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Abstract— Many robotics applications involve navigating to
positions specified in terms of their semantic significance. A
robot operating in a hotel may need to deliver room service to
a named room. In a hospital, it may need to deliver medication
to a patient’s room. The Building-Wide Intelligence Project at
UT Austin has been developing a fleet of autonomous mobile
robots, called BWIBots, which perform tasks in the computer
science department. Tasks include guiding a person, delivering
a message, or bringing an object to a location such as an
office, lecture hall, or classroom. The process of constructing
a map that a robot can use for navigation has been simplified
by modern SLAM algorithms. The attachment of semantics
to map data, however, remains a tedious manual process of
labeling locations in otherwise automatically generated maps.
This paper introduces a system called PRISM to automate a
step in this process by enabling a robot to localize door signs
– a semantic markup intended to aid the human occupants of
a building – and to annotate these locations in its map.

I. INTRODUCTION

Emerging applications in robotics involve systems in
which robots navigate to static, known locations in order to
perform their tasking. In environments like hotels, hospitals,
and university buildings these locations are frequently un-
derstood through a semantic label such as the room number
of a classroom or office. Whereas robots generally use
Simultaneous Localization and Mapping (SLAM) algorithms
for navigation, the poses associated with such semantics
are generally labeled through manual processes after the
SLAM map has been constructed. Humans, on the other
hand, leverage semantics provided to them by the building
itself in the form of signage such as room number placards.

A planar homography is a 2D projective transformation
which can be thought of as the image of a rigidly transformed
3D plane that has been projected into 2D space. A familiar
application of planar homographies is Zhang’s Method [1].
Zhang’s method is the most common camera calibration al-
gorithm, which utilizes homographies computed from images
of chessboard calibration targets. In the case of a camera with
known calibration, a homography can be used to determine
the pose of a planar target with respect to the camera.

The rectangular placards commonly placed in office build-
ings provide a convenient geometry for homography compu-
tation, from which it is possible to determine their position
for labeling on a map.1 The computed homography can
also be used for image rectification, enabling software to
compute an image that looks as if it were taken directly
facing the sign. This rectified image is simpler for text

1The inversion of the rigid transformation computed to determine this
pose could also be used to determine the position of the robot on the map.
This is left to future work.

extraction systems to read than one that may be taken at
a non-perpendicular angle, and thus can be used to improve
text extraction performance. The system presented in this
paper allows a robot that is performing SLAM to automati-
cally detect room placards and to compute the position and
rectification of these placards using homographies.

Many organizations, including hospitals, offices, and uni-
versities, adopt uniform signage standards. These standards
ensure that the geometry, placement, design and typography
of placards is consistent and accessible to people with
vision impairments. In the United States, these standards
are enshrined in law [2]. The prevalence of such signage,
reinforced by these standards and regulations, makes the
approach presented in this paper broadly applicable to a wide
variety of public buildings and businesses.

The unique contribution of this paper is the use of standard
computer vision techniques for the purpose of automating the
annotation of room numbers. A scanner locates room number
placards by finding quadrilaterals in images sampled by the
robot’s vision system. A homography is then computed to
estimate the poses of these signs. These estimates are also
used for image rectification to improve text extraction, and
the real sign’s pose is optimized based on the transformation
of a model sign. The system also employs a speech interface
to interactively inform a human operator that it has found
a potential room placard, allowing the operator to focus the
robot’s attention on the sign. We call the developed system
PRISM: Pose Registration for Integrated Semantic Mapping.
We plan to further extend this system to enable our robots
to autonomously maintain semantic map annotations for the
buildings in which they operate, as well as annotate the
locations of objects found in the environment. This system
starts with office placards partly due to their relevance to
functionality that is currently in place in the Building-Wide
Intelligence (BWI) project. Annotations for room numbers
are maintained in the robot’s knowledge base for many of
the tasks that the system performs [3].

II. RELATED WORK

Robotic navigation can be broadly characterized into
mapless and map-based methods. Mapless navigation does
not use an explicit representation of space, relying instead
on visual techniques, such as the recognition or tracking
of objects in the environment, to generate a motion plan
[4], [5]. Map-based approaches are popular and effective in
practice. They often represent free-space and obstacles in a
2D or 3D occupancy grid [6]. PRISM augments a map-based
representation with semantic annotations.



Significant research has been dedicated to the extraction
and annotation of various forms of semantic information for
inclusion in spatial maps. Bormann et al. [7] and Armeni
et al. [8] have extracted room segmentations (e.g. kitchen,
living room, bedroom) from 2D and 3D representations,
respectively. Pillai [9] and Blodow [10] both propose sys-
tems that detect sets of objects and extract their pose with
respect to world maps. Case et al. [11] present a system
that bears a similarity to PRISM in that it extracts text by
automatically reading signs such as door placards. PRISM
differs significantly from theirs in its implementation. Their
system focuses on a capability of the robot to autonomously
wander hallways to find signs, the problem of text detection
in images, and on the post-processing of text extracted
from the image. PRISM exploits the planar geometry of
signs explicitly in its implementation. It approximates the
pose of each placard through the use of homographies.
Homographies are also utilized for image rectification, im-
proving text extraction performance. The system then refines
estimated poses through an optimization based on a 3D
model placard. Whereas the system presented in Case et al.
[11] autonomously wanders the hallways of their building in
order to find signs, it requires a preexisting map to extract
these hallways from. PRISM samples data interactively with
a human user, during the initial construction of its map;
combining the human operation step for mapping with the
data collection process for room placards. It is able to
simultaneously construct a map using SLAM techniques [12]
and localize and annotate the positions and contents of room
signs onto this map.

III. BACKGROUND

Homogeneous coordinates describe a projective coordinate
system in which a point in 2D space is expressed as a vector
with three elements, < x, y, w > and a point in 3D space is
described as a vector with four elements < x, y, z, w >. The
equivalent Cartesian representations are (x : w, y : w) and
(x : w, y : w, z : w), respectively. As such, the interpretation
of homogeneous coordinates is unchanged by scalar multipli-
cation. Homogeneous coordinates are a useful representation
for computer vision problems because they unify translation
and rotation into a single matrix multiplication called a rigid
transformation. They enable a convenient representation of
perspective, the effect whereby parallel lines appear to meet
in the distance.

The standard pinhole camera model, Equation 1, is used
to represent the calibrations of cameras in this system, where
α and β denote focal length, γ is a skew factor in the 2D
image, and (u0, v0) is the center of the 2D image sampled by
the camera, known as the principal point. This representation
is referred to as the camera intrinsic matrix.

A =

 α γ u0
0 β v0
0 0 1

 (1)

A planar homography, H , is a 2D projective transfor-
mation, which can be thought of as the image of a plane

Fig. 1: Image of one of the placards used to test PRISM.

transforming through space. It can be inferred from paired
images of planar targets, but is generally computed as the
transformation between a model target stored in memory
and the image of a similar target found in the real world.
For a homography computed between an image sampled by a
calibrated camera and a model target, the rigid transformation
between the camera and the target can be inferred [1].

IV. METHODS

PRISM automatically constructs and annotates maps with
semantic data extracted from room placards, Figure 1, in
images sampled by the robot’s vision system based on the
robot detecting, localizing, and extracting text from signs in
its environment during map construction. It is assumed that
the robot is running a SLAM algorithm for the construction
and interpretation of its navigational map as well as for the
estimation of its pose in its environment. We have chosen
Hector SLAM [12] for this purpose. As configured, the
system creates a cost map based on input from a front-
facing Hokuyo UST-20LX laser rangefinder mounted in the
robot’s base. The inputs to PRISM are images from the
robot’s vision system paired to estimates of its pose in the
map; though the map can be constructed on-the-fly and then
paired to the image data by recording a history of the robot’s
inputs and computing this pairing once loop closure has been
established.

PRISM can be divided into four stages. In the first, quadri-
lateral regions are extracted from images sampled by the
robot’s vision system as candidates to contain a placard. In
the second stage, the pose of each placard is estimated using
a two-step process where in the first step an estimated pose
is computed from its planar homography and in the second
step an optimization is computed with respect to a simple 3D
model of the placard. In the third stage, the initially-inferred
homography is used to compute an image rectification, and
text is extracted from this rectified image. Finally, in the
fourth stage, multiple samples hypothesized to represent the
same sign are aggregated to compute an improved estimate of
each placard’s pose and text contents. PRISM is run during
the construction of the system’s cost map, a manual process



on our robot in which an operator drives the robot around the
area to be mapped. We supplement this process by asking
the operator to turn the robot to face room placards head-on
in order to be classified. To help guide the human operator,
the robot provides speech feedback indicating when it has
located a placard. For this purpose, we use the eSpeak text-
to-speech engine. Additionally, we provide visual feedback
in RViz [13] when the system has located a placard. An
outline of the PRISM algorithm is provided in Algorithm 1.

Algorithm 1 PRISM

1: procedure DETECT SIGN
2: Detect placard corners and approximate polygons as

in Section IV-A.1.
3: Filter sign detection results as in Section IV-A.2.
4: end procedure
5: procedure ESTIMATE PLACARD POSE
6: Compute homography between model placard and

detected points using DLT method as in Section IV-B.1.
7: Estimate placard pose by Equation 4.
8: Refine rotation matrix by Equation 8.
9: Optimize placard pose by Equation 9.

10: end procedure
11: procedure EXTRACT TEXT
12: Rectify image based on homography, using

cv::warpPerspective [14].
13: Extract text from placard using Tesseract OCR [15].
14: end procedure
15: procedure AGGREGATE DATA
16: Estimate sign pose from aggregated samples as in

Section IV-D.
17: end procedure

A. Sign Detection

PRISM first detects signage to be annotated and extracts
point correspondences for computations against a model
placard. In theory, detectors for a variety of signs could be
plugged into the system by replacing this part. The detector
presented in this section should be able to detect a variety of
rectangular office placards, but has only been tested against
the office placards in the UT Austin Computer Science
Department.

1) Detect Potential Signs from Features Bounding Quadri-
laterals: This method begins with the extraction of four
corners defining a warped quadrilateral from images from
the robot’s computer vision system during navigation. To
do so, it uses the approach from Suzuki and Abe [16]
then attempts a polygonal approximation with the Ramer–
Douglas–Peucker algorithm [17]. If the approximation has
more than four vertices, the approach relaxes the approxima-
tion epsilon up to a constant ratio of the contour length. If
this process produces an approximation with four vertices the
image region is considered to be a candidate for containing
a placard. This method is selected over other approaches
such as Harris corner detection [18], as such methods do

Fig. 2: Crosshairs mark candidate quadrilaterals detected by
the placard detector. False positives are visible in this image,
which are filtered out prior to final annotation. Two sets of
crosshairs for the true placard are visible, illustrating the
importance of the sample aggregation procedure.

not associate sets of four points as belonging to the same
quadrilateral.

2) Filter to Remove False Positives: Preliminary testing
revealed this approach to have very high recall. Most images
contain many closed contours that are well-approximated
as quadrilaterals; which will be found by this approach.
Quadrilaterals with very large area often correspond with
non-placard scene elements, such as ceiling panels or walls.
Those with low area are unlikely to provide useful text
extraction output. If such quadrilaterals do contain placards
which are simply far away, better 3D pose information can
be extracted from images sampled at a closer range. The
relationship between 2D pixels and 3D positions can be
stated more succinctly in terms of degrees of visual angle. As
a 3D position moves farther away from the camera, a degree
of visual angle subtends greater 3D space, thus providing
only coarser estimates of true 3D pose. As such, candidate
contours with area less than .1% and greater than 10% of the
total image area are removed. Figure 2 shows an example of
the output of this stage of the pipeline.

B. Estimation of Placard Pose

The process of computing the pose of each placard pro-
ceeds in four steps. In the first, a homography is computed
between a model placard and the image of a placard as
detected by the method described in Section IV-A. In the
second, a candidate pose is estimated from the homogra-
phy. In the third, this estimate is refined over a nonlinear
optimization between the corners of a model 3D placard as
projected down into 2D space using the model projection
of the calibrated camera and the detected 2D corners. In
the fourth, samples of placard data are clustered based on
position and then aggregated into a global pose estimate for
each placard.



1) Homography Computation: Computing a homography
between a model placard and a real placard requires measure-
ments. The placards used in the computer science department
at UT Austin measure 151mm × 51mm. A homography
relates model corners to image corners through Equation 2,
where x is a model corner, x′ is its corresponding corner
found in image data, and H is the homography. Though
a homography is a 3 × 3 matrix, it has only 8 degrees of
freedom. This is because homogeneous coordinates are un-
affected by scalar multiplication. As such, a set of constraints
can be derived whereby the terms of the homography can be
recovered through a set of 4 or more image correspondences.
This is accomplished by rearranging the terms of Equation 2
such that the terms of the homography can be found as the
right null space of the system. This method is referred to as
the Direct Linear Transformation (DLT) method. Hartley and
Zisserman [19] provide a thorough treatment of this subject.

x′ ×Hx = 0 (2)

2) Recovering placard pose from its homography: The
image coordinates of a rigidly transformed 3D point can
be computed by multiplying their ideal projection by the
camera intrinsic matrix, as in Equation 3, where R is the
object’s orientation and t is its position. The extension of the
2D target used in homography computation to 3 dimensions
can be accomplished by laying the target in the plane
perpendicular to the z axis of the camera with the model z
terms set to 0. A homography describing the transformation
of this target can be computed as in Equation 4 [1].

x′ = A[R|t]x = A[r1r2r3t]x (3)

x′ = A[r1r2t]x (4)

While homographies are invariant to scalar multiplication,
the transformations R and t are applied over Euclidean space,
and thus their factors in Equation 4 must be normalized. This
can be accomplished by dividing r1, r2, and t by the norm
of r1. The rotation matrix R can then be computed as in
Equation 5.

R = [r1r2(r1 × r2)] (5)

The computation of the pose of the placard in the image
relies on having the camera intrinsic matrix. A calibration for
the cameras in the present system was computed using in-
house software which first approximates camera calibrations
using Zhang’s method [1] then refines those calibrations
through bundle adjustment [20].

The matrix R obtained in (5) may not be a proper rotation
matrix due to empirical errors. This can be corrected by
finding the rotation that is “closest” to the estimate of R.
For mathematical convenience, the Hilbert-Schmidt operator
norm is used as our notion of distance, as in Equation 6.
(·)∗ denotes the Hilbert adjoint. As such, R can be corrected
by dropping the diagonal matrix from its singular value de-
composition, as in Equation 8, giving us the closest rotation

matrix, S. This can be thought of simply as rectifying the
transformation such that it is orthonormal.

argmin
S

‖R− S‖2 = trace((R− S)∗(R− S))

s. t. S∗S = I
(6)

R = UDV (7)
S = UV (8)

3) Optimization of Placard Pose: PRISM computes an
initial estimate of the pose of each placard using a homog-
raphy, but goes on to refine this estimate using nonlinear
optimization. This approach echoes that of Zhang’s method
[1] for camera calibration, wherein rigid transformations to
3D planar targets are computed from 2D homographies, then
refined in the same fashion. Nonlinearities such as noise in
the localization of the corners of each placard can contribute
to error in determining the pose of the placard. It is straight-
forward to formulate an optimization between the model
placard and extracted image corners by extending Equation
3 as in Equation 9, where X is the set of model placard
corners, and x′ is the point in the image corresponding to
each x. The variable R is stated either as a rotation vector
by Rodrigues’ formula or as a quaternion. In PRISM, it is
represented as a quaternion. Care must be taken to maintain
R as a valid rotation.

argmin
(R,t)

∑
x∈X
‖A[r1r2r3t]x− x′‖ (9)

C. Placard Reading and Annotation

Once a placard’s pose has been determined, PRISM at-
tempts to read the text off of it in order semantically annotate
the map. The OpenCV [14] function cv::warpPerspective is
used to rectify the placard’s image prior to text extraction.
The Tesseract OCR engine is then used to extract text [15].
The engine is constrained to detecting uppercase English
letters, numbers, and periods. If no text can be extracted, it is
determined that the scanner detected a false-positive placard,
which is then discarded.

D. Sample Aggregation

The final stage of PRISM aggregates samples to improve
the estimate of each placard’s pose. Since multiple images
are sampled for each placard, this data can be aggregated
to improve PRISM’s precision. Samples are first clustered
geometrically. As there is only minimal noise present by
this stage of the pipeline, it is sufficient to group all samples
within radius 50cm of each other. Each placard’s position
is determined as the mean of the estimated position of the
clustered samples.

The rotation estimate is determined as the average of
the estimated sample quaternions; found according to [21].
This entails solving an optimization problem whose solution
follows.



TABLE I: Sign Detection Metrics

Rectified Unrectified
Num Signs 49 49
Total Detections 51 42
False Positives 4 (2 duplicates) 0
False Negatives 2 7
Precision 92% 100%
Recall 96% 86%

Define M as the outer products of the quaternions, Equa-
tion 10.

M =

n∑
i=1

qiq
>
i (10)

The desired average quaternion is the unit eigenvector of
M corresponding to the largest eigenvalue.

V. EXPERIMENTS AND RESULTS

PRISM was deployed on a Toyota Human Support Robot
(HSR), shown in Figure 3. Development and tuning of the
algorithm were performed in the north corridor of the AI
floor of the Computer Science Department at UT Austin.
Results are presented for evaluations on the south corridor
of the same floor. In these tests, the robot is driven through
a set of student cubicles, with performance evaluated on
its ability to extract the pose and text of signs marking
these locations. The robot uses an omnidirectional drive base
for locomotion and has a Point Grey Chameleon global
shutter camera mounted in a pan tilt unit representing the
robot’s head. Each eye camera outputs a 1.25 megapixel
image. These tests use only the robot’s left eye camera. They
evaluate the performance of the system on multiple fronts,
including placard detection, localization, and text extraction.
The robot’s operator was instructed to drive the robot to
directly face the placard labeling the cubicle’s room number.
An interface implemented in RViz [13] enables the operator
to see if a placard is localized, as does speech feedback from
the robot.

No ground-truth positional data regarding the precise
poses of the placards placed in the environment exists since
the robot is operating in the real world where it would be
difficult to make such measurements. Therefore, no quan-
titative results are presented regarding PRISMS’s ability to
register the pose of each placard. Results are presented for
precision and recall of the robot’s ability to detect each of
the placards from the set in the corridor. The robot performs
perfectly in localizing these placards in the corridor in which
it was tuned. On the test corridor, the robot finds each placard
with 92% precision and a 96% recall rate, as can be seen in
Table I.

A. Sign Localization Performance

To provide a more intuitive impression of how well the
robot determines the pose of room placards, Figure 4 com-
pares the automatic annotations made by the robot against
human performance. Automatic annotations are marked as

Fig. 3: The Toyota HSR used for these experiments.

orange arrows overlaid with human annotations marked with
blue arrows. The mean distance between automatically-
annotated and human-annotated placards is 0.936m (SD =
0.412m). However, we are significantly more prone to trust
the robot’s annotations than those of the human. The human
annotation process involves marking up the processed cost
map with no direct visual reference to scene geometry.
On the other hand, sources of error in the robot’s placard
localization are simply cumulative errors in the robot’s
odometry combined with errors in visual localization. These
errors should be relatively small. This agrees with a simple
qualitative analysis. For example, see Figure 6, which is
based on the robot’s annotation, and Figure 5, which is based
on human-annotations. The robot is also able to perform
this annotation while constructing its navigational map using
SLAM, whereas the human annotations require additional
manual effort. It took roughly 28:21 (mm:ss) for the human
operator to collect this data in terms of time driving the robot
using PRISM.

The data collected to construct this map was used for
both the annotation provided by the PRISM system and that
provided by the human annotator, but a second cost map
was constructed so as to provide an estimate of the overall
time and effort required for map construction and manual
annotation. One would imagine that the additional effort
of directing the robot towards placards in the PRISM case
would cause cost map construction to be slower. We had an



Fig. 4: SLAM map with placard location annotations over-
laid. Human annotations are in blue (dotted line). PRISM
annotations are in orange (solid line).

TABLE II: Text Extraction Accuracy

Edit Distance Rectified (N=47) Unrectified (N=42)
0 60% 50%
1 92% 88%
2 96% 97%

operator drive the robot to construct a cost map in the manner
which we have classically used alongside human annotation,
without running PRISM. It took a similar amount of time,
at 29:26 (mm:ss). The additional effort of human annotation
took 18:51 (mm:ss). As the system matures, we expect this
entire process to happen autonomously and to run in the
background while the robot attends to other tasking.

In addition to typical 2D annotations, PRISM is able to
mark the 3D location of each placard in its map, creating
more-detailed annotations and opening up the possibility of
applications where the robot must indicate the placard (or
potentially other items) to a user. Figure 6 shows a side-by-
side example of an area of the test corridor and the annotated
placards rendered in RViz. Figure 7 provides a 3D view of
the annotated map with placards rendered as orange boxes
clearly lined up in rows matching the building’s arrangement
and floor geometry.

B. Text Extraction Performance

Text extraction performance results are presented as mean
Levenshtein distance [22] from ground truth for the system in
two modes. The first uses unrectified images passed directly
into Tesseract OCR. The second rectifies the image using
a homography before text extraction. Results can be found
in Table II. Here, we see that while rectification improves
results, there is room for improvement regarding reliable text
transcriptions from the room placards.

(a) Part of the test area. Placards are highlighted in orange boxes.

(b) Perspective view of the same area with human (blue) versus
PRISM (orange) annotations.

Fig. 5: Subfigure (a) shows the true locations of placards
imaged in the test environment. In Subfigure (b) it can be
seen that the human annotations differ from these locations.

VI. CONCLUSION

PRISM is a system which enables a robot to localize room
placards, transcribe their contents, and automatically anno-
tate them on a map. It utilizes existing SLAM techniques
for the navigational component of this task, focusing on
adding markup to the map denoting the semantics of the
locations it contains. PRISM extends the existing systems in
the Building-Wide Intelligence project to enable the robots
to automatically extract semantics which otherwise require
hand-annotation. The construction of such semantic maps
will be a significant enabling technology for emerging ap-
plications where robots must navigate to known locations on
a map based on their semantic significance.
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