reimplementation. Low-level
statistics do not refer to workload features, and so might be
easier to generalize across workloads. For these reasons, we
use the low-level statistics in preference to customized instru-
mentation of either the operating system or the middleware.

3.1 Training the model for a learning agent
In order to automatically handle workload changes, we traina
model to predict a target configuration given system statistics
about overall resource use. To collect these statistics, each
machine runs thevmstat command and logs system statistics.
Because it is assumed that a true automatic reconfigurable
system would supply these statistics through a more efficient
kernel-level interface, this command is allowed to take prece-
dence over the CPU constraining process.

vmstat reports 16 statistics: 2 concerning process quantity,
4 concerning memory use, 2 swapping, 2 I/O, 4 CPU use,
system interrupts, and context switches. In order to make this
more configuration-independent, the memory statistics are
converted to percentages. The resulting vector of 32 statis-
tics (16 from each partition), as well as the current config-
uration of the system, comprise the input representation for
our trained model. The model then predicts which configura-
tion will result in higher throughput, and the agent framework
reconfigures the system accordingly.

For our experiments, we consider two possible system con-
figurations using 3 resources: CPU, memory, and number of
connections (Table 2). A wide range of possible CPU, mem-
ory, and connection limits were investigated, and the selected
configurations maximize the throughput for the extreme situ-
ations.

Database Webserver
Config. CPU Mem CPU Mem Conn.

browsing 1116 1.25 GB 516 0.75 GB 400
ordering 1316 0.75 GB 316 1.25 GB 1000

Table 2: Configurations used in the experiments

In order to acquire training data, a series of 100 pairs of var-
ied TPC-W runs are done. Each pair of runs uses a workload
that consists of 500 shopping users and a random number of
either browsing or ordering users (50 pairs each). The random
number ranges from 500 to 1000. The runs have 240 seconds
of ramp-up time, followed by 400 seconds during which the
WIPS are measured. During this measurement interval, 200
seconds ofvmstat data are also collected. Each pair of runs
consists of one run on each configuration.

From the combinations of WIPS on each run and the 200
seconds of system statistics, a set of training data points are
created in the following way. First, the WIPS from the two
runs are compared, and the configuration with the higher
throughput is determined to be the preferred configuration for
all data points generated from this pair. Then, each collection
of system statistics is divided into non-overlapping 30 second

intervals. Each interval is averaged to generate the system
statistics for one data point. In this way, each of the 100 pairs
of runs generates 12 data points. This training data is more
representative of real world data than we had previously in-
vestigated; our previous work used only a fixed set of known
workloads for training and testing.

Given training data, the WEKA[Witten and Frank, 2000]
package implements many machine learning algorithms that
can build models which can then be used for prediction. In
order to obtain human-understandable output, the JRip[Co-
hen, 1995] rule learner is applied to the training data. For the
generated data, JRip learned the rules shown in Figure 2.

As can be seen in Figure 2, JRip determines a complex rule
set that can be used to identify the optimal configuration for
unobserved workload. Of 32 system statistics supplied total,
it determined that there were 8 of importance in making de-
cisions. These 8 are evenly split over the front- and back-end
machines; however, we can see that all of the front-end statis-
tics are either related to where execution time is being used
and how well memory is being used. The back end statistics,
cover not only those two categories, but also cover context
switches and device I/O. We also note that the rules specify
a means of identifying one configuration over the other; the
browsing-intensive configuration is taken as the “default.”.

If we look at the rules in some more depth, we can identify
certain patterns that indicate that the rules are logical. For
example, rules 1 and 3 both set a threshold on the amount of
time spent by the database waiting for I/O, while rule 5 indi-
cates that a large percentage of the memory on the database is
in use. All three of these indicators point to a situation where
more memory could be useful (as in the database-intensive
configuration). When memory is constrained, the database
files will be paged out more frequently, so more time will be
spent waiting on those pages to be read back in. Other trends
are discussed in[Withheld, 2006].

One important facet of the rules learned is that they are
domain-specific; although these rules make sense for our dis-
tributed system, different rules would be necessary for a sys-
tem where, for example, both processes are CPU-heavy but
perform no I/O (such as a distributed mathematical system).
While we do not expect rules learned for one system to apply
to a completely different system, training a new set of rules
using the same methodology should have similar benefits. By
learning a model, we remove the need to explore the set of
possibly relevant features and their thresholds manually.

To verify our learned model, we first evaluate the perfor-
mance of JRip’s rules using stratified 10-fold cross valida-
tion. In order to prevent contamination of the results by hav-
ing samples from a single run appearing in both the training
and test sets, this was done by hand by partitioning the 100
training runs into 10 sets of 10 runs (each set having 120 data
points). The 10 trials each used a distinct partition as the test
set, while training on the remaining 9 partitions. In this test,
JRip correctly predicts the better target configuration 98.25%
of the time.

3.2 Evaluating the learned model
We present two types of workload changes: the gradual
change and the workload spike. We concentrate our evalu-

The ordering-biased configuration should be used ifany of the following conditions are met:

1. Thedatabasespends at least 6.96% of the execution timewaiting for I/O and thedatabaseexperiences over 509.38
context switchesper secondand theapplication serverhas at least 30.15% of itsmemory active

2. Theapplication serverspends less than 44.90% of the execution timein user space

3. Thedatabasespends at least 5.45% of the execution timewaiting for I/O and the databasereceives less than
2761.88blocks per second from devicesand theapplication serverhas at most 49.19% of itsmemory idle

4. Theapplication server spends at most 32.53% of the execution time inkernel spaceand theapplication server
has at most 40.94% of itsmemory idle

5. Thedatabasehas at least 82.76% of itsmemory active

Otherwise, the browsing-biased configuration should be used.

Figure 2: JRip rules learned by WEKA

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 u

se
rs

Time (s)

Browsing spike

Shopping

Browsing

Ordering

Browsing

Ordering Browsing

Ordering

(a) Workload spike

 0

 200

 400

 600

 800

 0 100 200 300 400 500 600 700 800

N
um

be
r

of
 u

se
rs

Time (s)

Gradual migration from browsing to ordering users

Browsing

Shopping

Ordering

(b) Gradual change work-
load

Figure 3: Examples of tested workloads

ation on the workload spike, as sudden changes in workload
are more necessary to adapt quickly to than a gradual change.

For simplicity, we describe only the simulation of a brows-
ing spike below. The base workload consists of 500 shopping
users with a random number (between 500 and 1000) of or-
dering users. This workload reaches the steady state (240
seconds of ramp-up time), and then there are 200 seconds
of measurement time. At that point, the workload abruptly
changes to a browsing intensive workload, with between 500
and 1000 users, spawning or terminating users as needed. The
spike continues for 400 seconds. After this time, the work-
load abruptly reverts to an ordering intensive workload, with
a newly generated random number of additional users. After
200 more seconds, the measurement interval ends. A diagram
of the browsing spike workload can be found in Figure 3(a).

We also simulate a gradual change. For this, we begin
with a workload that consists of 500 shopping users and 800
browsing users. After 240 seconds of ramp-up time and 200
seconds of measurement time, the workload begins changing
through a step method. Users are converted to the ordering
mix in quarters, allowing 100 seconds of time between each
switch. Finally, when all the users are in the ordering mix,
we allow them to run for 300 more seconds of measurement
time. A diagram of the workload can be found in Figure 3(b).

Each workload is tested under 4 hardware configurations.
As baselines, both static configurations execute the workload.
Additionally, because we know when the spike takes place
and when it ends, we can test the optimal set of configura-

tions with the omniscient agent. For the gradual change, we
can see where each configuration is optimal and force the om-
niscient agent to reconfigure the system at that point. Finally,
the learning agent is allowed to completely control the con-
figuration based on its observations.

The agent continuously samples the partitions’ system
statistics and predicts the optimal configuration using a slid-
ing window of the most recent 30 seconds of system statis-
tics. If a configuration chance is determined to be beneficial,
it is made immediately. After each configuration change, the
agent sleeps for 30 seconds to allow the system statistics to
reflect the new configuration.

4 Results and Discussion

Evaluation of the learning agent is performed over 10 ran-
dom spike workloads. Of these workloads, half are browsing
spikes and half are ordering spikes. Each workload is run
15 times on each of the static configurations, as well as with
the learning agent making configuration decisions, and finally
with the omniscient agent forcing the optimal hardware con-
figuration. The average WIPS for each workload are com-
pared using a student’s t-test; all significances are with 95%
confidence, except where noted.

Overall, the learning agent does well, significantly outper-
forming at least one static configuration in all 10 trials, and
outperforming both static configurations in 7 of them. There
are only 2 situations where the adaptive agent does not have
the highest raw throughput, and in both case, the adaptive
agent is within 0.5 WIPS of the better static configuration.
The agent never loses significantly to either static configura-
tion. Average results can be found in Table 3

Configuration
Type of Spike adapt. browsing ordering omnisc.

average ordering 77.0 69.2 69.1 77.0
single ordering 74.6 69.0 68.2 75.9

average browsing 70.7 64.6 69.5 72.1
single browsing 72.7 65.3 69.3 73.3

Table 3: Results (in WIPS) of different configurations run-
ning different spike workloads

In addition to performing well as compared to static con-
figurations, the learning agent even approaches the accuracy
of the omniscient agent. In 4 of the 5 ordering spike tests, the
adaptive agent is no worse than 0.5 WIPS below the omni-
scient agent, actually showing a higher throughput in 2 tests2.
One typical example of the throughputs of each of the four
configurations on an ordering spike can be seen in Figure 4.

Figure 4: WIPS throughput for each of the configurations dur-
ing an ordering spike, averaged over 15 runs. The graph at
the bottom shows how many learning agents had chosen each
configuration at a given time; these choices are all averaged
in the “adaptive” graph.

In handling browsing spikes, the agent consistently ex-
ceeds the throughput of one static configuration and always
performs at least as well as the other static configuration. In 2
of the 5 tests, the agent actually wins significantly over both
configurations. However, the agent has more room for im-
provement than in the ordering spike tests; on average, the
learning agent is 1.3 WIPS below the omniscient agent.

In many of the trials, we see some sudden, anomalous
drops (at approximately 900 seconds in Figure 4). These
drops can sometimes confuse the agent. The cause of this
anomaly has been identified3; future work will eliminate this
slight confusion to the agent.

In addition to spikes of activity, we test gradual changes in
workload to verify that the agent is capable of handling grad-
ual changes. For this test, 800 browsing users become order-
ing users as detailed in Section 3.24. Over 20 runs, the aver-
age throughputs of the browsing- and ordering-intensive con-
figuration are 70.7 and 69.3 WIPS respectively. The learning
agent handles this gradual change gracefully, winning overall

2Presumably due to measurement noise.
3The database was not reanalyzed after population; as a result, all

administrative tasks took a very long time performing sorts, which
put a massive strain on the database

4We also performed the ordering-to-browsing test, but due tose-
vere under-performance of the browsing intensive configuration, the
“correct” configuration to choose was the ordering-intensive one.
Our agent chose that configuration almost all the time, resulting in a
throughput that was indistinguishable.

with an average throughput of 76.6 WIPS. However, there is
also room for improvement, as the omniscient agent, which
switches configurations when there are 400 users running
each of the browsing and ordering workloads, significantly
outperforms the learning agent with an average throughput of
79.1 WIPS.

This method for automatic online reconfiguration of hard-
ware has definite benefits over the use of a static hardware
configuration. Over a wide variety of tested workloads, it
is apparent that the adaptive agent is better than either static
configuration considered. While the agent has room for im-
provement to approach the omniscient agent, omniscience is
not a realistic goal. Additionally, based on the rule set learned
by the agent, it is apparent that the problem of deciding when
to alter the configuration does not have a trivial solution.

5 Related Work
The concept of adaptive performance tuning through hard-
ware reconfiguration has only recently become possible, so
few papers address it directly. Much of the work done in this
field thus far deals with maintaining a service level agree-
ment (SLA); while this work is similar (and certain relevant
examples are cited below), this is a fundamentally different
problem than that which we are investigating, where there is
no formal SLA against which to determine compliance. This
section reviews the most related work to that reported in this
paper.

Menascé et al.[2001] discuss self-tuning of run-time pa-
rameters using a model based approach; in this work, the
parameters concern the numbers of threads and connections
allowed to the webserver. The authors suggest that a simi-
lar method should be extensible to hardware tuning as well.
This requires constructing a detailed mathematical model of
the system; our work treats the system as a black box. Ad-
ditionally, this work uses the current workload as an input to
the performance model, whereas we treat the workload as an
unobservable quantity.

Karlsson and Covell[2005] propose a system for estimat-
ing a performance model while considering the system as a
black box using a Recursive Least-Squares Estimation ap-
proach, with the intention that this model can be used as part
of a self-tuning regulator. While this approach appears to
help meet an SLA goal (using latency as the metric), it does
not aim to maximize the performance; rather it tries to get as
close as possible to the SLA requirement without exceeding
it.

Urgaonkar et al.[2005] use a queuing model to assist in
provisioning a multi-tier Internet application. This approach
is fundamentally intended to handle multiple distinct servers
at each tier, whereas our approach is intended to have just one
server with a variable amount of processing power. Addition-
ally, this work assumes that there are unused machines avail-
able for later provisioning, while we assume that the system
is limited in resources in order to avoid overprovisioning.

Waldspurger[2002] investigated resource management as
pertains to memory allocations among virtual machines. He
identifies various ways in which memory use can be maxi-
mized, including reclaiming unused memory from some ma-

chines and sharing memory among machines. However, all
resource management is based on static rules and no effort is
made to learn or predict memory requirements.

Norris et al.[2004] address competition for resources in a
datacenter by allowing individual tasks to rent resources from
other applications with excess resources. This frames the per-
formance tuning problem as more of a competitive task; we
approach the problem as a co-operative task.

Mahabhashyam and Gautam[2004] discuss the issue of
providing Quality of Service (QoS) guarantees through dy-
namic resource allocation. Their work is primarily geared to-
ward situations where there are multiple classes of requests,
each with a separate QoS requirement. In contrast, we only
consider one class of requests (all users are equally impor-
tant).

6 Conclusion
The rapid development of reconfigurable servers indicates
that they will become more commonly used. These servers
run large, distributed applications. To get the most out of the
server, each application should receive only the hardware re-
sources necessary to run its current workload efficiently. We
demonstrate that agents can tailor hardware for workloads for
a given application.

This work’s main is the introduction of a method for au-
tomatic online reconfiguration of a system’s hardware. This
method shows significant improvement over a static alloca-
tion of resources. Although an agent is only trained for one
specific domain, the method is general and is applicable to a
large number of possible combinations of operating systems,
middleware, and workloads.

Our ongoing research agenda includes further work with
the learning agent to approach the optimal results, as well as
investigation on different workloads. We also want to learn
how to predict the benefit of a reconfiguration, both on our
simulated reconfigurable machines and eventually on true re-
configurable hardware.

References
[Cainet al., 2001] Harold W. Cain, Ravi Rajwar, Morris

Marden, and Mikko H. Lipasti. An architectural eval-
uation of Java TPC-W. InProceedings of the 7th In-
ternational Symposium on High-Performance Computer
Architecture, January 2001. Code available athttp:
//www.ece.wisc.edu/˜pharm/tpcw.shtml .

[Cohen, 1995] William W. Cohen. Fast effective rule induc-
tion. In Proceedings of the 12th International Conference
on Machine Learning (ICML-95), pages 115–123, 1995.

[Garcia and Garcia, 2003] Daniel F. Garcia and Javier Gar-
cia. TPC-W e-commerce benchmark evaluation.Com-
puter, 36(2):42–48, February 2003.

[Karlsson and Covell, 2005] Magnus Karlsson and Michele
Covell. Dynamic black-box performance model estmation
for self-tuning regulators. InProceedings of the 2nd In-
ternational Conference on Autonomic Computing, pages
172–182, Seattle, WA, June 2005.

[Mahabhashyam and Gautam, 2004] Sai Rajesh Mahab-
hashyam and Natarajan Gautam. Dynamic resource
allocation of shared data centers supporting multiclass
requests. InProceedings of the 1st International Con-
ference on Autonomic Computing, pages 222–229, New
York, NY, May 2004.

[Menascéet al., 2001] Daniel A. Menascé, Daniel Barbará,
and Ronald Dodge. Preserving QoS of e-commerce sites
through self-tuning: A performance model approach. In
Proceedings of the 3rd ACM conference on Electronic
Commerce, pages 224–234, October 2001.

[Norriset al., 2004] James Norris, Kieth Coleman, Armando
Fox, and Gerge Candea. OnCall: Defeating spikes with a
free-market application cluster. InProceedings of the 1st
International Conference on Autonomic Computing, pages
198–205, New York, NY, May 2004.

[Oslakeet al., 1999] Morgan Oslake, Hilal Al-Hilali, and
David Guimbellot. Capacity model for Internet transac-
tions. Technical Report MSR-TR-99-18, Microsoft Cor-
poration, April 1999.

[Quinteroet al., 2004] Dino Quintero, Zbigniew Bor-
gosz, WooSeok Koh, James Lee, and Laszlo Niesz.
Introduction to pSeries partitioning. International
Business Machines Corporation, November 2004.
http://www.redbooks.ibm.com/redbooks/
pdfs/sg246389.pdf .

[Urgaonkaret al., 2005] Bhuvan Urgaonkar, Prashant
Shenoy, Abhishek Chandra, and Pawan Goyal. Dy-
namic provisioning of multi-tier Internet applications.
In Proceedings of the 2nd International Conference on
Autonomic Computing, pages 217–228, Seattle, WA, June
2005.

[Waldspurger, 2002] Carl A. Waldspurger. Memory resource
management in VMware ESX Server. InProceedings of
the 5th Symposisum on Operating Systems Design and Im-
plementation, December 2002.

[Withheld, 2005] Author Withheld. Towards self-
configuring hardware for distributed computer systems.
In Proceedings of the 2nd International Conference on
Autonomic Computing, pages 241–249, Seattle, WA, June
2005.

[Withheld, 2006] Author Withheld. Adapting to workload
changes through on-the-fly reconfiguration. Technical re-
port, University of —-, 2006.

[Witten and Frank, 2000] Ian H. Witten and Eibe Frank.
Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco,
2000.

