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Abstract
This paper proposes a novel framework that enables
a robot to learn ordinal object relations. While most
related work focuses on classifying objects into dis-
crete categories, such approaches cannot learn ob-
ject properties (e.g., weight, height, size, etc.) that
are context-specific and relative to other objects.
To address this problem, we propose that a robot
should learn to order objects based on ordinal ob-
ject relations. In our experiments, the robot ex-
plored a set of 32 objects that can be ordered by
three properties: height, weight, and width. Next,
the robot used unsupervised learning to discover
multiple ways that the objects can be ordered based
on the haptic and proprioceptive perceptions de-
tected while exploring the objects. Following, the
robot’s model was presented with labeled object se-
ries, allowing it to ground the three ordinal relations
in terms of how similar they are to the orders dis-
covered during the unsupervised stage. Finally, the
grounded models were used to recognize whether
new object series were ordered by any of the three
properties as well as to correctly insert additional
objects into an existing series.

1 INTRODUCTION
The ability to order physical objects by various properties
emerges early in childhood development and is thought to
be fundamental for understanding the property of numbers
[Kingma and Reuvekamp, 1984]. In the Montessori method
of teaching [Montessori, 1917], children solve ordering tasks
using specialized sets of toys that allow the child to learn the
target dimension along which the objects should be ordered
[Pitamic, 2004]. Ordering tasks also appear in intelligence
tests [Hagmann-von Arx et al., 2008] which suggests that
ability to order objects is an important aspect of human in-
telligence.

In cognitive robotics, there have been relatively few works
exploring how a robot can learn to order a set of objects.
Instead, most related work has focused on the problem of
object categorization, i.e., assigning an object to 1 or more
discrete categories (see [Sanchez-Fibla et al., 2013; Orhan
et al., 2013; Yürüten et al., 2013; Sinapov et al., 2014a;

Figure 1: The robot used in our experiments, shown here with
the 32 objects it explored in order to learn three ordinal prop-
erties: weight, width, and height.

Chu et al., 2015] for a representative sample). Such methods
have shown that using behaviors in conjunction with visual
features allows a robot to ground the meaning of nouns and
adjectives. However, many object properties cannot be repre-
sented well using discrete categories. For example, “height”
is better represented by an ordering rather than a discrete clus-
tering as the ordering captures the continuous nature of the
property while the clustering does not.

To address this gap, we propose a framework for learning
object ordering skills that are grounded in a robot’s physical
interactions with objects. In our method, the robot uses un-
supervised learning to discover how objects can be ordered
using multiple and different types of sensorimotor features
that the robot detects during object exploration. Next, the
robot undergoes a supervised learning stage during which it
is trained that specific example object orders are associated
with specific object properties, namely “height”, “width”, and
“weight”. More specifically, the robot learns how the three
ordinal concepts relate to the object orders discovered in the
previous stage. The learned model is subsequently used by
the robot to recognize the property according to which a new
series of objects is ordered by. Finally, the robot uses this
recognition ability to correctly insert additional objects into
existing object series.
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2 Related Work
2.1 Psychology and Cognitive Science
Ordering objects emerges early in childhood – by age 2, chil-
dren can compare and sort objects according to size [Gra-
ham et al., 1964]. Other studies have shown that learning
to classify objects as “big” or “small” is easier when the ob-
ject is directly comparable to other objects in its surroundings
as opposed to using only its absolute size (see [Ebeling and
Gelman, 1994; 1988]). Similarly, comparing objects to each
other helps children learn to order objects according to their
height [Smith et al., 1986].

In addition to supervised learning of relative concepts,
some studies have also looked at whether children form order
representations in an unsupervised manner. The experiments
described in [Sugarman, 1981] found that the order of objects
that children explore freely is influenced by how perceptually
similar the objects are. For example, if the child is exploring a
small toy, it is more likely to switch to a slightly bigger one as
opposed to one that is much bigger. This result suggests that
children can order objects in an unsupervised manner and can
extract certain natural orders from interaction with objects.

Based on these findings, the framework proposed in this
paper uses both unsupervised and supervised learning. First,
the robot uses an unsupervised approach to detect a range of
possible orders for a given set of objects. This is followed
by a supervised learning stage in which the robot grounds
the concepts “weight”, “height”, and “width” in terms of the
orders discovered in the unsupervised stage.

2.2 Robotics and AI
Grounding concepts related to object ordering has received
very little attention in robotics so far. In machine learning,
ranking [Liu, 2009] is a related problem in which items (e.g.,
search results) need to be ranked according to some crite-
ria (e.g., user’s preferences and a search query). While such
methods could be adapted to object ordering problems, they
typically assume that there is a lot of training data and only
learn one ranking relation at a time using a single flat feature
vector representation. In addition, most methods focus on
getting the top few results correct, i.e., the cost of mistakes
depends on the position of the ranking.

In cognitive robotics, most related work focuses on the
problem of grounding discrete object categories in visual fea-
tures (e.g., [Gorbenko and Popov, 2012; Lai et al., 2011]) as
well as non-visual sensory modalities coupled with manipula-
tive behaviors (e.g., [Hogman et al., 2013; Orhan et al., 2013;
Yürüten et al., 2013; Nakamura et al., 2014; Sinapov et al.,
2014a; Celikkanat et al., 2015; Chu et al., 2015]). Using such
methods a robot can ground the meaning of nouns (e.g., “pop
can”, “ball”, etc.) as well as adjectives (e.g., “red”, “round”,
etc.). These methods, however, cannot be used to ground or-
dering concepts as they only deal with the problem of classi-
fying an individual object into a discrete set of categories.

In a closely related study, the method described in [Sinapov
et al., 2014b] relaxed the assumption that categories describe
only individual objects and showed that through behavioral
exploration a robot can learn pairwise object categories (e.g.,

grasp lift lower

drop press push

Figure 2: The behaviors the robot used to explored the ob-
jects. From left to right and top to bottom: grasp, lift, lower,
drop, press, and push. The arrows indicate the direction of
motion of the end-effector for each behavior. In addition, the
hold behavior (not shown) was performed after the lift behav-
ior by simply holding the object in place for half a second.

A is heavier than B). However, the robot stopped short of rec-
ognizing that a given series of objects is ordered by a given
property. A rare example of a robotics study directly dealing
with object ordering is described in [Schenck et al., 2012].
The robot in that study was able to solve the task of order
completion (i.e., selecting the next object to complete a se-
quence) using both supervised and unsupervised approaches
through the use of an objective function based on perceptual
object similarity. In their work, the robot learned each order-
ing concept in isolation and did not explicitly ground those
concepts (i.e., it could not explicitly recognize that a series of
objects is ordered by weight, or height). In addition, the ob-
jects were specialized toys that varied only according to one
dimension, as opposed to real-world objects.

3 Experimental Setup
3.1 Robot and Objects
The robot used in our experiment, shown in Figure 1, was
a custom built mobile manipulator that uses the Segway
Robotic Mobility Platform (RMP). The robot is equipped
with a 6-DOF Kinova Mico Arm with a 2-fingered under-
actuated gripper as its end effector.

The set of objects O that the robot explored consisted of
32 common household items including cups, bottles, cans,
and other containers, also shown in Figure 1. The objects
varied according to their weight, height, and width. The ob-
jects’ height and width was measured in millimeters while
their weight was measured in grams. Some of the bottles
were filled with water up to various levels. The objects were
chosen such that the distributions of their weight, width, and
height were roughly uniform.



3.2 Exploratory Behaviors and Sensory Modalities
The robot explored the objects using 7 different behaviors:
grasp, lift, hold, lower, drop, push, and press, shown in Figure
2. The behaviors were designed with the purpose of enabling
the robot to obtain a behavior-grounded multi-modal object
representation independent of any particular task. While
some of the behaviors are likely to be irrelevant for any par-
ticular ordering task, we assume that this information is not
known to the robot in advance. The behaviors were per-
formed assuming a fixed object location on the table and were
encoded using joint-space trajectories as well as timed Carte-
sian velocity commands (for lift, lower, push, and press).

The robot perceived the objects using the haptic (i.e., joint
torques) and proprioceptive (i.e., joint angular positions) sen-
sory modalities. During the execution of each behavior, the
robot recorded the torque and position values for all 6 joints
at 15 Hz resulting in two n × 6 matrices where n was the
number of samples recorded. To reduce dimensionality, the
temporal axis of each matrix was discretized into 10 equally
spaced bins using the methodology of [Sinapov et al., 2014a].
Thus, after executing an action on an object, the robot ex-
tracted two sensorimotor feature vectors, xhaptic ∈ R10×6

and xproprioception ∈ R10×6. In addition, at the end of the
grasp behavior, the robot also recorded the end finger posi-
tions, i.e., xfingers ∈ R2. Each viable combination of a be-
havior (one of the 7) and modality (either haptic, propriocep-
tion, or fingers) constituted a sensorimotor context. Thus, the
set of sensorimotor contexts, C, was of size 7×2+1 = 15 (the
fingers modality was only available for the grasp behavior).

The robot performed each behavior on each object 5 dif-
ferent times, which took 7.5 hours. Given context c ∈ C and
object i ∈ O, the set X c

i contained all 5 feature vectors ob-
served with object i in context c. Following, we describe the
learning framework which uses these observations to ground
the three ordinal relations, weight, width, and height.

4 Learning Framework

4.1 Notation and Problem Formulation
Let O be the full set of objects that the robot has explored.
Let S = (OS , GS) be an object series defined for objects
OS ⊂ O using a directed cluster graph GS = (V,E). Each
object in OS belongs to one of several clusters in V , which
are connected using directed edges E. The set of edges E is
constrained such that one cluster has just an outgoing edge
(i.e., the start of the order), one cluster has only one incom-
ing edge (i.e., the end of the order) while the rest have one
of each. Figure 3.a) shows an example cluster graph with 5
clusters V and 10 objects OS .

Let L be the set of ordering concepts: in our case, {weight,
width, height}. The robot is tasked with solving the following
two problems:

Order Recognition
Given an example object series S, for each concept l ∈ L, the
task of the robot is to learn a model Ml such that Ml(S) →
+1 if S is ordered according to l and −1 otherwise.

Object Insertion
Given a series S and object i, the task is to construct a new
series S′ by inserting i at the correct position. In other words,
S′ should be ordered according to the same concept l that was
used to construct the order S.

To solve these problems, the robot undergoes three distinct
stages described in detail below.

4.2 Interaction Stage
During this stage, the robot explores the objects in O by per-
forming a series of exploratory behaviors on them and record-
ing sensorimotor features capturing multiple sensory modali-
ties. Let C be the set of sensorimotor contexts (defined in the
previous section) where each context corresponds to a com-
bination of an exploratory behavior and a sensory modality.
For each context c ∈ C and object i ∈ O, let X c

i be the set of
sensorimotor features observed with object i in context c.

Let Rc ∈ R|O|×|O| be a matrix that specifies a pairwise
object similarity relation in context c for each pair of ob-
jects, computed as follows. Given a sensorimotor feature
vector xci ∈ X c

i detected with object i, let the function
knn count(xci , j, k) return the count of k nearest neighbors
to xci detected with object j. Each entry rcij in the matrix Rc

was computed as:

rcij =
∑

xc
i∈X c

i
knn count(xci , j, k)

In other words, each entry rcij was set to the number of
times a sensory signal xcj ∈ X c

j was one of the k nearest
neighbors of a sensory signal xci ∈ X c

i . In our experiments,
k was set to 25 but the results were similar for the range of
5 to 50 (k can be larger than the number of objects 32, as
the matrix is computed using the raw observations, for which
there are 5 per object). Following, we describe how this ob-
ject representation is used by the robot to order objects in an
unsupervised manner.

4.3 Unsupervised Order Discovery
In the second stage, the robot uses unsupervised learning to
discover multiple possible ways to order the objects in O. To
do so, for each sensory motor context c ∈ C, the matrix Rc

is used to fit an order Sc using the methodology described
in [Kemp and Tenenbaum, 2008]. More specifically, given
an input matrix Rc, the method in [Kemp and Tenenbaum,
2008] searches for the cluster graph that maximizes the pos-
terior probability of the data given the cluster graph. This
probability will be high if features in the data vary smoothly
over the graph and low otherwise.

Figure 3 shows an example order fitting using a syntheti-
cally generated 10× 10 matrix. Due to space limitations, we
refer the reader to [Kemp and Tenenbaum, 2008] for further
details. In our experiments, we used the source code provided
with that publication with default prior likelihood parameters.

At the end of this stage, for each context c ∈ C, let Sc

be the order that maximizes Pr(Rc|Sc). In other words, at
this stage the robot has discovered a set of object orders, one
per sensorimotor context, which will subsequently be used to
ground ordinal object relations.
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Figure 3: Example unsupervised object ordering using syn-
thetic data. a) The object series S = (OS , GS). The circles
denote the vertices in GS while the boxes denote the set of
objects OS for which the series is defined. The dotted arrows
denote cluster memberships while the bold arrows represent
the set of edges E in the cluster graph GS . b) The input ma-
trix R ∈ R10×10 used to compute the ordering in a).

4.4 Order Grounding Stage
In the third and final stage, the robot learns an order recog-
nition model Ml for each ordering concept l ∈ L in a super-
vised manner. Let Dl = (Sn, yn)

N
n=1 be a set of examples

such that each Sn is an object order and each yn ∈ {−1,+1}
is a class label indicating whether the objects are ordered ac-
cording to l. To learn a classifier from such data, the robot
represents each example according to its similarity to the or-
ders discovered in the previous stage.

More specifically, given an example order Sn, let Sc
n be the

order constructed by arranging the objects OSn
according to

the order Sc associated with context c. The series Sc
n is not

necessarily a total order as two or more objects may belong
to the same cluster node in the graph Gc. Let hS(i, j) ∈ I
be the relative difference in position between objects i and j
in order S. For example, if i occupies one slot above j, then
hS(i, j) = 1; on the other hand, if i and j occupy the same
cluster node, then the value is 0. Given two orders, Sn and
Sc
n containing the same set of objectsOS , we can then define

a distance function between them as:

d(Sn, S
c
n) =

∑
i∈OS

∑
j∈OS

| hSn
(i, j)

length(Sn)
−

hSc
n
(i, j)

length(Sc
n)
|

where length(S) returns the number of clusters in the clus-
ter graph GS of series S. Thus, a training example Sn can
be represented by a feature vector xn ∈ R|C| such that each
element xn,c = d(Sn, S

c
n). This feature vector encodes how

similar Sn is to each of the orders that the robot discovered
using unsupervised learning. Given this feature representa-
tion, for each dataset Dl = (Sn, yn)

N
n=1, the robot learns a

classifier that can output an estimate for Pr(yn = +1|xn).
The robot used the learned classifiers for order recognition

to solve the object order insertion task as follows. Given an
existing order S and an additional object i, let S ′ denote the
set of orders attained by inserting i in all possible slots. The
robot then inserts object i into the series S resulting in the
object series S∗ such that:

S∗ = argmax
S′∈S′

max
l
Prl(y

′ = +1|x′)
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Figure 4: Example unsupervised object ordering estimated by
the robot using sensorimotor observations in the press-haptic
context. While the object ordering was estimated over all 32
objects, only 12 objects are shown here to prevent clutter. The
number underneath each object denotes the object’s height in
millimeters. This specific combination of a behavior and sen-
sory modality approximately orders the objects by height but
due to perceptual noise, it is not perfect (e.g., the object with
height of 116 mm is inserted into the first position rather than
the third). The height averages for each of the six positions in
the ordering were 126, 90, 102, 196, 245, and 248 mm.

where x′ is the feature vector for the order S′ ∈ S ′. In other
words, the model picks the series that maximizes the output
of one of the order recognition models Ml.

4.5 Evaluation
The framework is evaluated in a series of evaluation runs.
During each run, for each object ordering concept l ∈ L, a
data set Dl = (Sn, yn)

100
n=1 is constructed such that half the

series are positive examples (i.e., ordered according to l) and
the other half, negative. An object series was considered a
positive example if and only if the change in the target at-
tribute l from one position to the next exceeded a threshold θl
(possibly set to 0.0). An object series was considered a neg-
ative example if the direction of the change along attribute l
varied from position to position. The robot’s order recogni-
tion models were then evaluated by performing 5-fold cross
validation on Dl. The results were averaged over 100 eval-
uation runs with different random seeds used to generate the
data sets Dl. The results are reported in terms of percentage
recognition accuracy, i.e., # of correct series classifications

# of total classifications × 100.
To evaluate the robot’s ability to correctly insert an object

into an existing order, for each ordering concept l ∈ L, an
additional set of object series D′l was computed such that
D′l

⋂
Dl = ∅. Each series in D′l consisted of 5 objects.

For each series, one object was randomly removed and the
robot’s model was then tasked to insert that object into the
order consisting of the remaining 4 objects. Let p̂ be the index
of position for the remainder object chosen by the robot and
let p be the index of the correct position for that object in the
original series. The error can therefore be computed by taking
the absolute difference, i.e., |p̂− p|.



Table 1: Order Recognition Rates (% Accuracy)

k-NN SVM Decision Tree
concept
weight 89.48 92.42 96.67
width 78.82 82.49 91.70
height 86.44 90.18 98.42

5 Results
5.1 Example Unsupervised Order Discovery
Figure 4 shows an example object order that was estimated
by the robot during the unsupervised order discovery stage.
In this case, the order was constructed using sensorimotor ob-
servations in the haptic sensory modality during the execution
of the press behavior. Some of the objects are placed in the
same position in the order, which could be due to perceptual
noise (only 5 observations are available for each object) or
because the differences in the height attribute for objects in
the same cluster are too small to be detected by this partic-
ular behavior and sensory modality. The order reveals that
this particular combination of a behavior and sensory modal-
ity induces an ordering based on the objects’ height attribute.
Similarly, other behaviors and modalities induced orderings
that corresponded to the other two attributes considered in
this study, width, and weight.

5.2 Object Order Recognition
Table 1 shows the accuracy of the robot’s order recognition
models using three different machine learning algorithms, k-
Nearest Neighbor, Support Vector Machine with a quadratic
kernel function, and C4.5 Decision Tree as implemented
in the WEKA machine learning library [Witten and Frank,
2005]. For this test, the thresholds θl were set to 50 grams
for weight, 15 mm for width, and 50 mm for height. In
other words, an object series was considered to be ordered
by height if each consecutive object was at least 50 mm taller
than the previous one. All object series used for training and
testing were of length 5 and were automatically generated by
randomly sampling positive and negative examples from the
set of all possible orders.

The C4.5 Decision Tree classifier achieves the highest ac-
curacy and naturally performs feature selection. Since each
feature is associated with a sensorimotor context, a learned
tree identifies the relevant behaviors and sensory modalities
for a given ordering task. For example, the tree learned for
ordering objects by weight relied on features corresponding
to three different behaviors: hold, lift, and lower. For approx-
imately 75% of the test data points, the decision was made
using only the top level node, corresponding to the hold be-
havior and the haptic sensory modality. On the other hand,
the tree learned for ordering objects by width relied exclu-
sively on the feature associated with the grasp behavior and
the fingers position sensory signal. Therefore, once learned,
the models could in principle be used by performing only the
discovered relevant behaviors for a given ordering task in-
stead of exhaustively performing the entire set of actions.

c) height
θheight (millimeters)

b) width
θwidth (millimeters)

a) weight
θweight (grams)

Figure 5: Order Recognition performance as a function of the
thresholds θl. For instance, an object series was considered
to be ordered by height if each consecutive object was at least
θheight mm taller than the previous one.

5.3 Sensitivity to Thresholds θl
In the next test, we evaluate the recognition performance with
the Decision Tree classifier as the thresholds θl change from
low to high. When these thresholds are high, series that con-
stitute positive examples (i.e., ordered by the target property)
tend to have larger differences in the target attribute from one
position to the next in the series. Conversely, when these
thresholds are low, the differences in the target attribute from
one position to another in a given series are smaller and may
even be undetectable by the specific behaviors and sensory
modalities used in the experiment.

The result of this test are shown in Figure 5. As we expect,
recognition accuracy is higher when the attribute increases by
a larger value from one position to the next in an object series.
This is largely due to perceptual limitations of the specific
robot that was used in our experiments. Nevertheless, even
when the threshold is set to 0 (i.e., any strictly monotonically
increasing series is considered a positive example), the robot



b) Histogram of Object Insertion Errors
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a) An Example Object Insertion Task

Mweight

Mwidth

Mheight

0 1 2 3 4
Candidate Position

Object series:

11 g 88 g 213 g 369 g 300 g

?
Remainder Object:

Figure 6: a) An example order insertion task. In this task,
the robot is presented with an object series of length 4 that
is ordered by weight and then tasked with inserting an addi-
tional remainder object into one of 5 possible positions. The
number beneath each object denotes its weight in grams. The
matrix visualizes the output of the 3 order recognition mod-
els for each candidate position where the object can be placed
in. The position and classifier which maximize the output is
labeled with red. The object is correctly inserting in position
3, denoted by the arrow. b) A histogram of the errors made
by the robot when solving the object insertion task. The error
corresponds to the absolute difference between the position
chosen by the robot and the correct position. An error of 0
indicates a correct solution.

is still able to achieve recognition rates substantially better
than chance. Recognizing series ordered by width turns out to
be the hardest of the tasks as the only sensorimotor features
relevant to this property were the end finger positions after
executing the grasp behavior. The arm’s fingers are under-
actuated and the readings are quite noisy which made this
property particularly hard for the robot to learn.

5.4 Object Insertion
Finally, we evaluate the robot’s ability to correctly insert an
object into an existing series. Figure 6.a) shows an example
insertion task in which the robot’s model has to insert an ob-
ject into an existing object series which is ordered by weight.
The matrix visualizes the output of the 3 order recognition
models when given the series constructed by inserting the ob-
ject into each possible position. The output is maximized at

position 3 (i.e., left of the last object in the series) for the
weight ordering concept. In this example, the object in in-
serted into the correct slot.

For each of the three ordinal properties, the robot was
tested on 500 insertion tasks. Figure 6 shows a histogram
of the errors made by the robot when using the Decision Tree
classifier. The difference between the correct position and
the one chosen by the robot was either 1 or 0 in 88% of the
tests for weight, 70% for width, and 73% for height. The task
of the robot was particularly difficult as some of the exam-
ple series in this test could be ordered by more than just one
property due to chance. Nevertheless, this result shows that
the robot can use its order recognition models to not only rec-
ognize the property that an object set is ordered by, but also
to add additional objects to the existing series.

6 Conclusion and Future Work
This paper proposed a novel framework that allows a robot
to learn object ordering skills. The framework was eval-
uated in an experiment in which a robot learned to order
common household objects using three different attributes:
weight, width, and height. Based on findings in psychology
and cognitive science, the framework described in this paper
proposed that a robot can ground ordinal object relations in
terms of object orderings discovered in an unsupervised man-
ner. The results of our experiment showed that the framework
allows a robot to learn to recognize whether a given series of
objects is ordered according to a target property. In addition,
the robot’s recognition model was also used to successfully
insert objects into an existing object series, a task that is com-
mon in human intelligence tests.

There are several direct lines for future work. A limitation
of the current study is that once the objects were explored
by the robot, the resulting tests were performed offline. In
ongoing work, we are investigating methods that would en-
able the robot to efficiently explore novel objects and incre-
mentally update the learned representations of ordinal ob-
ject relations. More generally, as described in [Kemp and
Tenenbaum, 2008], in addition to discrete categories (which
are widely explored in robotics) and orders, object relations
can induce a variety of other structural forms such as trees,
rings, hierarchies, etc. Therefore, we are also pursuing a
more general framework that would allow a robot to ground
semantic concepts from language using multiple and hetero-
geneous structural forms. Finally, we are actively pursuing
frameworks for grounding object-related knowledge through
human-robot interaction scenarios such as the “I Spy” game
described in [Thomason et al., 2016].
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