
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019),
Macau, China, November 2019

Task-Motion Planning with Reinforcement Learning for
Adaptable Mobile Service Robots

Yuqian Jiang1, Fangkai Yang2, Shiqi Zhang3, and Peter Stone1

Abstract— Task-motion planning (TMP) addresses the prob-
lem of efficiently generating executable and low-cost task plans
in a discrete space such that the (initially unknown) action costs
are determined by motion plans in a corresponding continuous
space. A task-motion plan for a mobile service robot that
behaves in a highly dynamic domain can be sensitive to domain
uncertainty and changes, leading to suboptimal behaviors or
execution failures. In this paper, we propose a novel framework,
TMP-RL, which is an integration of TMP and reinforcement
learning (RL), to solve the problem of robust TMP in dynamic
and uncertain domains. The robot first generates a low-cost,
feasible task-motion plan by iteratively planning in the discrete
space and updating relevant action costs evaluated by the
motion planner in continuous space. During execution, the robot
learns via model-free RL to further improve its task-motion
plans. RL enables adaptability to the current domain, but can
be costly with regards to experience; using TMP, which does
not rely on experience, can jump-start the learning process
before executing in the real world. TMP-RL is evaluated in
a mobile service robot domain where the robot navigates in
an office area, showing significantly improved adaptability to
unseen domain dynamics over TMP and task planning (TP)-RL
methods.

I. INTRODUCTION

Building mobile robots that behave intelligently in real
environments is one of the central problems of robotics and
artificial intelligence. Future service robots are expected to
take general requests such as “deliver coffee to Alice”. To
achieve a goal like this, the integration between high-level
task planning and low-level motion planning, also known
as task-motion planning (TMP), has been widely studied
for robot manipulators [1], [2], [3] and navigation tasks in
service robot [4] or self-driving cars [5]. TMP algorithms
typically consist of a task planner that generates high-level
task sequences in an abstract discrete space, possibly using
an AI planning approach [6], and a motion planner that
expands each task using algorithms such as Probabilistic
Random Map [7] or Rapidly-exploring Random Trees [8] to
generate a collision-free trajectory based on the current status
of the environment. This hierarchical approach reduces the
complexity of long-horizon motion planning by improving
plan feasibility, quality, and scalability.

Despite the progress made on generating feasible and
quality offline plans, during execution, a robot can still face
domain uncertainties and changes that are not available at
modeling time. This challenge is particularly pervasive for

1Department of Computer Science, University of Texas at Austin, Austin,
TX, USA

2 NVIDIA Corporation, Redmond, WA, USA
3Department of Computer Science, SUNY-Binghamton, Binghamton,

NY, USA

mobile service robots that cohabit with human and serve
human requests [9], [10]. Mobile service robots usually have
to navigate in building-wide areas, whose environmental
dynamics involve, among many things, crowds of people,
changing lighting conditions, and changed furniture layout,
which are not practical for the motion planner to accurately
model. Such dynamic changes may invalidate task-motion
plans, leading to suboptimal behaviors and execution fail-
ures. Continually learning from execution experience and
adapting to the changing domain is therefore crucial for
mobile service robots to achieve long-term autonomy. To
this end, reinforcement learning (RL) has been used to
build highly-adaptive autonomous agents [11] and improve
symbolic plan robustness and adaptability [12], [13], [14] in
various simulation domains, becoming an attractive approach
to enable learning adaptive task-motion plans for mobile
service robots.

Aiming to improve adaptability of task-motion plans for
mobile service robots, in this paper, we propose to integrate
TMP with RL such that the robot can constantly generate
feasible, high-quality task-motion plans and rapidly learn
from execution experience to adapt to domain changes.
Inspired by PETLON, a recent task-level-optimal TMP al-
gorithm [4], and PEORL, a state-of-the-art task planning-RL
framework [12], our approach features two nested planning–
reinforcement learning loops:

• The inner loop is a complete TMP algorithm, where a
symbolic plan is generated and each symbolic action
is evaluated by the motion planner. Iterative learning
and plan improvement is performed on rewards derived
from motion plan costs.

• The outer loop is for learning to generate an optimal
task-motion plan to accommodate domain uncertainty,
change, and extra reward information. Each task-motion
plan generated by the inner loop is executed in the
outer loop to learn from environmental rewards. The
inner loop then uses the learned values to generate an
improved plan in the next episode. When the outer loop
terminates, the robot has learned a task-motion plan that
has adapted to the observed domain changes.

In the framework above, the inner loop generates a high
quality task-motion plan based on its own discrete and
continuous models, leading to a jump-start of plan quality.
The outer-loop helps the task-motion planner to fine-tune
the plans by learning from the environment, improving the
adaptability of TMP facing domain uncertainty and change.
The duality between the inner and outer loop allows a

seamless integration of TMP with RL such that motion
planning in a continuous model and reinforcement learning
from the real execution experience can jointly contribute to
improving TMP.

Our approach is generic in the sense that a variety of
task planning, motion planning, and reinforcement learning
approaches can be used. In this paper, we instantiate our
approach using the same planning and learning techonologies
used in PEORL [12]: action language BC [15] and answer
set solver CLINGO for task planning, and R-learning [16] for
reinforcement learning. We have evaluated the approach in an
office environment using a real robot and the Gazebo sim-
ulator [17]. Compared to PETLON and PEORL, TMP-RL
demonstrates superior adaptability to environmental uncer-
tainties; it achieves better task performance than PETLON,
and faster convergence than PEORL.

II. RELATED WORK

Existing research on TMP algorithms have various foci,
such as ensuring symbolic actions’ feasibility via motion
planning [2], integrated symbolic planning under uncertainty
and motion planning [18], and leveraging symbolic search
heuristics in motion planning space [5], [3]. Recently pro-
posed PETLON [4], which uses sampling-based probabilistic
motion planning methods to evaluate costs of task-level
actions is most similar to the inner loop of our work, but
in our work, we use RL to learn rewards derived from real
action costs, whereas PETLON is purely a planning method.
While generating feasible, low-cost task-motion plans is the
major focus of existing work on TMP, to the best of our
knowledge, mixing task-motion planning and learning from
execution to accommodate domain uncertainty and change
for long range navigation tasks in mobile robots has not been
investigated before.

The integration of symbolic planning with reinforcement
learning has been studied in a variety of approaches [19],
[20], [21]. Recent approaches such as PEORL [12] and
SDRL [13] utilize closed-loop communication between plan-
ning and learning: an optimal symbolic plan is obtained
from a mutually beneficial, iterative process of planning
and learning. These approaches are mainly evaluated in
simulation domains, but an integrated robot system is usually
equipped with motion planners that can be used to evaluate
the outcomes of task plans before execution, calling for an in-
tegration of TMP with RL. To the best of our knowledge, our
work is the first to apply reinforcement learning to improve
adaptability of task-motion plans for service robots, where
task planning, motion planning, execution, and learning are
handled in a unified framework.

III. PRELIMINARIES

Symbolic Planning. An action description D in the lan-
guage BC [15] includes fluent constants that represent the
properties of the world and action constants. A fluent atom
is an expression of the form f = v, where f is a fluent
constant and v is an element of its domain. An action
description is a finite set of causal laws that describe

how fluent atoms are related with each other in a single
time step, or how their values are changed from one step
to another, possibly by executing actions. For instance,
(A if A1, . . . , Am) is a static law that states at a time
step, if A1, . . . , Am holds then A is true. Another static
law (default f = v) states that by default, the value of f
equals v at any time step. (a causes A0 if A1, . . . , Am) is a
dynamic law, stating that at any time step, if A1, . . . , Am
holds, by executing action a, A0 holds in the next step.
(nonexecutable a if A1, . . . , Am) states that at any step,
if A1, . . . , Am holds, action a is not executable.

A state s is a complete set of fluent atoms, and a transition
is a tuple 〈s1, a, s2〉 where s1, s2 are states and a is a
(possibly empty) set of actions. Let I be the initial state
and G be goal state. The triple (I,G,D) is called a planning
problem. A plan can be computed using answer set solver
such as CLINGO. Throughout the paper, we use Π to denote
both the plan and the transition path by following the plan.
Automated planning can be achieved by an answer set solver.

Motion Planning. A configuration space includes a set of all
possible, potentially high-dimensional, configurations, where
a configuration describes a possible pose of the robot. In this
work, we consider a mobile robot that moves in 2D spaces.
where we directly search in the 2D workspace (instead of
higher-dimensional configuration space). A motion planning
problem can be specified by an initial position xinit and a
goal set Xgoal. The 2D space is represented as a region in
Cartesian space such that the position and orientation of the
robot can be uniquely represented as a pose (x, θ). Some
parts of the space are designated as free space, and the rest
is designated as obstacle.

The motion planning problem is solved by the motion
planner Pgeo to compute a collision-free trajectory ξ∗ (con-
necting xinit and a pose xgoal ∈ Xgoal taking into account
any motion constraints on the part of the robot) with minimal
trajectory length Len(ξ) = L. We use Ξ to represent
the trajectory set that includes all satisfactory trajectories.
The optimal trajectory is ξ∗ = argminξ∈ΞLen(ξ), where
ξ(0) = xinit and ξ(L) = xgoal ∈ Xgoal. In particular,
we use global planner, an off-the-shelf package from the
Robot Operating System (ROS) [22] community for motion
planning, which generates trajectories using gradient descent
together with standard A∗ and Dijkstra’s search.

R-learning for Finite Horizon Problems. A Markov Deci-
sion Process (MDP) is defined as a tuple (S,A, P ass′ , r, γ),
where S and A are the sets of symbols denoting states and
actions, the transition kernel P ass′ specifies the probability of
transition from state s ∈ S to state s′ ∈ S by taking action
a ∈ A, r(s, a) : S×A 7→ R is a reward function bounded by
rmax, and 0 ≤ γ < 1 is a discount factor. A solution to an
MDP is a policy π : S 7→ A that maps a state to an action.
Model-free RL concerns on learning a near-optimal policy
by executing actions and observing transitions and rewards.

To evaluate a policy π, R-learning [16] applies to the
expected un-discounted sum of reward for finite hori-

Fig. 1: An illustration of our TMP-RL framework

zon problems. Define Jπavg(s) = E[
T∑
t=0

rt|s0 = s], and

the gain reward ρπ(s) reaped by policy π from s as

ρπ(s) = lim
T→∞

Jπavg(s)

T = lim
T→∞

1
T E[

T∑
t=0

rt]. R-learning is a

model-free value iteration algorithm that can be used to
find the optimal policy for the average reward criterion. At
the t-th iteration (st, at, rt, st+1), the following update is
performed:

Rt+1(st, at)
αt←− rt − ρt(st) + max

a
Rt(st+1, a)

ρt+1(st)
βt←− rt + max

a
Rt(st+1, a)−max

a
Rt(st, a),

(1)

where αt, βt are the learning rates, and at+1
α←− b denotes

the soft update rule at+1 = (1− α)at + αb.

IV. TMP-RL FRAMEWORK

The TMP-RL framework proposed in this paper is shown
in Fig. 1. The inner loop consists of a task planner, a motion
planner and a reinforcement learner that iteratively performs
planning and learning to generate a feasible and low-cost
task-motion plan. Once the inner loop returns a task-motion
plan, it is sent to execution in the outer loop, where the
reinforcement learner performs value iteration on the reward
derived from execution experience. When the inner loop runs
again, it generates an improved task-motion plan based on the
learned values. The framework is explained in detail below.

A. Optimal Task Planning Conditioned on Motion Planning

A task planning problem defines the objective of generat-
ing a satisfactory plan Πτ , i.e., a sequence of actions given
a planning problem (Iτ ,Gτ ,Dτ), where Dτ is a domain
independent symbolic formulation given by human experts,
Iτ is an initial state and Gτ is a goal state. As in PEORL,
Dτ consists of causal laws that formulates preconditions and
effects of actions, such as approach door D1 causes the
robot beside D1 if currently the robot is beside D2 and D1

is accessible from D2:

approach(D1) causes beside(D1) if beside(D2), acc(D2, D1)

and static relationship on fluents, such as symmetry of
accessible relationship: acc(D1, D2) if acc(D2, D1).

A motion planning problem concerns on generating a
collision free trajectory ξ(Im,Gm) given a motion planning
problem (Dm, Im,Gm) where Dm is a motion planning

domain, Im is an initial position and Gm is the goal position,
such that the position Im is connected with position Gm.

We use a mapping function f : X = f(s) that maps a
symbolic state s into a set of feasible poses X in continuous
space, for the motion planning algorithm to sample from. We
assume the availability of at least one pose x ∈ X in each
state s, such that the robot is in the free space of Dm. If it is
not the case, the state s is declared infeasible. Given a motion
planning domain Dm and a task plan Πτ for task planning
problem (Dτ , Iτ ,Gτ), a plan refinement of Πτ w.r.t motion
planner, denoted as Πm, is a sequence of collision free
trajectories obtained by perform motion planning on each
navigation actions, i.e., Πm =

⋃
〈s,a,s′〉∈Πτ ξ(x, x

′), where
x ∈ f(s), x′ ∈ f(s′). The cumulative cost of a task
plan Πτ is obtained by the cumulative length of its motion
planning refinement Πm, i.e., Cost(Πτ) =

∑
ξ∈Πm Len(ξ).

An optimal task plan conditioned on motion plan is defined
as the task plan Πτ

o such that Πm
o has the minimal length

among all task plans.

B. TMP with Reinforcement Learning

1) Reward: Given a symbolic transition 〈s, a, s′〉 where
a can be refined by motion planner, we define a reward
function r that is negative and inversely proportional to a
distance metric of the motion plan that refines the navigation
action a, mapped by a function R : R+ 7→ R−:

r(s, a) = R(Len(ξ(x, x′)) ∝ 1

Len(ξ(x, x′))
,

where x ∈ f(s), x′ ∈ f(s′). One way to instantiate R is

r(s, a) = R(Len(ξ(x, x′))) = −Len(ξ(x, x′)).

If a motion plan fails for transition 〈s, a, s′〉, we define
r(s, a) = −∞.

2) Domain Formulation: We enrich the domain formula-
tion Dτ with the following causal laws formulating the effect
of actions on cumulative plan quality:

a causes quality = C + Z if s, ρ(s, a) = Z, quality = C

where s is a state. The ρ-values are initialized optimistically
to the upper-bound of gain reward, which is the reward
derived from the Lp metric in the configuration space:

default ρ(s, a) = max
x,x′

R(||x− x′||p)

where x ∈ f(s), x′ ∈ f(s′), x 6= x′, for 〈s, a, s′〉
in T (Dτ), p ∈ R+, and Lp metric stands for

||x− x′||p =

(
n∑
i=1

|xi − x′i|p
)−p

.

3) Planning Goal: At any episode t, planning goal Gτt
contains a regular logical constraint describing the goal
condition plus a linear constraint of the form

quality ≥ quality(Πτ
t) (2)

where quality(Πτ
t) =

∑
〈s,a,s′〉∈Πτt

ρ(s, a) for some task

plan Πτ
t . In the planning – learning loop, the linear

constraint guides the planner to generate a plan with
cumulative quality higher than a previous one, measured
by learned ρ-values, leading to the iterative process of plan
improvement based on reinforcement learning.

4) Algorithm for TMP: Algorithm 1 describes our inner
loop of task-motion planning. The input to the algorithm
includes a motion planning domain and a task planning
problem. q0 is initialized to be −∞, and P0 = ∅. The
algorithm first generates a task plan (Line 4). Then it
iterates on each symbolic transition in the plan, and for
each navigation action, it obtains the initial and goal poses
in 2D domain (Line 12), generates motion plan (Line 13)
and returns reward (Line 14). Value iteration of R-learning
is performed with the reward (Line 15). At the end of
this process, plan quality is computed using the learned
ρ values (Line 17), and it is used as the new constraint
in the planning goal (Line 18), setting a baseline for the
planner in the next iteration. The learned ρ values are also
updated in the symbolic formulation (Line 19). When the
algorithm terminates, it outputs a task plan that cannot be
further improved w.r.t the motion planner.

Algorithm 1 Task-Motion Planning

Require: (Iτ ,Gτ ,Dτ , f,Dm, q0, P0) where quality > q0 ∈ Gτ ,
and an exploration probability ε

1: t⇐ 0
2: while t < +∞ do
3: Π∗ ⇐ Πτ

t

4: obtain a plan Πτ
t ⇐ Plan(Iτ ,Gτ ,Dτ ∪ Pt)

5: if Πτ
t = ∅ then

6: return Π∗

7: end if
8: for symbolic transition 〈s, a, s′〉 ∈ Πτ

t do
9: if a cannot be refined by motion planner then

10: continue
11: end if
12: obtain initial pose x = f(s) and goal pose x′ = f(s′)
13: generate motion plan ξ(x, x′)
14: calculate reward r(s, a) = R(Len(ξ(x, x′)))
15: update R(s, a) and ρa(s) using (1).
16: end for
17: calculate quality of Πτ

t by (2).
18: update planning goal G⇐ (quality > qualityt(Π

τ
t)).

19: update facts Pt ⇐ {ρ(s, a) = z : 〈s, a, s′〉 ∈ Π, ρat (s) = z}
20: t⇐ t+ 1
21: end while

C. TMP Execution and Learning
Once a task-motion plan is generated, it is sent for

execution, which goes to the outer loop of learning from
real execution experience, where Algorithm 1 becomes the
planning subroutine (Line 4) in Algorithm 2. In Algorithm 2,
each action is executed in the environment, and the true
reward is obtained (Line 9). The value iteration performed
on the true reward received during execution further rewrites
the value learned through motion planner and feed back into
the TMP algorithm (Line 14) to iteratively generate a task-
motion plan that is adaptable to domain change.

The difference between Algorithm 2 and Algorithm 1,
is in Line 4: Algorithm 1 makes a task planning call and

Algorithm 2 Task-Motion Planning and Learning

Require: (Iτ ,Gτ ,Dτ , f,Dm) where quality > 0 ∈ Gτ , and an
exploration probability ε

1: P0 ⇐ ∅, Πτ
0 ⇐ ∅, q0 = −∞, t = 0

2: while t < +∞ do
3: Π∗ ⇐ Πτ

t

4: obtain a task-motion plan by calling Algorithm 1 Πτ
t ⇐

TMP(Iτ ,Gτ ,Dτ , f,Dµ, qt, Pt).
5: if Πτ

t = ∅ then
6: return Π∗

7: end if
8: for symbolic transition 〈s, a, s′〉 ∈ Πτ

t do
9: execute a and obtain true reward r(s, a).

10: update R(s, a) and ρa(s) using (1).
11: end for
12: calculate quality of Πτ

t by (2).
13: update plan quality qt ⇐ qualityt(Π

τ
t).

14: update facts Pt ⇐ {ρ(s, a) = z : 〈s, a, s′〉 ∈ Πτ
t , ρ

a
t (s) =

z}
15: t⇐ t+ 1
16: end while

Algorithm 2 makes a TMP call. Such duality brings a
unification of refining task plans through motion planner and
through learning from the environment: the quality of task
plans are learned in the same framework and the learned
values are propagated back so that motion planners and
execution experience can jointly improve the task plan.

(a) (b) (c)

Fig. 2: (a) a BWIBot (b) a simulated BWIBot (c) simulation
environment.

V. EXPERIMENTS

The TMP-RL framework is fully implemented and tested
on a real service robot, BWIBot [10], as shown in the
accompanying video1. Additional experiments are conducted
using a simulation closely matching the real platform and
environment (Fig. 2). We compare the performance of the
proposed TMP-RL algorithm (Algorithm 2) with PETLON
[4], a TMP algorithm, and PEORL [12], a TP-RL approach.
We measure the actual reward the robot receives in each
episode by executing the plan generated by each algorithm,
and compare the learning curves. Answer set solver Clingo
5.3 is used for task (symbolic) planning. Path planning is
implemented using the navigation stack of Robot Operating
System (ROS) [22]. In TMP and TMP-RL implementations,
the global path planner is called to generate a trajectory for
each navigation action, and the motion costs are estimated
by the sum of distances between waypoints on the trajectory.

1https://youtu.be/EyoqrpO3Qkk

Plan Task Plan Cost Motion Plan Cost Average Execution Time
(1) 3 60.8 80.6
(2) 9 45.5 126.9
(3) 3 53.1 116.6

TABLE I: Plan costs at different levels of abstraction.

The plan quality constraints are implemented for T(M)P-
RL algorithms. Learning of the ρ values is implemented
using Equation (1) with learning rates α = 0.1, β = 0.5.
The default ρ-values of approach actions are implemented
as the Euclidean distance between the target location and
the landmark closest to the robot. The default reward of
an open door action is -3. A state-action pair without an
evaluated or default ρ value is assumed to have reward -1.

In this experiment, the robot needs to go in a room where
its service is requested. The robot starts near a landmark in an
open space and the robot’s end position can be anywhere in
the target room. The reward is defined as the negative of the
execution time. The room has three initially closed doors that
are available for entrance. The task planner determines which
entrance the robot will use. Fig. 3a shows the experiment
set-up and three competitive task plans. With 30 regions and
12 doors in the domain, many other feasible plans may be
generated by task planner, and some plans involve significant
detour. Table I shows the task plan length, motion plan
length, and average execution time of the competitive plans.
Among the three plans, plan (2) features the shortest naviga-
tion distance, but it takes 9 actions and requires crossing
3 doors. Plan (3) has 3 actions and the second shortest
navigation distance. The duration of executing an open door
action is sampled from a normal distribution with a standard
deviation of (10 seconds). Opening the bottom door takes 60
seconds on average, while the mean open time is 20 seconds
for other doors. Therefore, plan (1) using the top door has
the lowest expected execution time. This example shows one
situation where all three levels of capability are required to
efficiently find the optimal real-world plan.

Evaluation of TMP, TP-RL, TMP-RL. In this evaluation,
we use PETLON (TMP) and PEORL (TP-RL) for compar-
ison. For every approach we conducted 50 runs with 40
episodes in each run. The variability among the trials are
caused by noisy action costs of navigation and opening doors.
For RL-based methods, they can generate different plans
depending on experiences in previous episodes.

Fig. 3b plots the learning curves for reward received in
40 episodes, averaged over 50 runs with the shaded regions
representing one standard deviation from the mean. Fig. 3c
shows for each approach, the average number of episodes
that the three competitive plans and other feasible plans are
executed. Equipped with the reinforcement learner to refine
their plans, TMP-RL and TP-RL converge to the practically
optimal plan, but TMP-RL converges significantly faster.
Using motion plan costs in task plan evaluation ensures
that TMP-RL makes steady improvements after the first two
episodes, while TP-RL learns everything from executing the
plans in the environment. TP-RL has low variances in the

first two episodes, because the task planner first selects
the plans with the smallest number of actions (plans (1)
and (3) in Fig. 3a), but much higher variances afterwards.
As shown in Fig. 3c, TP-RL had to execute many task
plans that are logically valid but significantly worse in
quality directly in the environment, which is expensive and
potentially dangerous for real robots. TMP executes the plan
with the shortest navigation distance in every episode (plan
(2)), without learning any information from execution.

Evaluation of TMP-RL in Multiple Tasks. In long-term
deployments, the robot can be asked to achieve the same
end goal from different starting positions. Since the initial
states are different, the task planner and motion planner
have to solve them as different problems, but TMP-RL can
leverage the learned ρ-values to speed up exploration in
later tasks. In order to demonstrate TMP-RL’s ability to
generalize learned values to different scenarios, we extend
the previous experiment with two more tasks, each with a
different starting position of the robot (shown in Fig. 4a).

In this scenario, we compared continuously running TMP-
RL for all three tasks against using TMP-RL to learn the
second and the third tasks from scratch. In the former setting,
the robot explored the first task for 15 episodes, and then
switched to the second position and the third position while
keeping the learned values. In the latter setting, the robot
started at episode 15 and performed the second task, or
started at episode 30 and performed the third task. Fig. 4b
presents the learning curves averaged over 40 runs in these
three settings, showing that learning the first task leads to
faster, lower variance learning in the later tasks, in compar-
ison with learning from scratch, indicating that the learned
values can be transferred to accelerate learning other tasks.

VI. CONCLUSION

We introduce a novel TMP-RL framework integrating
task-motion planning (TMP) and reinforcement learning
(RL) for adaptable robot sequential decision making. The
framework mixes task planning, motion planning, and rein-
forcement learning in a closed loop with iterative improve-
ments on plan quality over the course of execution. Exper-
iments show that TMP-RL combines the strengths of high
quality offline plan generation of TMP and adaptibility of
RL, achieving practical learning time in a real service robot
domain. Future work includes using TMP-RL to improve the
long-term performance of service robots in a variety of tasks,
as well as extending the framework to multi-robot scenarios.

ACKNOWLEDGEMENT

This work has taken place partly in the Learning Agents
Research Group (LARG) at UT Austin. LARG research
is supported in part by NSF (IIS-1637736, CPS-1739964,
IIS-1724157), ONR (N00014-18-2243), FLI (RFP2-000),
ARL, DARPA, and Lockheed Martin. Peter Stone serves
on the Board of Directors of Cogitai, Inc. The terms of
this arrangement have been reviewed and approved by the
University of Texas at Austin in accordance with its policy
on objectivity in research.

(2) Shortest

(3) High open cost

(1) Optimal

(a) Three competitive plans for the task.

0 5 10 15 20 25 30 35

Episode

−250

−200

−150

−100

−50

R
ew

ar
d

TMP
TP-RL
TMP-RL

(b) Learning curves.

TMP-RL TP-RL TMP
0

10

20

30

40

50

N
um

be
r

of
ep

is
od

es

Optimal
High open cost
Shortest
Others

(c) Distribution of plan executions.

Fig. 3: Comparisons between TMP-RL and baselines of TMP and TP-RL in the task of room-to-room navigation.

(a) Extended experiment with three different initial states.

0 5 10 15 20 25 30 35 40

Episode

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

R
ew

ar
d

Continual TMP-RL
TMP-RL from scratch (2nd task)
TMP-RL from scratch (3rd task)

(b) TMP-RL with continuous transfer vs. learning from scratch.

Fig. 4: Evaluation of TMP-RL in multiple tasks

REFERENCES

[1] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on.
IEEE, 2011, pp. 4575–4581.

[2] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 639–646.

[3] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “Ffrob: Lever-
aging symbolic planning for efficient task and motion planning,” The
International Journal of Robotics Research, vol. 37, no. 1, pp. 104–
136, 2018.

[4] S.-Y. Lo, S. Zhang, and P. Stone, “Petlon: Planning efficiently for task-
level-optimal navigation,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2018, pp. 220–228.

[5] C. Chen, A. Gaschler, M. Rickert, and A. Knoll, “Task planning for
highly automated driving.” in Intelligent Vehicles Symposium, 2015,
pp. 940–945.

[6] A. Cimatti, M. Pistore, and P. Traverso, “Automated planning,” in
Handbook of Knowledge Representation, F. van Harmelen, V. Lifs-
chitz, and B. Porter, Eds. Elsevier, 2008.

[7] L. Kayraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configurations space,”
Proc IEEE Trans Robot Autom, vol. 12, no. 4, pp. 566–80, 1996.

[8] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[9] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal, “CoBots: Robust
Symbiotic Autonomous Mobile Service Robots,” in Proceedings of
IJCAI’15, the International Joint Conference on Artificial Intelligence,
Buenos Aires, Argentina, July 2015.

[10] P. Khandelwal, S. Zhang, J. Sinapov, M. Leonetti, J. Thomason,
F. Yang, I. Gori, M. Svetlik, P. Khante, V. Lifschitz, and P. Stone,
“Bwibots: A platform for bridging the gap between ai and human–
robot interaction research,” The International Journal of Robotics
Research, vol. 36, no. 5-7, pp. 635–659, 2017.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[12] F. Yang, D. Lyu, B. Liu, and S. Gustafson, “Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-
making,” in International Joint Conference of Artificial Intelligence
(IJCAI), 2018.

[13] D. Lyu, F. Yang, B. Liu, and S. Gustafson, “Sdrl: Interpretable
and data-efficient deep reinforcement learning leveraging symbolic
planning,” in AAAI, 2019.

[14] ——, “A human-centered data-driven planner–actor-critic architecture
via logic programming,” in 35th International Conference on Logic
Programming (ICLP’19), 2019.

[15] J. Lee, V. Lifschitz, and F. Yang, “Action Language BC: A Preliminary
Report,” in International Joint Conference on Artificial Intelligence
(IJCAI), 2013.

[16] S. Mahadevan, “Average reward reinforcement learning: Foundations,
algorithms, and empirical results,” Machine Learning, vol. 22, pp.
159–195, 1996.

[17] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in International Conference on
Intelligent Robots and Systems (IROS), 2004.

[18] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion
planning in belief space,” The International Journal of Robotics
Research, vol. 32, no. 9-10, pp. 1194–1227, 2013.

[19] R. Parr and S. J. Russell, “Reinforcement learning with hierarchies
of machines,” in Advances in neural information processing systems,
1998, pp. 1043–1049.

[20] C. Hogg, U. Kuter, and H. Munoz-Avila, “Learning methods to gener-
ate good plans: Integrating htn learning and reinforcement learning.”
in AAAI, 2010.

[21] M. Leonetti, L. Iocchi, and P. Stone, “A synthesis of automated
planning and reinforcement learning for efficient, robust decision-
making,” Artificial Intelligence, vol. 241, pp. 103–130, 2016.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

