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Abstract
Recent progress in both AI and robotics have enabled the development of general purpose robot platforms that are capable
of executing a wide variety of complex, temporally extended service tasks in open environments. This article introduces
a novel, custom-designed multi-robot platform for research on AI, robotics, and especially human–robot interaction for
service robots. Called BWIBots, the robots were designed as a part of the Building-Wide Intelligence (BWI) project at the
University of Texas at Austin. The article begins with a description of, and justification for, the hardware and software
design decisions underlying the BWIBots, with the aim of informing the design of such platforms in the future. It then
proceeds to present an overview of various research contributions that have enabled the BWIBots to better (a) execute
action sequences to complete user requests, (b) efficiently ask questions to resolve user requests, (c) understand human
commands given in natural language, and (d) understand human intention from afar. The article concludes with a look
forward towards future research opportunities and applications enabled by the BWIBot platform.
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1. Introduction

Research in AI has long assumed that one day there
would be general purpose robotic platforms that could exe-
cute symbolic actions, and especially long and complex
sequences of such actions. However, until recently, most
robots have been limited to performing small sets of actions
in very limited configuration spaces for relatively short
periods of time.

Recent progress in both the hardware robustness and
software sophistication of mobile robots has finally enabled
the integration of modern AI planning, reasoning, sensing,
and acting all onboard physical robots that are capable
of long-term autonomy in open, dynamic, and human-
inhabited environments. On the other hand, this progress
has exposed the integration challenges of combining low-
level action with high-level planning, especially in the face
of the inherent uncertainty that comes from human–robot
interaction (HRI). In this article, we demonstrate how an
intelligent service robot, capable of high-level planning and
reasoning, can be used for robust HRI.

The aim of this article is two-fold. First, we introduce a
novel, custom-designed multi-robot platform for research
on such integration of AI, robotics, and especially HRI on

indoor service robots. Called BWIBots, the robots were
designed as a part of the Building-Wide Intelligence (BWI)
project at the University of Texas at Austin. The long-term
goal of the BWI project is to deploy a pervasive autonomous
system inside a building, with end effectors such as robots,
to better serve both inhabitants and visitors.

Second, we illustrate the overall purpose of our robotic
system, which is to enable novel research in the context of
the human-interactive service robot domain. In particular,
we briefly summarize five research contributions enabled
by the BWIBots, that are geared towards improving the
ability of indoor service robots to understand human inten-
tion during interaction, and execute actions as necessary to
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carry out human commands. The collective breadth of these
loosely related research projects illustrate the research ver-
satility of the platform, having enabled contributions to a
variety of AI sub-areas beyond HRI, including AI planning,
knowledge representation and reasoning, natural language
processing, and machine learning.

Specifically, we cover the following contributions using
the BWIBots in this article:

Planning using action language BC: We describe how
domain knowledge and planning descriptions for
robots can be written using action language BC, allow-
ing robots to achieve complex goals using defeasi-
ble reasoning1 and indirect/recursively defined flu-
ents (Khandelwal et al., 2014).

Integrating probabilistic and symbolic reasoning: We
describe how robots can incorporate probability
distributions with symbolic reasoning to implement a
spoken dialog system, allowing them to intelligently
ask questions in order to quickly understand human
instructions (Zhang and Stone, 2015).

Understanding natural language requests: Since one of
the most convenient means for humans to convey
instructions is natural language, we describe how nat-
ural language requests can be understood by robots
by grounding requests using a robot’s existing domain
knowledge, and how robots can incrementally learn
larger vocabularies through conversation (Thomason
et al., 2015).

Grounded multimodal language learning: We describe
how a robot can learn to ground certain human instruc-
tions, such as “Bring me a full, red bottle”, in its
perception and actions (Thomason et al., 2016).

Robot-centric human activity recognition: We describe
how a robot can categorize human activity using stan-
dard machine learning techniques, in order to better
understand the behavior of humans in its vicinity (Gori
et al., 2015).

The remainder of the article is organized as follows. In
the next section, we discuss other indoor service robot sys-
tems that aim to solve similar problems as those addressed
by the BWIBots. In Sections 3 and 4, we present the hard-
ware and software design decisions behind the BWIBots,
along with their justifications relative to considered alterna-
tives. A main aim of this component of the article is to share
our development insights and experience with future devel-
opers of similar platforms for service robotics and HRI, and
these two sections serve as the main novel contributions of
this paper. In Sections 5–9, we summarize the five research
contributions outlined above. The article then concludes
with a look forward towards future research opportunities,
especially in multi-robot coordination, that we expect will
be enabled by the BWI platform.

2. Related work

This section discusses other multi-robot systems that share
some of the same research goals as the BWI project. Sec-
tions 5–9 independently cover work related to the research
areas presented within those sections.

In recent years, multiple autonomous service robot sys-
tems have been developed that are designed to interact with
humans and operate within human-inhabited environments.
Mobile robot platforms range from service robots such as
the Care-O-bot 3 (Reiser et al., 2009) and research robots
such as the uBot-5 (Kuindersma et al., 2009) to personal
robots such as the PR2 (Cousins, 2010) and Herb 2.0 (Srini-
vasa et al., 2012). In this section, we discuss representa-
tive single-robot and multi-robot systems that are used for
research similar to that presented in this paper.

The Collaborative Robot (CoBot) platform (Veloso et al.,
2015) is a multi-robot system that exists symbiotically with
humans. CoBots establish a symbiotic relationship with
humans, as they fulfill human commands while request-
ing human help for achieving difficult tasks such as using
an elevator (Rosenthal et al., 2010). This technique is also
employed on the BWIBots. Furthermore, CoBots use mixed
integer programming for scheduling tasks, and use a web-
based interface to accept user requests (Coltin et al., 2011).
In contrast, BWIBots are used to research the complimen-
tary problem of robust planning, where it is necessary to
select the best sequence of actions to complete a single user
request efficiently.

The SPENCER project aims to enable a robot to treat
humans in the environment as more than simple obsta-
cles (The SPENCER Project, 2016). Specifically, this
project focuses on allowing robots to perform socially
aware task, motion, and interaction planning, while inter-
acting with groups of people. Research contributions are
targeted at tracking multiple people as social groups (Luber
and Arras, 2013), and performing robust navigation in the
midst of crowds (Vasquez et al., 2014). While some of
the research performed using the BWIBots focuses on rec-
ognizing human activity in the robot’s vicinity, research
contributions described in this paper aim to improve direct
interaction with a single human via natural language dialog
systems.

The STRANDS project is concerned with allowing
robots to gather knowledge about the environment over
an extended period of time, as well as learn spatio-
temporal dynamics in human-inhabited environments (The
STRANDS Project, 2016). By learning the dynamics of
obstacles such as humans and non-stationary furniture, the
goal of the STRANDS project is to allow a robot to run
autonomously for significantly long periods, such as 120
days. Similar to the CoBots, research contributions within
the STRANDS project have focused more on schedul-
ing (Mudrova and Hawes, 2015) than general purpose
planning.
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The RoboCup@Home competition (Wisspeintner et al.,
2009) aims to enhance service robots by providing bench-
mark tests that evaluate a robot’s ability to perform in real-
istic home environments. These benchmark tasks require
manipulation, object recognition, and robust navigation
among other features necessary for domestic service robots.
The Kejia robot, winner of Robocup@Home in 2014 (Chen
et al., 2014), has been used to identify what knowledge
is necessary to completely ground human requests, and
search for missing information using open knowledge, that
is free-form knowledge available online (Chen, Xie, et al.,
2012). While the RoboCup@Home competition is designed
to test the versatility of service robots, and benchmarks test
a breadth of capabilities, research contributions performed
using the BWIBots are more focused and improve the
state-of-the-art on somewhat more specialized, but deeper,
problems than those typically defined by RoboCup@Home.

3. Hardware

In this section, we briefly describe the hardware design of
the BWIBots. The design goals behind these robots include
robust navigation inside a building, continuous operation
for 4–6 hours, ease of interaction with humans, and a con-
figurable array of sensors and actuators depending on the
research application. The robots have continually evolved
while following these design goals, based on research
applications that have emerged since their inception (see
Figure 1).

The main aim of this section is to share our development
insights and experience with future developers of similar
platforms for service robotics and HRI inside a building,
especially for the purpose of academic research. It also
serves as an introduction to the substrate platform that is
used for research presented in the remainder of this article.

3.1. Mobile base and customized chassis

The latest iteration of the BWIBot platform (BWIBotV3)
is built on top of the differential drive Segway RMP 110
mobile base available from Stanley Innovation. Prior to the
RMP 110, the RMP 50 was used to build the BWIBotV1
and BWIBotV2 versions.2 The RMP platform was selected
to construct the BWIBots because it balances cost with
many different features such as maximum payload capac-
ity (100 lbs), size (radius = 30 cm), and maximum speed
(2 m/s for the RMP 50, 5 m/s for the RMP 110). Addition-
ally, it provides sufficiently accurate odometry estimates for
robust navigation. Compared to most other RMP platforms,
the RMP 110 does not have an external user interface box
and is extremely space efficient, allowing more space for the
customized chassis, and also provides power for auxiliary
devices, as explained in Section 3.2.

A customized chassis that holds the computer, sensors,
and touchscreen is mounted on top of the RMP 110 mobile

Fig. 1. The evolution of the BWIBot platform. BWIBotV2 fea-
tures a smaller profile and improved DC converters when com-
pared to the BWIBotV1. BWIBotV3 makes further improvements
by using the new RMP 110 base, onboard auxiliary battery, desk-
top computer and touchscreen, and the Velodyne VLP-16 for
navigation.

base. The chassis is constructed using aluminum (6061-
T6 alloy) sheet metal and aluminum framing from 80/20
Inc.3 All sheet metal parts were designed using the open-
source CAD software FreeCAD. Prior to fabrication, all
parts were prototyped in acrylic using a Full Spectrum
P-Series 20”×12” CO2 laser cutter,4 allowing design revi-
sion with a fast turnaround. The final parts were fabricated
in aluminum using commercial waterjet cutting service
BigBlueSaw.

The computer controlling the robot is not directly
screwed into the chassis; rather it is mounted on a plate
which is then latched to the chassis. This feature allows
easy removal of the computer (and plate) for diagnosis,
repair, and replacement. Additionally, the surface of the
chassis above the computer and exposed electronics has
been waterproofed using IP54 cable glands and washers,
even though the entire chassis is not water-proof, providing
some resistance against accidental spills on the robot.

Furthermore, the chassis on the BWIBotV2 and BWI-
BotV3 has been designed to fit within the smallest circum-
scribed circle possible given the size of the RMP50 and
RMP110, respectively. Most navigation algorithms consider
robots to be circular, and a small circular footprint sim-
plifies navigation around obstacles. In BWIBotV1, the cir-
cumscribed radius induced by the chassis was larger than
the one induced by the mobile base, but the navigation
algorithm was provided with a smaller radius in order to
navigate through narrow corridors and doors. Consequently,
on rare occasions, the back of the BWIBotV1 would hit
obstacles when turning in place.

3.2. Auxiliary power and power distribution

The RMP 110, used to construct the BWIBotV3, contains
two 384 Wh lithium iron phosphate (LiFePo) batteries. One
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is used for peripherals such as the computer and various
sensors, and the other for driving the mobile base. In con-
trast, in previous versions of the BWIBot, the RMP 50 did
not provide a power source for peripherals. A single 12 V
1280 WH LiFePo battery was used on those platforms to
power both the drive system and peripherals. Batteries with
a LiFePo chemistry have been used as they are extremely
safe, and have a longer lifespan than other chemistries when
repeatedly deep-discharged.

The RMP 110 provides a regulated 12 V 150 W power
source using the auxiliary battery, which is sufficient to
power all peripherals. On the RMP 50, the same regulated
power source has been constructed using a Vicor DC–DC
converter with the LiFePo battery as the source. Since some
peripherals require an input voltage of 5 V or 19 V at low
currents, the 12 V source is re-regulated using 5 V 45 W
and 19 V 35 W DC–DC converters from Pololu Robotics.
These additional DC–DC converters, along with Ander-
son Powerpole and Molex power connectors, are soldered
on a power distribution PCB designed using the open-
source software Fritzing, and manufactured using the PCB
fabrication service OSH Park.

3.3. Computation and interface

The BWIBotV3 contains a desktop computer powered by
an Intel i7-4790T/i7-6700T processor, placed in HD-Plex
H1.S fanless case, with six gigabit ethernet network inter-
faces, along with four USB3 and two USB2 interfaces. A
20” touchscreen is mounted at a human-operable height
to serve as the primary user interface with the robot. Ear-
lier versions of the BWIBot contained a laptop powered
by an Intel i7-3612QM processor mounted at a human-
operable height, serving both computational and user inter-
face requirements on the robot. This laptop contained one
gigabit ethernet and three USB3 connectors, which was
insufficient for the number of peripherals on the robot,
and required the placement of an additional USB hub and
gigabit ethernet switch on the robot.

3.4. Perception

Perception is used for both navigation (robot localization
and obstacle avoidance) and object-of-interest detection.
To achieve both of these ends, the BWIBots can make
use of a configurable set of sensors. In this section, we
briefly outline various combinations of sensors used for
both purposes.

Certain key requirements need to be met by the sensor
suite responsible for localization and obstacle avoidance.
The sensors should have a sufficiently large horizontal field
of view for robust robot localization, and some vertical field
of view is also necessary to prevent the robot from crashing
into concavely shaped objects. For instance, only the central
column of an office chair may be visible to a robot with a
2D planar LIDAR. A 3D sensor, or a 2D sensor on a servo,

Table 1. Various sensors and combinations used for navigation
and localization on the BWIBot in increasing order of cost. The
URG-04 and UST-20 are 2D LIDARs available from Hokuyo, and
the VLP-16 is a 3D LIDAR from Velodyne.

Sufficient Sufficient Sufficient Sunlight
Sensors HFOV VFOV range resistant

Kinect No (60°) Yes (40°) No (4 m) No
URG-04 Yes (240°) No No (4 m) No
Kinect +
URG-04

Yes (240°) Yes (40°) No (4 m) No

UST-20 Yes (270°) No Yes (20 m) No
Kinect +
UST-20

Yes (270°) Yes (40°) Yes (20 m) No

VLP-16 Yes (360°) Yes (30°) Yes (60 m) Yes

is necessary to sense other parts of these objects in order to
avoid them.

Furthermore, the sensor suite may need to detect land-
marks at long distances for robust robot localization, espe-
cially in large open areas. Finally, direct or reflected sunlight
may affect LIDAR or RGBD sensors, and it is useful to have
a sensor resistant to being affected by sunlight for robust
operation near glass windows. In Table 1, we outline the
performance of some combination of sensors that have been
used on the BWIBot platform, in increasing order of cost.

While the VLP-16 satisfies all the requirements outlined
in Table 1, its minimum range (45 cm) creates a blind spot
around the robot body (radius = 30 cm). This blind spot can
be eliminated with an additional URG-04 sensor, which is
undesirable. In our opinion, the ideal sensor (or combina-
tion) for an indoor robot needs to have all the properties
satisfied by the VLP-16 in Table 1, as well as having a min-
imum range of 20 cm or less, while not being prohibitively
expensive.

For person and object detection, three different sets of
sensors have been used:

1. PointGrey BlackFly GigE camera—This camera is
mounted on a pan-tilt unit constructed using Dynamixel
MX-12W servos, and is useful for collecting video
data in high-resolution. It has primarily been used for
detecting objects using SIFT visual features (Lowe,
2004).

2. KinectV1—The KinectV1 sensor was used for detect-
ing people in 3D point clouds. For person detection,
we used the method of Munaro and Menegatti (2014),
as implemented in the Point Cloud Library (Rusu and
Cousins, 2011). While the implementation provides
reasonable accuracy, the detection frame rate is low
(about 4 Hz when concurrently run with other BWIBot
software).

3. KinectV2—The Microsoft SDK with the KinectV2
allows for extremely fast and robust person detection.
The raw data from the Kinect is processed via the SDK
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running on a Microsoft Surface Pro separate from the
primary robot computer.

3.5. Mobile manipulation

One BWIBot incorporates a Kinova MicoV1 6-DOF arm
for manipulation. The Mico arm was chosen primarily
because it is safe to operate around humans. Specifically,
the arm includes force sensors in each joint which enable it
to be software-complaint when interacting with humans. In
addition, the force sensors allow the arm to perform vari-
ous manipulation tasks, such as drawing on a board with a
marker and handing off objects to humans.

4. Software

In the previous section, we described the hardware design
choices that went into constructing the BWIBots. Next, we
describe the software architecture used on the BWIBots,
which has been built on top of the Robot Operating System
(ROS) middleware framework (Quigley et al., 2009). ROS
provides abstractions for data formats commonly used in
robotics, along with message passing mechanisms allowing
different software modules on a robot, as well as multiple
robots, to communicate with one another.

An overview of the software architecture is illustrated
in Figure 2. The robot can be controlled at many different
levels of control, where each level balances the granular-
ity of control with the robot’s autonomy. This architecture
has been designed in a hierarchical manner, as different
research applications require different granularities of con-
trol. Specifically, the software architecture provides five
hierarchical levels of control:

Velocity level control: The robot has no autonomy, and is
controlled directly via linear and angular velocities.

Navigation level control: The robot is given a physical
location and orientation as a destination in Cartesian
space (x, y, θ ), and the robot autonomously navigates
to this destination while avoiding obstacles.

High-level action control: At this level of control, the
robot can execute navigation actions to symbolic loca-
tions. For instance, the robot can be instructed to
autonomously navigate to a specific door without
requiring specification of the door’s location in Carte-
sian space. Furthermore, at this level the robot also
provides some tools for interacting with humans, such
as a GUI, speech synthesis, and speech recognition.

Planning level control: The robot can achieve high-level
goals, such as those that require it to navigate to a dif-
ferent part of the building via doors and elevators using
a sequence high-level actions.

Multi-robot control: This level of control allows multi-
ple robots to be controlled at any one of the four
previously mentioned levels using a centralized server.

In the following subsections, we describe the modules
that comprise the software architecture and how these mod-
ules can be used to achieve the aforementioned hierarchical
levels of control.

4.1. Map server

For the robot to navigate autonomously, it requires a
map of the world. Standard ROS navigation is designed
to allow a robot to navigate using a single 2D grid
map (Marder-Eppstein et al., 2010), and these maps can be
built using simultaneous localization and mapping (SLAM)
approaches such as GMapping (Grisetti et al., 2007). While
a single grid map is sufficient to allow an intelligent ser-
vice robot to perform navigation on a single floor inside a
building, it has the following limitations:

1. Without semantic information encoded within a grid
map, autonomous navigation cannot be performed using
symbolic locations. For instance, a user cannot request
the robot to navigate to a particular room by name only.

2. Navigation based on a single 2D map does not work if
the robot is required to use an elevator to navigate to a
different floor.

The software architecture overcomes these limitations
without modifying the existing ROS navigation stack. We
implement a multimap server that contains all 2D maps
necessary to perform navigation across all floors of the
building. The correct map is selected using a multiplexer
node (MapMux), which is then passed to the ROS nav-
igation stack. Should the robot change floors, navigation
is reinitialized with the correct map using this multiplexer
node.

The multimap server also adds secondary semantic maps
to each floor alongside the physical maps. These maps con-
tain information such as the symbolic names of all doors,
a mapping from physical to symbolic locations, and the
physical locations of objects of interest in the environment
(such as printers). There has been previous research on how
this semantic information should be attached to a physi-
cal map (Bastianelli et al., 2013) while the physical map
is being built. In contrast, we use a simple tool that allows
manual yet quick labeling of semantic information after the
physical map has been constructed.

4.2. Perception

The choice of physical sensors on the BWIBots has already
been discussed in Section 3.4. The perception module is
responsible for providing sensory information in the com-
mon data abstractions used by ROS, as well as filtering
raw sensor data. For example, any points returned by the
depth sensors described in Section 3.4 that belong to the
chassis of the robot are filtered out. An additional filter
also updates raw sensor data to remove any potential stale
obstacle readings constructed from previous sensor data.



6 The International Journal of Robotics Research

Fig. 2. The software architecture for the BWIBots. The figure depicts all the various software modules and how they are connected,
implementing the various levels of control used by different research applications.

Fig. 3. (a) A robot guiding a human-controlled avatar to the red ball (Khandelwal and Stone, 2014). (b) Multiple robots being simulated
within a single environment.

4.3. Simulation

We have developed 3D simulation models for the BWI-
Bots using Gazebo (Koenig and Howard, 2004), allowing
us to run simulations with one or many robots, as shown
in Figure 3. The focus of this module is not to accurately
simulate the dynamics of the robot, but rather to provide
a platform for testing various single-robot and multi-robot
applications. Consequently, in order to speed up the simula-
tion, especially when multiple robots are being reproduced,
we use an extremely low fidelity model of the robot that
ignores the dynamics of the wheels and simulates the entire
collision model of the robot as a cylinder. It then applies
simple lateral forces to the robot to emulate real motion

in the environment, allowing the simulation to run many
times faster than real time. In contrast, the visualization of
the robot continues to use an accurate high-fidelity model,
allowing demonstrations to look realistic.

4.4. Robot navigation

While the BWIBots can be controlled directly via velocity
level control, most applications require the BWIBot plat-
form to at least be able to autonomously navigate to a given
physical location within a 2D map. This second control
layer, called the navigation level control, can be provided
using a more sophisticated autonomous navigation system
built on top of the velocity level control.
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Autonomous navigation on the BWIBots is built using
the ROS navigation stack (Marder-Eppstein et al., 2010).
The ROS navigation stack keeps track of the obstacles in the
environment using an occupancy grid representation. Given
the current locations of obstacles, it makes use of a global
planner to find a path to a desired destination. It then uses a
local planner to compute linear and angular velocities that
need to be executed by the robot to approximately follow
the global path while avoiding obstacles.

In our instantiation of the navigation stack, Dijkstra’s
algorithm is used to find a path to a destination, and
low-level control is implemented via the Elastic Bands
approach (Quinlan and Khatib, 1993). This approach makes
use of active contours (Kass et al., 1988) to execute local
control that balances the straightness of the executed path
with the distance of obstacles to this path.

The navigation stack also needs to estimate the position
of the robot for navigation, and uses adaptive monte carlo
localization (AMCL) (Fox et al., 1999) for robot localiza-
tion. In this approach, the distribution of possible locations
the robot may be in is represented via samples called par-
ticles, and the mean of this distribution gives the current
estimate of the location of the robot.

4.5. High-level robot actions

In many research applications, it is useful to have the robot
interact with the environment without specifying low-level
details. For instance, an algorithm may call for executing
a sequence of actions using symbolic instructions, such as
approach door d1 and go through it, rather than specifying
physical locations for the robot to navigate to. The third
level of control in the software architecture provides this
functionality, which is termed the high-level action control.
At this level, symbolic navigation instructions to the robot
can be specified to the robot; this level is built on top of
navigation level control.

At this layer, the robot can also perform a number of
actions that require human interaction. A GUI built using
Qt5 allows for displaying text and images to the user, as
well as asking text or multiple choice questions. Speech
recognition using Sphinx (Walker et al., 2004) and speech
generation using Festival (Taylor et al., 1998) are also avail-
able at this layer, allowing interaction via spoken natural
language.

4.6. Robot task planning

Given the ability to perform various high-level actions,
sequences of such actions can be constructed to achieve
high-level goals. For instance, the robot may need to deliver
an object to person p1, but may not know p1’s location.
However, it may know that it can acquire p1’s location
by asking person p2. Achieving this goal requires multi-
ple symbolic navigation actions, as well as use of the GUI
and speech recognition/generation actions to interact with

people. Furthermore, to achieve these high-level goals, the
robot needs to track knowledge about the environment, such
as the location of person p2. Such information is stored
within a knowledge base on the robot, and is used both
for planning and for reasoning about the environment. In
this section, we describe the module responsible for knowl-
edge representation, reasoning, and planning, which pro-
vides the fourth control layer on the robot, called planning
level control.

The module for symbolic reasoning and decision making
is composed of two processes (ROS nodes), one respon-
sible for managing knowledge on the robot, and the other
for overseeing action execution. The knowledge represen-
tation and reasoning (KRR) node handles the knowledge
base and provides access to it from outside of the module.
Other nodes can request updates to the knowledge base or
retrieve information about the current state. The planner
node manages the execution, generates planning queries,
and monitors the outcome of actions at run time. The plan-
ner can receive planning tasks to be carried out from other
nodes, and uses the robot’s action-level control to execute
the sequence of actions necessary to complete the task.
Since this module provides a layer of high-level intelligence
and is relatively non-standard, we elaborate on it in more
detail than for other modules.

The symbolic knowledge representation is based on
Answer Set Programming (ASP) (?), and the system del-
egates the actual automated reasoning to the answer set
solver CLINGO (Gebser et al., 2011). The module and the
reasoner exchange information through ASP files contain-
ing the knowledge base, the queries, and the output of the
reasoning process. In Section 5, we discuss how knowl-
edge can be described using action language BC, and we
compare against other related approaches for planning and
knowledge representation therein.

At the heart of the module, shared by both nodes, is the
ACTASP library.6 ACTASP abstracts the syntax of answer
set programming and the parameters of the reasoner (in
our case CLINGO, but interfaces to other reasoners can be
seamlessly implemented). It implements and makes avail-
able reasoning and planning to the rest of the system in the
following ways:

Current state inquiry: Other modules may require verifi-
cation of whether the knowledge base entails a spe-
cific piece of information at the current time: in other
words, whether the robot currently knows something
in particular. Such queries are the simplest ones, and
are just forwarded to the underlying reasoner.

KB update: Updates to the knowledge base are performed
in two steps, and they make use of the model of the
system described by the planning description to ensure
that the knowledge base is not left in an inconsistent
state after the update. In the first step, the reasoner
is invoked to simulate the special action NOOP, which
does not actively modify the current state, but allows
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the default dynamics of the system to update the flu-
ents as predicted by the model under no action. Most
fluents are just carried over by inertia, meaning that
they do not change between subsequent time steps, but
others may change simply due to the passage of time.
For instance, if the model predicted that a door would
close by itself if not held open, then the door would be
assumed closed after the execution of NOOP. ACTASP

then generates a query containing the new observa-
tions as part of the next state. If the query is satisfiable,
the second step is to incorporate the new observations
into the new current state. If the query is unsatisfiable,
on the other hand, the observations conflict with the
prediction of the system model and must be discarded.
An example of an unacceptable observation is one in
which the robot is at two locations at the same time,
which can arise if the robot localization jumps from
one location to another. The model does not allow such
a possibility, and the query to generate the next state
would be unsatisfiable.

Planning: Planning is a classic type of reasoning in which
a query is satisfied if there exists a sequence of actions
that starts in the current state and ends in a state that
satisfies a goal condition. ACTASP implements, along-
side the classic notion of a planner, the notion of a
multi-planner, that is a planner that returns not just
one plan but all the plans which reach the goal in a
given number of actions. These plans can be used by
an appropriate action executor to have several options
in case one should fail, or to learn which one of the
available paths is optimal according to a user-specified
criterion.

Monitoring: Execution monitoring is traditionally associ-
ated with verifying that the current sequence of actions
being followed still achieves the original task. In
ACTASP, monitoring is implemented through a query
which appends the remaining sequence of actions in
the plan to the original planning query. The reasoner
will be able to satisfy the query if and only if the
remaining plan can lead the agent to a goal state.
This is a looser condition than having the prediction
on the outcome of the last action verified, since the
action may actually have given an unpredicted out-
come, while the rest of the plan could still be valid.
For example, during action execution the robot may
have noticed unexpected changes in the environment
and have updated the knowledge base in response.
Even if the resulting next state is not the sole effect of
the application of the last action, if the new changes
do not disrupt the rest of the plan, the monitoring
query will still report the plan to be valid. This robust-
ness is of great practical importance since, without
it, if the environment is inhabited by humans, the
inevitable continual changes would also continually
trigger computationally expensive replanning.

The ACTASP library also provides two types of action
executors: a replanning action executor and a learning
action executor. The replanning action executor has a sim-
ple, intuitive behavior. It uses an underlying planner to gen-
erate a plan, then requests the execution of the actions to the
rest of the system, while monitoring the validity of the plan
between one action and the next. As previously mentioned,
the only planner currently implemented uses the answer set
solver itself, but any other planner can be interfaced with
the library. If the remaining plan appears to be invalid, the
executor uses the planner to generate a new plan from the
current state. A solution also provided by the library is a
planner called any plan, which uses an underlying multi-
planner to generate all plans of a maximum length and
returns a random one. This behavior allows the robot to ran-
domly explore several possible paths in the case of being
stuck on a plan that keeps failing. As with the planner, the
only multi-planner currently implemented is based on the
answer set solver CLINGO, but other implementations are
possible.

The learning action executor is more sophisticated. It
makes use of an underlying multi-planner to generate a
number of options, and then it learns from experience,
through reinforcement learning, the value of each action in
every encountered state (Leonetti et al., 2016). Given a cost
function for the actions, the value of an action in a given
state is the expected total cost incurred by taking the action
and acting optimally afterwards. Through this mechanism,
the learning executor improves the robot’s efficiency, over
time, at reaching the goals that are repeatedly requested.
The cost function can be anything the user intends to min-
imize: time, energy, interactions with users, action failures,
and so on. In our system, we use the action execution time,
so that the robot learns to minimize the total time taken to
reach the goals.

4.7. Multi-robot coordination

The software components described up to this point are suf-
ficient to enable robust autonomous control of an individual
robot. However, we have not addressed any of the issues
that arise when multiple robots are operating in the same
environment. In particular, the core ROS infrastructure does
not support robust multi-robot communication and coordi-
nation. We therefore make use of the RObotics in CONcert
(ROCON) ROS modules to enable centralized control over
multiple BWIBots (Stonier et al., 2015).

This multi-robot coordination framework introduces the
fifth and final layer available for controlling the robots:
multi-robot control. Using this framework, it is possible to
execute any one of the other (single-robot) layers of control
on multiple robots.

4.8. Summary

Sections 3–4 describe the hardware and software design
choices behind the BWIBots. All the software outlined in
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this section is available open-source.7 Next, we summarize
a set of representative research applications that have uti-
lized this platform. These research contributions interface
with the software architectures using different modules and
control levels.

5. Planning using action language BC
In Section 4.6, we explained how the planning module
is implemented, but did not explain how the knowledge
contained within the robot is described, nor how action
effects are encoded. These descriptions are necessary for
the robot to perform planning and reasoning. In this sec-
tion, we briefly describe how action language BC (Lee et al.,
2013) can be used for constructing a general purpose plan-
ning description for robot task planning (Khandelwal et al.,
2014). Prior to this work, action language BC had not been
used for robot task planning. Thus, this section summarizes
one of the main research contributions resulting from the
development of the BWIBots.

General purpose planning domain descriptions can be
written using various modes. Action languages such as BC
are attractive in task planning for mobile robots because
they solve the frame problem, which states that many
axioms are necessary to express that things in the envi-
ronment do not change arbitrarily (McCarthy and Hayes,
1969). For example, when a robot picks up an object from
the table, it does not change the location of a different object
on the table. BC solves this problem by easily expressing
rules of inertia. In addition, BC can solve the ramification
problem, which is concerned with the indirect consequences
of an action (Finger, 1986). For example, when a robot picks
up a tray from the table, it indirectly changes the location of
any object on the tray. BC can also easily express indirect
and recursive effects of actions.

Existing tools such as COALA (Gebser et al., 2010) and
CPLUS2ASP (Babb and Lee, 2013) allow us to translate BC
action descriptions into logic programs under answer set
semantics (Gelfond and Lifschitz, 1988, 1991), and plan-
ning can be accomplished using the computational methods
of ASP (Marek and Truszczynski, 1999; Niemelä, 1999).

In this section, we demonstrate how action language BC
can be used for robot task planning in domains requiring
planning in the presence of missing information and indi-
rect/recursive action effects. While we demonstrate using
BC how to express a mail collection task, the overall
methodology is applicable to any other planning domains
that require: recursive and indirect action effects, defeasible
reasoning, and acquiring previously unknown knowledge
through HRI. In addition, we also demonstrate how answer
set planning under action costs (Eiter et al., 2003) can be
applied to robot task planning in conjunction with BC.

Before we describe how BC is used to construct a
general purpose planning description, we briefly discuss
other related approaches for solving the same problem.
Task planning problems for mobile robots have also been

described using the Planning Domain Definition Language
(PDDL) (Quintero et al., 2011), which are then solved
using planning algorithms such as Fast-Forward (Hoffmann
and Nebel, 2001) and Fast-Downward (Helmert, 2006).
While PDDL has primarily been used with an emphasis
on efficient plan generation, it has rarely been used in
domains with many indirect or recursive action effects,8 or
in domains where defeasible reasoning is necessary for suc-
cinct expressivity. In such domains, BC provides a viable
alternative.

Apart from PDDL, action language C+ (Giunchiglia
et al., 2004) has also been used for robot task plan-
ning (Caldiran et al., 2009; Chen et al., 2010; Chen, Jin,
et al., 2012; Erdem and Patoglu, 2012; Erdem et al., 2013;
Havur et al., 2013). Unlike BC, C+ cannot encode recursive
action effects. In addition, most of these existing applica-
tions do not consider knowledge acquisition, that is they
assume that all the information necessary for planning is
available in the initial state, and do not consider action
costs. Recent work improves on existing ASP approaches
for robot task planning by incorporating a constraint on
the total time required to complete the goal (Erdem et al.,
2012). While this previous work attempts to find the short-
est plan that satisfies the goal within a prespecified time
constraint, our work attempts to explicitly minimize the
overall cost to produce the optimal plan.

5.1. Describing domains in BC
The action language BC, like other action description lan-
guages, describes dynamic domains as transition systems.
A full description of BC can be found in Lee et al. (2013).
Information about the state of the world is expressed using
fluents, and each fluent has a finite domain. An action
description in BC is a finite set consisting of dynamic and
static laws. Dynamic laws represent how the values of flu-
ents and actions in the current time step affect fluents in the
next time steps, whereas static laws incorporate how fluents
affect other fluents within the current time step.

In this section, we describe a small yet representative set
of BC laws that can be used to express such a domain. These
rules are not designed to completely represent the opera-
tion of a mobile robot, and a more elaborate description
is available in Khandelwal et al. (2014). In this domain, a
robot needs to collect outgoing mail (intended for delivery)
from building residents. Furthermore, it has limited bat-
tery life and must recharge its battery before it runs out to
continue operation. The floor plan for this building is illus-
trated in Figure 4. alice, bob, carol and dan are people who
inhabit the building. o1, o2, o3, lab1, and cor are rooms in
the building, connected via doors d1, d2, d3, d4, and d5.

Facts about the structure of the building can be easily
represented in BC. For instance, the following laws express
which rooms have doors, and that two rooms are accessible
to each other if they share the same door. In these laws,
we use meta-variables R, Ri and D, Di to refer to rooms
and doors, respectively. Furthermore the default keyword
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Fig. 4. The layout of the example floor plan used in the text, along
with depictions of the locations of alice, bob, and carol and the
robot charger. The location of dan is not initially known.

is used to refer to defeasible reasoning.

default ∼hasdoor( R, D) .
hasdoor( o1, d1) . hasdoor( o2, d2) . hasdoor( o3, d3) .
hasdoor( lab1, d4) . hasdoor( lab1, d5) .
default ∼acc( R1, D, R2) .
acc( R1, D, R2) if hasdoor( R1, D) , hasdoor( R2, D) .
acc( R1, D, R2) if acc( R2, D, R1) .

Additionally, a robot can only approach a door in the same
room as itself, and it can go through this door once it is
adjacent. These navigation actions can only be performed if
the robot has sufficient battery and makes use of the seman-
tic navigation node. Action preconditions are imposed by
making actions invalid if these preconditions are not met,
using the nonexecutable keyword.

approach( D) causes beside( D) .
nonexecutable approach( D) if loc = R, ∼hasdoor( R, D) .
nonexecutable approach( D) if beside( D) .
nonexecutable approach( D) if battery = 0.

gothrough( D) causes ∼beside( D) .
gothrough( D) causes loc = R2 if loc = R1, acc( R1, D, R2) .
nonexecutable gothrough( D) if ∼beside( D) .
nonexecutable gothrough( D) if battery = 0.

We also need to encode the change in battery life as time
progresses, and the following example demonstrates how
BC uses defeasible reasoning to express the change in
battery state without affecting other actions, and how the
battery can be recharged using the recharge action.

default battery = max( a− 1, 0) after battery = 0.
recharge causes battery = 5.
nonexecutable recharge if loc �= lab1.

Note that the above example is simplistic, and the update
rule can update the battery state based on the passage of
time and the time spent by the robot recharging. Next, we
encode whether a robot knows the location of a person P,
ensuring that the robot does not believe that a person is in
two rooms at the same time. Additionally, we assume that
a person’s location remains the same in the next time step,
using the inertial keyword.

default ∼inside( P, R) .
inside( alice, o1) . inside( bob, o2) . inside( carol, o3) .
inertial inside( P, R) .
∼inside( P, R2) if inside( P, R1) , R1 �= R2.

If the robot knows where person P is, it can collect mail
from that person using the collectmail action. If another
person P2 passed their mail to P, then P2’s mail is collected
as well, which is a recursive indirect action effect of the
collectmail action:

collectmail( P) causes mailcollected( P)
mailcollected( P2) if mailcollected( P) , passto( P2, P) .
nonexecutable collectmail( P) if loc = R, ∼inside( P, R) .

5.2. Planning using BC description

Given a BC description, planning is performed as described
in Section 4.6. During execution, should the robot not know
the location of person P, it can ask person P1 for P’s
location. The askploc action asks person P’s location from
person P1:

askploc( P1, P) causes inside( P, R) if loc = R.
nonexecutable askploc( P1, P) if loc = R, ∼inside( P1, R) .

For planning purposes, it is assumed that P’s location is
the same as that of the robot. During execution, person P1

should return the true location of P, which is then used to
update the knowledge base. Should the location of P be dif-
ferent from the robot’s current location, execution monitor-
ing determines the remaining plan is invalid, and replanning
then determines a plan that considers person P’s correct
location.

Planning using BC can be computationally expensive,
especially when the total plan cost is minimized instead of
the number of actions. It is possible to use multiple domain
abstractions in BC, where each description encodes a differ-
ent level of detail and hierarchical planning techniques can
speed up planning time (Zhang, Yang, et al., 2015). Hier-
archical planning requires some modifications to task plan-
ning module presented in Section 4.6, such that planning is
performed across multiple layers of the domain abstraction
hierarchy, and is not covered in this article.

5.3. Experimental results

We demonstrate a simple experiment that performs cost-
based planning on a BWIBot while learning these action
costs on the fly. The goal of this experiment is to learn
actions costs sufficiently well enough that cost-based plan-
ning always chooses the optimal plan. The real world
domain contains five rooms, eight doors, and four people
from whom mail has to be collected, and is illustrated in
Figure 5(a). Two people have passed mail such that the robot
only needs to visit a total of two people to collect everyone’s
mail.

We present the cost curves of four different plans in Fig-
ure 5(b), where plan 1 is optimal. In this experiment, the
robot starts in the middle of the corridor while not beside
any door as shown in Figure 5(a). The learning curves show
that the planner discovers by the episode 12 that plan 1 is
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Fig. 5. The real world domain contains five rooms, eight doors, and four people from whom mail has to be collected. The filled circle
marks the robot’s start position, the crosses mark the people who have all the mail (A, C), and the arrows mark how mail was recursively
passed to them. The four plans compared in Figure 5b are also marked on the floor plan.

optimal. After the optimal plan is found, no other plans are
selected for execution and their costs do not change.

In this section, we demonstrated how action language BC
can be used to describe general purpose planning descrip-
tions, and demonstrated how such a description can be
used by the BWIBots. Using action language BC allows us
to easily formalize indirect effects of actions on recursive
fluents, as well as default knowledge.

6. Incorporating uncertainty into planning

In the previous section, we discussed how a robot could
achieve a goal by executing multiple high-level actions on
the BWIBots. While action language BC can express defea-
sible reasoning, it cannot express probabilities, and con-
sequently cannot be used for stochastic planning. In the
research contribution summarized in this section, we intro-
duce a method for robots to efficiently and robustly ful-
fill service requests in human-inhabited environments by
simultaneously reasoning about commonsense knowledge
expressed using defeasible reasoning and computing plans
under uncertainty. We illustrate this planning paradigm
using a spoken dialog system (SDS), where the robot identi-
fies a spoken shopping request from the user in the presence
of noise and/or incomplete instructions. The goal of the sys-
tem is to identify the shopping request as quickly as possible
while minimizing the cost of asking questions. Once con-
firmed, the robot attempts to deliver the item as explained
in Section 4.6. While this planning paradigm is described
in the context of an SDS, it can just as easily be applied to
other stochastic planning problems as well.

Commonsense knowledge is the knowledge that is nor-
mally true but not always; for example, office doors
are closed during holidays and people prefer coffee in
the mornings. Logical commonsense knowledge needs to
be expressed via defeasible reasoning, and probabilistic

commonsense knowledge needs to be expressed via prob-
ability distributions. In parallel with commonsense reason-
ing, robots frequently need to compute a plan including
more than one action to accomplish tasks that cannot be
completed through single actions. To do so, it is neces-
sary to model the uncertainty in the robot’s local, unreliable
observations and nondeterministic action outcomes while
planning toward maximizing long-term reward.

In this section, we describe the CORPP (COmmonsense
Reasoning and Probabilistic Planning) algorithm (Zhang
and Stone, 2015). While commonsense reasoning and
planning under uncertainty have been studied separately,
CORPP, for the first time, exploits their complementary fea-
tures by integrating POMDPs and P-LOG (Baral et al., 2009)
and enables robots to simultaneously reason about both log-
ical and probabilistic commonsense knowledge and plan
toward maximizing long-term reward under uncertainty.

Different methods have been developed to combine
commonsense reasoning and probabilistic planning. For
instance, Zhang, Sridharan, et al. (2015) combined ASP

and POMDPs for integrating logical reasoning and prob-
abilistic planning, but bridging the gap between answer
sets (i.e. the reasoning results of ASP) and POMDP beliefs
requires significant domain knowledge. Hanheide et al.
(2015) used a switching planner for deterministic and prob-
abilistic planning and used commonsense knowledge for
diagnostic tasks and generating explanations. In contrast,
CORPP is an algorithm that integrates commonsense rea-
soning and probabilistic planning while exploiting their
complementary features in a principled way. Young et al.
(2013) have reviewed existing techniques and applications
of POMDP-based SDSs, and, similar to other POMDP appli-
cations, such SDSs are ill-equipped to represent and reason
with commonsense knowledge.

Before we describe the CORPP algorithm and present
an experimental evaluation, we briefly discuss the logic
programming language P-LOG used within the algorithm.
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Fig. 6. Overview of algorithm CORPP for combining common-
sense reasoning with probabilistic planning

6.1. Background

In this subsection, we briefly introduce logic programming
languages ASP and P-LOG. P-LOG is a probabilistic exten-
sion of ASP. More detailed descriptions of ASP and P-LOG

are available in Gelfond and Kahl (2014).
An ASP program can be described using a set of rules of

the form:

l0 or · · · or lk←lk+1, . . . ,lm, not lm+1, . . . , not ln

where l’s are expressions of the form p (t̄)= true or a
(t̄) = y. Symbol not is a logical connective called default
negation; not l is read as “it is not believed that l is
true”, which does not imply that l is believed to be false.
For example, not prof(alice) means it is unknown that
alice is a professor. A rule is separated by the symbol
“←”. The left side is called the head and the right side is
called the body. A rule is read as “head is true if body is
true”.

Default negation is used in ASP to express
defeasible reasoning. For instance, the rule:
p(X) ← c(X) , not ¬p(X) . expresses that if object
X has attribute c, it is believed that X has attribute p unless
there is evidence to the contrary. Inertia can be expressed
similarly.

Probabilistic extensions of ASP have been developed for
enabling both logical and probabilistic reasoning using a
single set of syntax and semantics, such as P-LOG (Baral
et al., 2009). P-LOG allows random selections—saying that
if B holds, the value of a(t̄) is selected randomly from
the set {X : q(X) } ∩ range(a), unless this value is fixed
elsewhere:

random(a(t̄) : {X : q(X) })← B

where B is a collection of extended literals and q is a pred-
icate. P-LOG also allows directly specifying probabilities
using probability atoms (or pr-atoms):

pr(a( t̄)= y|B)= v

that states if B holds, the probability of a( t̄)= y is v with
v ∈ [0,1]. In this work, we use P-LOG for commonsense
reasoning.

6.2. The CORPP algorithm

Before introducing the CORPP algorithm, it is necessary
to classify domain attributes based on their observability.
If an attribute’s value can only be observed using sensors,
we say this attribute is partially observable. For instance,
the current location (of a robot) is partially observable,
because self-localization relies on sensors. The values of
attributes that are not partially observable can be specified
by facts, defaults, or reasoning with other attributes’ val-
ues. For instance, the value of attribute, is it within working
hours now, can be inferred from current time. Similarly,
identities of people as facts can be available but not always.
The value of an attribute can be unknown.

We propose the CORPP algorithm for reasoning with
commonsense and planning under uncertainty, as shown in
Figure 6. The logical reasoner (LR) includes a set of logical
rules in ASP and takes defaults and facts as input. The facts
are collected by querying internal memory and databases. It
is possible that facts and defaults try to assign values to the
same attributes, in which case default values will be auto-
matically overwritten by facts. The output of the LR is a set
of possible worlds {W0, W1, . . .}. Each possible world, as an
answer set, includes a set of literals that specify the values
of attributes—possibly unknown.

The probabilistic reasoner (PR) includes a set of random
selection rules and probabilistic information assignments in
P-LOG and takes the set of possible worlds as input. Rea-
soning with the PR associates each possible world with a
probability:

{W0 : pr0, W1 : pr1, . . .}
Unlike the LR and PR, the probabilistic planner (PP), in

the form of a POMDP, is specified by the goal of the task and
the sensing and actuating capabilities of the agent. The prior
in Figure 6 is in the form of a distribution and denoted by
α. The ith entry in the prior, αi, is calculated by summing
up the probabilities of possible worlds that are consistent
with the corresponding POMDP state si. In practice, αi is
calculated by sending a P-LOG query of this form:

?{si}|obs(l0) , . . . ,obs(lm) ,do(lm+1) , . . . ,do(ln)

where l’s are facts. If a fact l specifies the value of a ran-
dom attribute, we use obs(l). Otherwise we use do(l).
do(l) adds l into a program before calculating the possi-
ble worlds, while obs(l) is used to remove the calculated
possible worlds that do not include literal l.

The prior is used for initializing POMDP beliefs in the PP.
Afterwards, the robot interacts with the world by continu-
ally selecting an action, executing the action, and making
observations in the world. A task is finished after falling
into a terminating state.

CORPP is fully implemented and tested on a shopping
request identification problem. In a campus environment,
the shopping robot can buy an item for a person and
deliver to a room, so a shopping request is in the form of
〈item, room, person〉. A person can be either a professor or a
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student. Registered students are authorized to use the robot
for free, and professors need to pay for the service of using
the robot. The robot has access to a database to query about
registration and payment information, but the database may
be incomplete. The robot can initiate spoken dialog to
gather information for understanding shopping requests and
take a delivery action when it becomes confident in the esti-
mation. This task is challenging for the robot because of
its imperfect speech recognition ability. The goal is to iden-
tify shopping requests, for example 〈coffee, office1, alice〉,
efficiently and robustly.

The following two logical reasoning rules state that pro-
fessors who have paid and students who have registered are
authorized to place orders.

authorized(P)← paid(P) , prof(P) .

authorized(P)← registered(P) , student(P) .

Since the database can be incomplete regarding registra-
tion and payment information, we need default knowledge
to reason about unspecified variables. For instance, if it is
unknown that a professor has paid, we believe the professor
has not; if it is unknown that a student has registered, we
believe the student has not.

¬paid(P)← not paid(P) , prof(P) .

¬registered(P)← not registered(P) , student(P) .

ASP is strong in default reasoning in that it allows prior-
itized defaults and exceptions at different levels (Gelfond
and Kahl, 2014). The LR has the closed world assump-
tion (CWA) for some predicates; for example, the below
rule guarantees that the value of attribute authorized(P)
must be either true or false (cannot be unknown):

¬authorized(P)← not authorized(P)

The following two pr-atoms state the probability of deliv-
ering for person P to P’s working place (0.8) and the
probability of delivering coffee in the morning (0.8).

pr(req_room(P)= R | place(P,R) ) = 0.8.

pr(req_item(P)= coffee|curr_time = morning) = 0.8.

Random selection rules and pr-atoms, such as the ones
above, allow us to represent and reason about commonsense
with probabilities. Finally, a shopping request is specified as
follows:

task(I,R,P)←req_item(P)= I, req_room(P)= R,

req_person = P, authorized(P) .

The PR takes queries from the PP and returns the joint prob-
ability. For instance, if it is known that Bob, a professor, has
paid, and the current time is morning, a query for calculat-
ing the probability of 〈sandwich,office1,alice〉 is
of the form:

?{task(sandwich,office1,alice) } | do(paid(bob) ) ,

obs(curr_time = morning) .

The fact that bob paid increases the uncertainty in esti-
mating the value of req_person by bringing in additional
possible worlds that include req_person = bob.

A POMDP needs to model all partially observable
attributes relevant to the task at hand. In the shopping
request identification problem, an underlying state is com-
posed of an item, a room, and a person. The robot can ask
polar questions such as “Is this delivery for Alice?”, and
wh-questions such as “Who is this delivery for?” The robot
expects observations of “yes” or “no” after polar questions
and an element from the sets of items, rooms, or persons
after wh-questions. Once the robot becomes confident in
the request estimation, it can take a delivery action that
deterministically leads to a terminating state. Each delivery
action specifies a shopping task.

6.3. Experimental results

We have implemented the proposed approach on a BWIBot
to identify shopping request tasks. The planner helps the
robot decide whether to ask more questions (and what to
ask) or to take a delivery action (and which delivery action),
balancing the cost of asking questions and the penalty of
wrong deliveries. The robot has to model the uncertainty
in observations to account for the unreliable speech recog-
nition techniques. The robot keeps asking questions and
updates its belief about the shopping requests being iden-
tified. This question-asking process ends when the robot
is certain about the shopping request and decides to take
a delivery action using the planning module explained in
Section 4.6.

We present the belief change in an illustrative trial in
Figure 7, where i, r, and p are an item, room, and per-
son. i0 is sandwich and i1 is coffee. The robot first reads
its internal memory and collects a set of facts such as
the current time is “morning”, p0’s office is r0, and p1’s
office is r1. Reasoning with commonsense produced a prior
shown in the top-left of Figure 7(b), where the most proba-
ble two requests were 〈i1, r0, p0〉 and 〈i1, r1, p1〉. The robot
took the first action to confirm the item was coffee. After
observing a “yes”, the robot further confirmed p1 and r1.
Finally, it became confident in the estimation and success-
fully identified the shopping request. Therefore, reason-
ing with domain knowledge produced an informative prior,
based on which the robot could directly focus on the most
likely attribute values and ask corresponding questions. In
contrast, when starting from a uniform prior (Figure 7(a)),
the robot would have needed at least six actions before
the delivery action. A demo video is available at: http:
//youtu.be/2UJG4-ejVww

Figure 8 shows the experimental results. Each set of
experiments has three data points because we assigned
different penalties to incorrect identifications in the PP.
Generally, a larger penalty requires the robot to ask more
questions before taking a delivery action. POMDP-based
PP without commonsense reasoning produced the worst
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Fig. 7. Belief change using both approaches in an illustrative trial. As illustrated, CORPP takes fewer questions to reach the same
conclusion using informative priors.

Fig. 8. CORPP performs better than the other approaches in both
efficiency and accuracy. Three data points on each curve corre-
spond to different penalties of incorrect identifications. From left
to right, the penalties are 10, 60, and 100 respectively.

results. Combining LR with PP improves the performance
by reducing the number of possible worlds. Finally, the pro-
posed algorithm, CORPP, produced the best performance in
both efficiency and accuracy.

In this section, we described an approach that integrates
commonsense reasoning and probabilistic planning and
allows the robot to handle dialog management with a human
while using commonsense reasoning to specify a state space
and instantiate a prior belief on the dialog.

7. Understanding natural language requests

While the research contributions of the previous sections
pertained mainly to fully autonomous planning, control,
and reasoning, both for task planning and dialog systems,
human responses during interaction are expected to be
exact, and from a given range of possible responses. One of
the most natural forms of HRI for humans is through natural
language. However natural language processing remains a
challenging research area within AI, and intelligent service
robots should be able to efficiently and accurately under-
stand commands from human users speaking in natural
language.

In this section, we describe our research contribu-
tions pertaining to language learning to facilitate on-line

improvement of the robots’ understanding of spoken com-
mands. We use a dialog agent embodied in a BWIBot
to communicate with users through natural language and
improve language understanding over time using data from
these conversations (Thomason et al., 2015). By learn-
ing from conversations, our approach can recognize more
complex language than keyword-based approaches with-
out needing the large-scale, hand-annotated training data
associated with complex language understanding tasks.

We train a semantic parser with a tiny set of expres-
sions paired with robot goals. The natural language under-
standing component of our system is this semantic parser
together with a conversational dialog agent. The dialog
agent keeps track of the system’s partial understanding of
the goal the user is trying to convey and asks clarification
questions to refine that understanding.

For example, given a high-level directive like “bring
some java to Alice,” our dialog agent uses follow-up ques-
tions to clarify any missing piece of needed information.
If the agent does not recognize the phrase “some java,” it
may ask “What should I bring to Alice?” User clarifications
provide training data pairs for a semantic parser. In this
example, the user specifying “coffee” also lets the system
know that “some java” and “coffee” mean the same thing.
Less trivially, the agent may ask the user to rephrase his
or her whole query, ultimately resulting in training pairs of
commands to fully formed action goals.

Using the conversation from the dialog agent to build
training examples for the semantic parser, the natural lan-
guage component as a whole is able to correctly interpret
user commands faster over time.

7.1. Related work

The work presented in this section is the first approach
to intersect semantic parsing, dialog, and robot language
grounding.

At the intersection of semantic parsing and language
grounding, prior work uses restricted language and a static,
hand-crafted lexicon to map natural language to action
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Fig. 9. Dialog agent workflow. Dashed boxes show processing of
user command “go to the office.” When a command is understood,
ASP generates a series of actions realized as robot behavior to
carry out that command.

specifications (Matuszek et al., 2013). These specifications
are grounded against a knowledge base onboard a robot,
similar to how we can resolve semantic forms for expres-
sions like “Alice’s office” to physical rooms in the environ-
ment. We also use the knowledge base used for planning on
the robot to ground semantic expressions.

At the intersection of dialog and language grounding,
past work presented a dialog agent used together with a
knowledge base and understanding component to learn new
referring expressions during conversations that instruct a
mobile robot (Kollar, Perera, et al., 2013). They use seman-
tic frames of actions and arguments extracted from user
utterances, while we use λ-calculus meaning representa-
tions. Our agent reasons about arguments like “Mallory
Morgan’s office,” by considering what location would sat-
isfy the expression, while semantic frames instead add a
lexical entry for the whole phrase explicitly mapping to
the appropriate room. Our method is more flexible for rea-
soning (e.g. “the person whose office is next to Mallory
Morgan’s office”) and changes to arguments (e.g. “George
Green’s office”).

Learning from conversations in our work is inspired by
past work at the intersection of semantic parsing and dialog
(Artzi and Zettlemoyer, 2011). That work used logs of con-
versations users had with an air-travel information system
to train a semantic parser for understanding user utterances.
Our approach to learning is similar, but done incremen-
tally from conversations the agent has with users, and our
training procedure is integrated into a complete, interactive
robot system.

7.2. Methodology

Figure 9 shows the interaction workflow between a human
user and the embodied dialog agent. Users interacted with
a BWIBot through the GUI by typing in natural language.

In the example interaction, the underspecified command
“go to the office” is parsed, grounded against the knowl-
edge representation and reasoning node, which contains the
knowledge base, and used to update the dialog agent’s belief
about the user’s intent. The agent generates the response
“Where should I walk?”, having understood the action it
should take but correctly recognizing that the destination
was not specific enough. When the agent is confident in the
user’s intended command, a planning task with an appro-
priate goal is generated and passed to the software module
responsible for task planning and execution, which gener-
ates the necessary sequence of actions that the robot exe-
cutes to accomplish that task. Consequently, this research
contribution makes use of high-level action control for
interacting with the user, and planning level control for
grounding language in the knowledge base and executing
requests.

For testing, users were asked to instruct the robot for
one navigation task and one delivery task. These tasks were
fixed for our 20 test users, who were divided into before-
and after-training groups. Users could skip tasks if they
felt they could not convey specified goals to the robot.
Users filled out an experience survey after they were fin-
ished: “The tasks were easy to understand” (Tasks Easy);
“The robot understood me” (Understood); “The robot frus-
trated me” (Frustrated); “I would use the robot to find a
place unfamiliar to me in the building” (Use Navigation);
and “I would use the robot to get items for myself or oth-
ers” (Use Delivery). Users answered on a five-point Lik-
ert scale: “strongly disagree”(0), “somewhat disagree”(1),
“neutral”(2), “somewhat agree”(3), “strongly agree”(4).

The initial group of 10 users (INIT TEST) interacted with
the robot-embodied dialog agent with the semantic parser
bootstrapped with a tiny set of expression/goal pairs.

We then allowed the system to perform incremental
learning for four days in our office space. People working at
the University of Texas at Austin Computer Science Depart-
ment were encouraged to chat with the robot, but were not
instructed on how to do so beyond a panel displaying infor-
mation about people, offices, and items for delivery and a
brief prompt saying the robot could only perform “naviga-
tion and delivery tasks”. After understanding and carrying
out a goal, the robot prompted the user for whether the
actions taken were correct. If they answered “yes” and the
goal was not in the test set, the agent retrained its semantic
parser with new training examples aligned from the con-
versation. A total of 35 such successful conversations were
used to retrain the system before further evaluation.

To exemplify these training examples, Figure 10 shows
a conversation the dialog agent had with a user in a prior,
controlled experiment where users were told what goal
to convey (similar to the methodology when testing per-
formance). In addition to the prompt for the task to be
completed, the user was shown a table of pictures with
numbered slots; in slot five was a picture of a calendar.
From this conversation, the agent pairs “please bring the
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Fig. 10. This abridged conversation is from when the system had
only been bootstrapped and not yet trained. Because of this conver-
sation, the agent learned that “calander” and “day planner” mean
“calendar” during retraining.

Table 2. Average survey responses from the two test groups and
the proportion of task goals completed. Means in bold differ
significantly (p < 0.05). Means in italics trend different (p < 0.1).

Initial test Trained test

Survey question Likert [0–4]
Tasks easy 3.8 3.7
Robot understood 1.6 2.9
Robot frustrated 2.5 1.5
Use navigation 2.8 2.5
Use delivery 1.6 2.5
Goals completed Percent
Navigation 90 90
Delivery 20 60

item in slot 5 to dave daniel” with the correct semantic
form understood after all clarifying questions, enabling it
to learn that the construction “item in slot 5” can mean
“calendar.” Additionally, when trying to clarify the item to
be brought, it learns the synonym “day planner” and the
misspelling “calander” for “calendar.” A video demonstrat-
ing the learning process on the BWIBot is available at:
https://youtu.be/FL9IhJQOzb8.

We evaluated the retrained agent as before with the 10
remaining test users (TRAINED TEST) and the same set of
testing goals.

7.3. Results

During training, the robot understood and carried out 35
goals, learning incrementally from these conversations.
Table 2 compares the survey responses of users and the
number of goals users completed of each task type in the
INIT TEST and TRAINED TEST groups.

We note that there is significant improvement in user
perception of the robot’s understanding and trends towards
less user frustration and higher delivery-goal correctness.

Though users did not significantly favor using the robot for
tasks after training, several users in both groups commented
that they would not use guidance only because the BWIBot
moved too slowly.

In this section, we have implemented an agent that
expands its natural language understanding incrementally
from conversations with users by combining semantic pars-
ing and dialog management. We have demonstrated that
this learning on the BWIBot platform yields significant
improvements in user experience and dialog efficiency
when learning was restricted to natural, uncontrolled, in-
person conversations the agent had over a few days’ time.

8. Grounded language learning through HRI

In the previous section, the research contribution focused
on how commands can be provided via natural language,
and the responses were grounded using the knowledge base
on the robot. However, often it is necessary for a robot to
ground language using its own perception and actions with
respect to objects. Consider the case where a human asks
a service robot, “Please bring me the full red bottle.” To
fulfill such a request, a robot would need to detect objects
in its environment and determine whether the words “full,”
“red,” and “bottle” match a particular object detection. Fur-
thermore, such a task cannot be solved using static visual
object recognition methods as detecting whether an object
is full or empty may often require the robot to perform a
certain action on it (e.g. lift the object to measure the force
it exerts on the arm).

In this section, the research contribution focuses on solv-
ing the symbol grounding problem (Harnad, 1990), a long-
standing challenge in AI, where language is grounded using
the robot’s perception and action (Kollar, Krishnamurthy,
et al., 2013; Krishnamurthy and Kollar, 2013; Matuszek
et al., 2012, 2014; Parde et al., 2015; Perera and Allen,
2013; Spranger and Steels, 2015; Tellex et al., 2011, 2014).
To address this problem, we enable a robot to undergo two
distinct developmental stages:

1. Object exploration stage—The robot interacts with
objects using a set of exploratory behaviors designed
to produce different kinds of multi-modal feedback.

2. Social learning stage—The robot interacts with humans
in order to learn mappings from its sensorimotor experi-
ence with objects to words that can be used to described
the objects.

8.1. Object exploration stage

To fulfill the first stage, the BWIBot featuring the Kinova
Mico arm was equipped with several different exploratory
behaviors, such as grasping an object, lifting it, pushing it,
and so on. These actions were modeled after the types of
behaviors infants and toddlers use to learn about objects in
the early months and years of life (Power, 1999).
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Fig. 11. The exploratory behaviors used by the robot. The look
action is not depicted.

In a preliminary experiment, the robot explored 32
common household and office objects including various
containers, cups, toys, and so on. The robot’s behavior
repertoire consists of seven different exploratory actions:
grasp, lift, hold, lower, drop, push, and press. During the
execution of each action the robot recorded visual, auditory
and haptic sensory feedback. In addition, the robot is also
equipped with the static look behavior which captures the
object’s visual appearance before the robot begins to inter-
act with it. Figure 11 shows the exploratory actions used by
the robot.

During the execution of the look behavior, the robot’s
visual system segments the 3D point cloud of the object
from the tabletop and computes color histogram features
in RGB space, shape histogram features as implemented by
Rusu et al. (2009), and deep visual features computed by the
16-layer VGG network proposed by Simonyan and Zisser-
man (2014). During the execution of each of the remaining
seven exploratory behaviors, the robot computes auditory
and haptic features as described by Sinapov et al. (2014).
In addition, when performing the grasp behavior, the robot
used the same methodology to extract proprioceptive fea-
tures capturing how the fingers’ joint positions change over
time.

A more detailed description of the objects and data col-
lection methods used for this dataset can be found in a
paper on object ordering using haptic and proprioceptive
behavior (Sinapov et al., 2016).

8.2. Social learning stage

To learn words describing individual objects, our robot uses
a variation on the children’s game “I Spy”. During each
game session, the human and the robot take turns describ-
ing objects from among four on a tabletop, as shown in
Figure 12. On the human’s turn, the robot asks him or her
to pick an object and describe it in one phrase. The robot
subsequently attempts to guess which object matches the
words heard from the human. To do so, over the course of

Fig. 12. (Left) The robot guesses an object described by a human
participant as “silver, round, and empty.” (Right) A human partici-
pant guesses an object described by the robot as “light,” “tall,” and
“tub.”

multiple sessions the robot learns a behavior-grounded clas-
sifier for each word that it observes using the methodology
of Sinapov et al. (2014). Given the words uttered by the
human, the robot then picks the object that has the high-
est scores from the classifiers corresponding to the words.
To indicate its pick, the robot moves the arm, points to the
object, and asks the human if the choice is correct.

During the robot’s turn, an object is chosen at random
from those on the table and described by the robot using
three words corresponding to the three classifiers with the
highest score for that object. The robot then asks the human
to make a guess by physically touching or lifting the object.
After a correct guess, the robot asks questions about the
object in the form of “would you use the word x to describe
the object?” where x is one of the words that the robot has
observed.

8.3. Experiment

To test our system, we conducted an experiment involv-
ing 42 human participants, consisting of undergraduate and
graduate students, staff, and faculty. To measure the robot’s
learning progress over time, we divided an object set into
four folds. For each fold, at least 10 participants each played
four rounds of “I Spy” with the robot. After each fold, the
robot’s classifiers were re-trained using the newly gathered
data, and new classifiers were created for words that were
novel to that fold.

We measured the number of guesses it took the robot
and the human to correctly identify the object during their
respective turns. The experiment was conducted under two
conditions: vision-only, during which the robot attempts to
ground words using only visual sensory feedback detected
during the look behaviors, and multi-modal, during which
the robot used all available sensory feedback from all
behaviors.

8.4. Results

By the end of the experiment, the robot had learned
behavior-grounded classifiers for around 70 words that the
participants used to describe objects (Thomason et al.,
2016). Most noticeably, in the multi-modal condition, there
was a statistically significant decrease in the number of
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Fig. 13. Average expected number of guesses the robot made on
each human turn with standard error bars shown. Bolded num-
bers: Significantly lower than the average at fold 0 with p < 0.05
(unpaired student’s t-test). *: Significantly lower than the compet-
ing system on this fold on participant-by-participant basis with
p < 0.05 (paired student’s t-test).

guesses it took the robot to identify the object as a result
of the robot’s interactive game-play experience. During the
first fold, it took the robot an average of 2.5 guesses to solve
each task. During the second fold, the robot was able to
identify the object with an average of 1.98 guesses, which
dropped to 1.73 during the third fold.

Figure 13 details these results. Because we had access
to the scores the robot assigned each object, we calculated
the expected number of robot guesses for each turn. For
example, if all four objects were tied for first, the expected
number of robot guesses for that turn was 2.5, regardless
of whether it got (un)lucky and picked the correct object
(last)first. (The expected number for four tied objects is 2.5
because the probability of picking in any order is equal, so
the expected turn to get the correct object is 1+2+3+4

4 =
10
4 = 2.5.)

A close look at the classifiers learned by the robot showed
that for many words, such as “full,” “empty,” and “heavy,”
visual features alone were insufficient for accurate ground-
ing. Using the framework for grounding semantic cate-
gories proposed by Sinapov et al. (2014), the robot was
able to estimate the reliability of particular combinations
of a sensory modality and a behavior for the task of rec-
ognizing whether a particular word fits an object. These
estimates show that for words describing the internal state
of objects, the robot largely relied on the haptic sensory
feedback produced when manipulating the object. Words
describing the shape (e.g. “cylindrical”) and color of the
object were in turn best recognized using visual features.
Auditory features were most useful for words denoting the
object’s material (e.g. “metal” vs. “plastic”) as well as com-
pliance (e.g. objects that are “soft” produce less sound when
dropped and pushed).

To demonstrate the effectiveness of multi-modal ground-
ing quantitatively, we obtained agreement scores between
the multi-modal versus vision-only classifiers with human
labels on objects. Training the predicate classifiers using
leave-one-out cross validation over objects, we calculated
the average precision, recall, and F1 scores of each against

Table 3. Average performance of predicate classifiers used by the
vision-only and multi-modal systems in leave-one-object-out cross
validation.

Metric System

Vision-only Multi-modal
Precision .250 .378a

Recall .179 .348b

F1 .196 .354b

aSignificantly greater than competing system with p < 0.05.
b p < 0.1 (student’s un-paired t-test).

human predicate labels on the held-out object. Table 3 gives
these metrics for the 74 predicates used by the systems.9

Across the objects our robot explored, our multi-modal
system achieves consistently better agreement with human
assignments of predicates to objects than does the vision-
only system.

Ongoing and future work will focus on expanding our
service robots’ ability to learn about objects from humans.
While our focus thus far was on a game-play scenario in
which participants were brought to the lab, we envision that
in the near future our robot will be able to autonomously
find people and engage in dialogue with the propose of
learning. Towards that goal, we are currently implement-
ing a system for autonomous object exploration and fetch-
ing which will enable a robot to find an interesting object,
explore it, and finally engage a person in dialogue about the
object for the purpose of grounded language acquisition.

9. Robot-centric human activity recognition

In the research contributions described in the previous sec-
tions, the robot aims to understand human intention via
direct means such as spoken or written commands speci-
fied in natural language. For a robot to effectively function
in a human-inhabited environment, it would also be useful
for it to be aware of the activities and intentions of humans
around it based on its own observations. For example, con-
sider the case where a BWIBot is navigating a crowded
environment such as an undergraduate computer lab. If the
robot could recognize when a person needs help, or when
a person is trying to approach or engage it (or avoid it), its
social and navigational skills would improve dramatically.
In this section, we describe a research contribution which
explores how human activity can be recognized, making it
possible for a BWIBot to understand the intent of humans
in its vicinity.

To address visual activity recognition, the computer
vision research community has produced a wide array of
methods for recognizing human activities (see Aggarwal
and Ryoo, 2011, for a review). Most relevant to our work
are studies in which the video is captured by a robot. Such
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studies are relatively new and include the works of Chrun-
goo et al. (2014), Xia et al. (2015), Ryoo and Matthies
(2013), and Ryoo et al. (2015). This existing work is sub-
ject to several limitations: (1) the activities were not carried
out spontaneously but rather, were rehearsed or commanded
by the experimenters; (2) the activities were performed by a
small number of people, typically five to eight; (3) the robot
was typically either stationary or teleoperated.

Our work on activity recognition overcomes these lim-
itations in several important ways. First, our robot uses
its autonomous navigation capability in a large, unstruc-
tured, and human-inhabited environment, as opposed to
a laboratory. Second, the activities learned by our robot
were performed spontaneously by many different people
who interacted with (or were observed by) the robot, as
opposed to the standard methodology of asking study par-
ticipants to perform certain actions. And third, in contrast to
classic computer vision approaches, our system uses both
visual and non-visual cues when recognizing the activities
of humans that it interacts with.

Next, we describe the robot’s activity recognition sys-
tem and present experimental results conducted from a
week long experiment in which the BWIBot autonomously
patrolled through an undergraduate and a graduate stu-
dent lab via randomly generated planning tasks. Video cap-
tured during this experiment was then processed offline to
categorize different human activities.

9.1. Overview of activity recognition system

We formulate the problem of activity recognition as a multi-
class classification problem; that is, the robot has to recog-
nize an observed activity as one of k activity classes. As
input, the robot is given some visual and non-visual sensory
feature descriptors computed from the set of frames during
which the robot’s sensor detected and tracked a person.

To perform human detection and tracking, the robot uses
the KinectV2, as explained in Section 3.4. The Kinect SDK
is capable of simultaneously detecting and tracking up to
six people at a time, as well as estimating the positions of
21 joint markers corresponding to joints such as the neck,
shoulders, waist, elbows, knees, and so on. Whenever a new
person is detected by the robot, the robot’s system recorded
a sequence of RGB images, I ∈ R

512×424×3×t, a sequence
of depth images D ∈ R

512×424×t, and a sequence of joint
markers, J ∈ R

21×3×t, where t is the number of frames
during which the system detected and tracked the person.

The raw image and joint-marker data are too highly
dimensional to be used as direct input to standard classifica-
tion algorithms. To reduce dimensionality, we implemented
five different visual feature extraction algorithms:

• covariance of the joint positions over time (COV) as
described by Hussein et al. (2013);

• histogram of the joints in 3D (HOJ3D) as described by
Xia et al. (2011);

• pairwise joint relation matrix features (PRM) as
described by Gori et al. (2015);

• histogram of direction vectors (HODV) as described by
Chrungoo et al. (2014);

• histogram of oriented 4D normals (HON4D) as
described by Oreifej and Liu (2013).

Each of these methods computes a real-valued feature
vector for each frame in a given sequence of joint-marker
data or depth image data. To further reduce dimensionality,
the feature vectors that were extracted for each frame were
quantized using k-means and represented using the bag-
of-words model (BoW). Thus, each sequences of frames
was represented as a single feature vector encoding the
distribution of visual “words.”

In addition to visual features, our system also uses non-
visual data as input to the activity recognition classifier. We
hypothesized that the types of activities that humans may
perform in front of the robot may be influenced by the dis-
tance between the robot and the person. In addition, it is
likely that different activities may be more likely to occur at
different locations in the robot’s environment (e.g. the activ-
ity of sitting down on a desk is more likely to be observed
in the open lab area where there are many desks as opposed
to a hallway). Therefore, as described in Gori et al. (2015),
we added three additional non-visual features:

• human–robot velocity features representing the move-
ment of the person with respect to the robot;

• human–robot distance features representing the dis-
tance between the human and the robot;

• robot location features representing the robot’s pose (i.e.
position and orientation) in the map over the course of
the observation.

The non-visual features were also computed for each
frame of each observation, quantized with k-means, and
represented using the BoW model. Note that these non-
visual features are specific to our robot and our environment
and, thus, the learned activity recognition model may not
always be applicable on a different robot in a different build-
ing. Figure 14 shows an overview of the activity recognition
system.

9.2. Experimental evaluation and results

The robot’s activity recognition system was evaluated
by collecting a dataset over the course of the robot’s
autonomous navigation of the environment, which con-
sisted of a graduate and an undergraduate student lab, con-
nected by two door ways. The robot traversed the environ-
ment for 1–2 hours per day, for six days, traveling a total
of 14.03 km. After the observations were recorded, each
detection of a person was manually labeled with one of sev-
eral activity labels: approach, block, pass by, take picture,
side pass, sit, stand, walk away, wave, false. The label false
corresponded to false detections by the Kinect SDK, which
typically corresponded to fixed objects in the environment.
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Fig. 14. An overview of the robot’s activity recognition system. As the robot navigates the environment, it uses the Kinect sensor to
detect humans in its environment. Subsequently, the robot computes visual and non-visual features for each detection, quantizes the
features, and uses them as an input to a support vector machine for activity recognition.

In total, there were 1204 detections, each labeled with one
of the 10 activity classes.

The classifier implemented by our activity recognition
system was a non-linear support vector machine using the
X 2 kernel function. Other kernel functions (e.g. Gaussian
and polynomial) and other classifiers (e.g. Naive Bayes,
C4.5 decision tree) achieved comparable results. The clas-
sifier’s performance was evaluated using stratified six-fold
cross-validation, which was performed 10 different times
with random fold splits. The dataset is very imbalanced
with respect to the activity labels (i.e. some activities are
much more common than others) and, therefore, the perfor-
mance was measured in terms of Cohen’s kappa coefficient
(Cohen, 1960) which compares the classifier’s accuracy
against chance accuracy:

K = Pr( a)−Pr( e)

1− Pr( e)
,

where Pr( a) is the probability of correct classification
by the classifier, and Pr( e) is the probability of correct
classification by chance. A kappa of 1.0 corresponds to
a perfect classifier, while 0.0 corresponds to a classifier
that randomly assigns class labels based on the prior label
distribution.

Figure 15 shows the results of the cross-validation test
with five different visual feature descriptors and two dif-
ferent conditions: visual features only, and visual features

Fig. 15. Activity recognition results using five different visual
feature descriptors (described in Section 9.1) under two different
conditions: visual features only, and visual + non-visual features.
The error bars represent standard error.

concatenated with non-visual features. The HON4D visual
feature descriptor performs the best out of all five—unlike
the rest which are computed from joint-marker data, the
HON4D descriptor is computed from the saved depth image
sequences which may explain why it performs substantially
better (a drawback to the HON4D descriptor is that it is
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much more computationally expensive to compute than the
rest). Adding the three non-visual features to the repre-
sentation improves the SVM’s performance and, depend-
ing on the visual descriptor, the improvement can be quite
substantial and significant.

In ongoing and future work, we are exploring how the
robot’s activity recognition system can be used for activity-
aware autonomous navigation. For example, if the robot
recognizes that a person is taking a picture of it, it would
be intuitive for it to pause its current task and motion for
a moment. In addition, while the existing system focuses
only on activities performed by individual persons, we plan
to extend it by adding the ability to learn about interactions
between multiple people performing activities in relation to
each other and/or the robot. We believe that enabling a robot
to learn and reason about the activities of people around it
has the potential to greatly improve its ability to navigate
around and interact with people, particularly in large and
crowded environments.

10. Conclusion

In this paper, we have presented an overview of the BWI-
Bots, both from a hardware and software perspective. We
have also outlined how these robots have enabled research
on a variety of projects pertaining to robot reasoning, action
planning, and HRI. Specifically, the first research contribu-
tion presented in this paper has demonstrated how action
language BC can be used construct a planning and action
execution system that is able to express defeasible reason-
ing and recursively defined fluents. The second contribution
has integrated probabilistic and symbolic reasoning for con-
structing a spoken dialog system that uses commonsense
reasoning to resolve queries efficiently. The third and fourth
contributions have looked into how requests in natural lan-
guage can be interpreted by a robot, how these requests can
be grounded in a robot’s perception and actions. Finally,
the last contribution investigates how human activity can
be categorized from afar.

While all the research contributions presented in this
paper are used for single-robot applications, one of the
main goals behind the development of the BWIBots is to
enable multi-robot research and applications. When multi-
ple robots share a physical environment, their plans might
interact such that their independently computed optimal
plans become suboptimal at runtime. Toward achieving
the global optimality in a multirobot system, the robots
need to compute plans to simultaneously share limited
domain resources and realize synergy within the robot
team. However, robots’ noisy action durations pose a chal-
lenge to achieve such robot behaviors. In our ongoing
research, we are investigating algorithms for multi-robot
planning while considering the uncertainty in noisy action
durations (Zhang et al., 2016).

Another multi-robot application that we intend to work
on is a real-world implementation of a multi-robot human

guidance system (Khandelwal et al., 2015). In this previ-
ous work, we have explored how multiple robots in simu-
lation can be coordinated to efficiently guide a human to
his destination, while simultaneously minimizing the time
each robot is diverted from other duties to do so. A real-
world implementation of this work helps verify many mod-
eling assumptions made in the simulation, and helps explore
how robots can effectively provide instructions with less
ambiguity to people.

In addition to multi-robot research, we expect that the
current and future BWIBots will continue to support
research on HRI and other areas of AI and robotics. Our
long-term goal is for the BWIBots to be an always-on, per-
manent fixture in the UT Austin Computer Science build-
ing, such that inhabitants of and visitors to the building
expect to interact with them and find them useful and enter-
taining. We hope that this article will help inspire and
inform other such systems throughout the world.
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Notes

1. Defeasible reasoning allows a planner to draw tentative con-
clusions which can be retracted based on further evidence.

2. The RMP 50 is no longer available for sale.
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3. 80/20 framing has already been used on other research robots
such as the Cobot (Veloso et al., 2015).

4. Parts larger than 20”×12” were split to fit on the cutting bed,
and then joined together using joining plates from 80/20 Inc.

5. http://www.qt.io/.
6. https://github.com/mleonetti/actasp.
7. https://github.com/utexas-bwi/.
8. The use of PDDL axioms allows PDDL to encode indirect

and recursive action effects (Thiébaux et al., 2003), but this
feature is typically not tested in the International Planning
Competition, where different PDDL solvers are evaluated.

9. There were 53 predicates shared between the two systems. The
results in Table 3 are similar for a paired t-test across these
shared predicates with slightly reduced significance.
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