
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020),
Las Vegas, NV, USA October 2020

Reinforced Grounded Action Transformation for Sim-to-Real Transfer

Haresh Karnan1§, Siddharth Desai1§, Josiah P. Hanna2, Garrett Warnell3 and Peter Stone4

Abstract— Robots can learn to do complex tasks in simula-
tion, but often, learned behaviors fail to transfer well to the real
world due to simulator imperfections (the “reality gap”). Some
existing solutions to this sim-to-real problem, such as Grounded
Action Transformation (GAT), use a small amount of real-world
experience to minimize the reality gap by “grounding” the
simulator. While very effective in certain scenarios, GAT is not
robust on problems that use complex function approximation
techniques to model a policy. In this paper, we introduce Rein-
forced Grounded Action Transformation (RGAT), a new sim-to-
real technique that uses Reinforcement Learning (RL) not only
to update the target policy in simulation, but also to perform
the grounding step itself. This novel formulation allows for end-
to-end training during the grounding step, which, compared to
GAT, produces a better grounded simulator. Moreover, we show
experimentally in several MuJoCo domains that our approach
leads to successful transfer for policies modeled using neural
networks.

I. INTRODUCTION

In reinforcement learning (RL), the sim-to-real problem
entails effectively transferring behaviors learned in simu-
lation to the real world. Often, learning directly on the
real world can be too time-consuming, costly, or dangerous.
Using a simulator mitigates these issues, but simulators
are often imperfect models, leading to learned policies that
are suboptimal or unstable in the real world. In the worst
cases, the simulated agent learns a policy that exploits an
inaccuracy in the simulator—a policy that may be very
different from a viable real world solution.

A promising paradigm for addressing the sim-to-real prob-
lem is that of Grounded Simulation Learning (GSL) [1], in
which one seeks to modify (i.e., ground) the simulator to
better match the real world based on data from the real world.
If the internal parameters of the simulator cannot be easily
modified (as is often the case in practice), the state-of-the-
art grounding approach is Grounded Action Transformation
(GAT) [2]. GAT performs grounding not by modifying the
simulator, but rather by augmenting it with a learned ac-
tion transformer that seeks to induce simulator transitions
that more closely match the real world. Hanna and Stone
demonstrate that GAT can transfer a bipedal walk from a
simulator to a physical NAO robot. The complex dynamics
involved with a multi-actuated robot walking on soft carpet

§Equal contribution
1 The University of Texas at Austin, Department of Mechanical Engi-

neering {sidrdesai,haresh.miriyala}@utexas.edu
2School of Informatics, University of Edinburgh; To be joining

the Computer Sciences Department, University of Wisconsin—Madison
josiah.hanna@ed.ac.uk

3Army Research Laboratory garrett.a.warnell.civ@mail.mil
4The University of Texas at Austin, Department of Computer Science

and Sony AI pstone@cs.utexas.edu

make it very difficult to create an accurate simulator for
the domain. Whereas training in simulation without GAT
produces a highly unstable real-world policy, the parameters
learned with GAT produced the fastest known stable walk on
the NAO robot [2].

In parallel to development in the sim-to-real space, there
has been an explosion of interest in using deep neural
networks to represent RL policies. Successes of Deep RL
include milestone achievements such as mastering the game
of Go [3] and solving a Rubik’s cube with one robotic hand
[4]. In the robotic motion domains that we consider in this
work, deep learning is a key component of most leading RL
algorithms such as Trust Region Policy Optimization (TRPO)
[5], Proximal Policy Optimization (PPO) [6], and Soft Actor
Critic (SAC) [7].

Unfortunately, trying to combine deep RL with sim-to-
real grounding approaches has proven difficult, which limits
the policy representations possible for sim-to-real problems.
In GAT [2], the policy learned was optimized over sixteen
parameters. The number of parameters of a neural network
are many orders of magnitude higher. We find that trying to
use GAT with neural network policies often fails to produce
transferable policies (see Section IV-C). We hypothesize that
this poor performance is due to imprecision in the grounding
step and that learning the action transformer end-to-end can
improve transfer effectiveness.

To test this hypothesis, we introduce Reinforced Grounded
Action Transformation (RGAT), a new algorithm that modifies
the network architecture and training process of the action
transformer. We find that this new grounding algorithm
produces a more precise action transformer than GAT with
the same amount of real-world data. We perform simulation
experiments on OpenAI Gym MuJoCo domains, using a
modified simulator as a surrogate for the real world. Using
this surrogate allows us to compare our sim-to-real approach
with training directly on the “real” world, which is often not
possible on real robots. 1 We find that RGAT outperforms
GAT at transferring policies from sim to “real” when using
policies represented as deep neural networks, and matches
the performance of an agent that is trained directly on the
“real” environment, thus confirming our hypothesis.

1Of course, doing so comes with the risk that the methods developed may
not generalize to the real world. In this paper, we focus on developing a
novel training methodology for learning in simulation. Conducting extensive
evaluation of this approach is only possible with a surrogate real world.
Other work [2], [8] has focused on evaluating similar methods on real robots,
and such experimentation with RGAT is an important direction for future
work.

II. BACKGROUND
Motivated by increasing interest in employing data-

intensive RL techniques on real robots, the sim-to-real prob-
lem has recently received a great deal of attention. Sim-
to-real is an instance of the transfer learning problem. As
we define it, sim-to-real refers to transfer between domains
where the transition dynamics differ and the rewards are
the same. Note that with this formalism, it is not strictly
necessary for the sim domain to be virtual nor for the
real domain to be physical.2 This section summarizes the
existing sim-to-real literature and specific literature from
reinforcement learning related to our proposed approach.

A. Related Work

The sim-to-real literature can be broadly divided into two
categories of approaches. Methods in the first category seek
to learn policies robust to changes in the environment. In
applications where the target domain is unknown or non-
stationary, these methods can be very useful. Dynamics
Randomization adds noise to the environment dynamics,
which has led to success in finding robust policies for
robotic manipulation tasks [9]. Action Noise Envelope (ANE)
[10] randomizes the environment by adding noise to the
action. While these methods uses noise injected at random to
modify the environment, Robust Adversarial Reinforcement
Learning (RARL) uses an adversarial agent to modify the
environment dynamics [11]. Using a different paradigm,
meta-learning attempts to find a meta-policy which can be
learned in simulation and then can quickly learn an actual
policy on the real environment [12].

Methods in the second category, which we refer to as
grounding methods, seek to improve the accuracy of the
simulator with respect to the real-world. Unlike the robust-
ness methods, these methods have a particular target real-
world domain and usually require collecting data from it. We
can think of grounding methods as strategies to correct for
simulator bias, whereas the robustness methods only correct
for simulator variance. System identification type approaches
try to learn the exact physical parameters of the system—
either through careful experimentation as done with the
Minitaur robot [13] or through more automated methods of
system identification like TuneNet [14]. Often, these methods
require alternating between improving the simulator and
improving the policy as in Grounded Simulation Learning
[1]. Our approach follows this basic format, but unlike these
methods (and like GAT [2]), we do not assume that we
have a parameterized simulator that we can modify. Neural-
Augmented Simulation (NAS) [15] and policy adjustment
[16] are similar approaches to GAT but use different neural
architectures and training procedures.

GAT achieved remarkable success on a challenging do-
main; however, there has not been much work applying it
to different domains. Our approach improves upon the GAT
algorithm to overcome some of its limitations.

2Indeed in transfer learning terminology, the sim and real domains would
be called source and target domains respectively. In this paper, we will
primarily use “sim” and “real.”

πθ

Policy

Action Transformer

f−1sim frealSim
ŝt+1ât

at

st+1

st

Agent

Env
R

rt

Fig. 1: Diagram of the GAT training process [2], showing how the
forward model, freal, and the inverse model, f−1

sim, transform the
action, at, before it passes to the simulator. Everything below the
agent/env boundary is considered the grounded simulator.

B. Preliminaries

Formally, we treat the sim-to-real problem as a rein-
forcement learning problem [17]. The real environment is
a Markov Decision Process (MDP). At each time step, t, the
environment’s state is described by st ∈ S. The agent sam-
ples an action, at ∈ A, from its policy, at ∼ π(·|st). The en-
vironment then produces a next state: st+1 ∼ Treal(·|st, at),
where Treal is the transition probability distribution. The
agent also receives a reward, rt+1 ∈ R, from a known
function of the action taken and the next state: rt+1 =
R(at, st+1). In the controls literature, this is often called
a cost function (which is a negative reward function). The
discount factor γ ∈ [0, 1] controls the relative utility of near-
term and long-term rewards. The RL problem is to find a
policy, π, that maximizes the expected sum of discounted
rewards: Σ∞t=0γ

tR(at, st+1)
The simulator is an MDP that differs only in the transition

probabilities, Tsim. The sim-to-real objective is to maximize
the expected return for the RL problem while minimizing the
number of time steps evaluated on the real MDP. The tradeoff
between these objectives depends on the specific application.

C. Grounded Action Transformation (GAT)

The GSL framework [1] consists of alternating between
two steps, called the grounding step and the policy im-
provement step. During the grounding step, the target policy,
π, remains frozen while the simulator is improved, and,
during the policy improvement step, the grounded simulator
is fixed, making this step a standard RL problem. The policy
improvement step is done entirely in the grounded simulator.
GSL continues alternating between these steps until the
policy performs well on the real environment.

GAT [2] introduced a particular way of grounding the
simulator which treats the simulator as a black box. The
grounding step for GAT is as follows:

1) Evaluate the current policy on both environments and
store trajectories, {s0, a0, s1, a1, ...} as τreal and τsim.

2) Using supervised learning, train a forward model of
the dynamics, freal : S × A → S ′, from the data in
τreal. This model—usually a neural network—learns

Algorithm 1 Reinforced Grounded Action Transformation
Input: initial parameters θ, φ, and ψ for target policy
πθ, action transformer policy gφ, and forward dynamics
model fψ; policy improvement methods, optimize1 and
optimize2

1: while policy πθ improves on real do
2: Collect real world trajectories

τreal ← {((s0, a0), s1), ((s1, a1), s2), ...}real
3: Train forward dynamics function fψ with τreal
4: Update gφ in simulation by using optimize1 and

reward, rt = −||fψ(st, at)− st+1||2
5: Update πθ in simulation using optimize2 and the

reward from the grounded simulator
6: end while

a mapping from (st, at) to the maximum likelihood
estimate of the next state observation, ŝt+1.

3) Similarly, train an inverse model, f−1sim : S × S ′ → A
from τsim. This model is a mapping from two states,
(st, st+1), to the action, ât, that is most likely to
produce this transition in the simulator.

4) Compose the forward and inverse models to form the
action transformer, g(st, at) = f−1sim(st, freal(st, at)).

During the policy improvement step, the reward is still
computed explicitly as R(at, st+1). A block diagram of the
grounded simulator for GAT is shown in Fig. 1. When the
action transformer is prepended to the simulator, the resulting
grounded simulator produces a next state, st+1, that is closer
to the next state observed in the real world. Thus, if we learn
a policy on a good grounded simulator, the policy will also
perform well on the real world.

III. REINFORCED GROUNDED ACTION
TRANSFORMATION (RGAT)

In our experiments, we find that GAT produces a very
noisy action transformer (see Section IV-A). We hypothesize
that this noise is due to the composition of two different
learned functions—since the output of freal is the input to
f−1sim, errors in freal are compounded with the errors in f−1sim.
To reduce these errors, we introduce Reinforced Grounded

Action Transformation (RGAT), an algorithm that trains the
action transformer end-to-end. Since there is no straightfor-
ward supervisory signal that can be used to train the action
transformer, we propose to learn the action transformer using
reinforcement learning. In RGAT, we learn a single action
transformation function for g as opposed to learning freal
and f−1sim separately. Training the action transformer as a
single neural network also allows us to learn the change in
action, ∆at = ât − at, rather than the transformed action
directly. If the simulator is realistic, then the values of ∆a
will be close to 0 indicating no change is required; however,
the values for â span the whole action space. Thus, this
change has a normalizing effect on the output space of the
neural network, which makes training easier.

Our experiments show that RGAT produces more precise
action transformers than GAT while using the same amount
of real world data. In this approach, we treat the grounding
step as a separate RL problem. Like GAT, RGAT first uses
supervised learning to train a forward model, fψ , parameter-
ized by ψ; however, unlike GAT, fψ is not part of the action
transformer. This forward model gives a prediction of the
next state fψ(st, at) = ŝt+1, which is used to compute the
reward for the action transformer.

Here, we model the action transformer as an RL agent
with policy gφ with parameters φ. We will call this the
action transformer policy to distinguish it from the target
policy, the policy of the behavior learning agent we wish
to deploy on the real world. This agent observes the state,
st, and the action taken by the target policy, at = πθ(st).
Therefore, the input space for the action transformer policy
is the product of the state and action spaces of the target
policy SAT = S × A. The output of the action transformer
policy is a transformed action, so the action space remains
the same AAT = A. Since there are two different RL
agents with different objectives, they have different reward
functions. The reward for the target policy is provided by
the grounded simulator whereas the reward for the action
transformer policy is determined by the closeness of the
transition in the grounded simulator to the real world. At each
time step, the actual next state from the grounded simulator
is compared to the next state predicted by the forward model

πθ

Target Policy

gφ

A.T. Policy

Sim
ât

st, at

st+1

st

Agent

Env
R

rt

(a) RGAT Policy Improvement Step

gφ

A.T. Policy

Simπθ

Target Policy

st+1

ât(st, at)

RAT fψ
ŝt+1

rt Agent

Env

(b) RGAT Grounding Step

Fig. 2: Diagram of the two steps of the proposed RGAT algorithm. Note that the outer loop is the same in both steps, but only the policy
on the Agent side is updated during the Policy Improvement and Grounding step.

Fig. 3: Transformed action vs original action in a sim-to-self
experiment on the InvertedPendulum environment—learned using
GAT (left) and RGAT (right) algorithms. The black line shows
the fixed points of the action transformer. RGAT has much lower
variance than GAT.

and the action transformer is penalized for the difference with
the per step reward RAT (ŝt+1, st+1) = −||ŝt+1− st+1||2 =
−||fψ(st, at)− st+1||2.

That is, the reward is the negative L2 norm squared
between expected next state and actual next state. The dif-
ference between training the two different policies is shown
in Fig. 2. Note that the outer loop in both are exactly the
same. The blocks are just rearranged to make the agent–
environment boundary clear. Fig. 2b also shows the forward
model that is used to compute RAT . This block is missing
from Fig. 2a since the target policy’s reward is provided by
the grounded simulator.

IV. EXPERIMENTS
We designed experiments to test our hypotheses that train-

ing the action transformer end-to-end improves the precision
of the action transformer and that this improved precision
improves sim-to-real transfer. First we compare the precision
of the GAT and RGAT action transformations by examining
how individual actions are transformed on the Inverted-
Pendulum domain (Section IV-A). We then evaluate the
policies learned using each algorithm on the “real” domain
to compare how well the polciies transfer(Section IV-C). We
use a modified simulator to act as a surrogate for the real
world. For these experiments, we use the MuJoCo continuous
control robotic domains provided by OpenAI Gym [18]. We
evaluate RGAT on three different MuJoCo environments—
InvertedPendulum-v2, Hopper-v2 and HalfCheetah-v2. In-
vertedPendulum is a simple environment with a four di-
mensional continuous state space and a one dimensional
continuous action space. Both Hopper and HalfCheetah are
relatively complex environments with high-dimensional state
and action spaces compared to InvertedPendulum, and their
dynamics are more complex due to presence of friction and
contact forces. We use an implementation of TRPO from
the stable-baselines library [19] for both optimize1 and
optimize2 of Algorithm 1.

A. Sim-to-Self Experiments

To test the precision of an action transformer, we first
apply both the GAT and RGAT algorithms to settings where

Fig. 4: Transformed action vs original action in a sim-to-real
experiment on the InvertedPendulum environment—learned using
RGAT, where the real pendulum is heavier (left) or lighter (right)
than the simulated pendulum. The black line shows the fixed points
of the action transformer.

the sim and real domains were exactly the same. Ideally,
during the grounding step, the action transformer should
learn not to transform the actions at all. This effect is easy
to visualize for InvertedPendulum, since the action space is
one dimensional. Fig. 3 shows the transformed action versus
the input action after one grounding step for GAT and RGAT.
The black line shows the points where the transformed action
is the same as in the input action. From the figure, we can
see that RGAT produces a better action transformer, since the
dots lie much closer to the black line. The transformer for
GAT has a wider distribution with a bias toward the black
line.

B. Policy Representation

Consistent with Hanna and Stone [2], we find that GAT
works well on transferring policies where the policy repre-
sentation is low dimensional. When we use a shallow neural
network for the target policy—one hidden layer of four
neurons—GAT and RGAT have very similar performance. We
run ten trials of both algorithms, evaluating the performance
on the “real” environment after each policy improvement
step. Fig. 5a shows the mean return over ten grounding steps
for both algorithms. For reference, we compare the results
to a policy trained only in simulation (red line), and a policy
that is allowed to train directly on “real” until convergence
(green line).

We then repeat that experiment using a deeper network—
a fully connected neural network with two hidden layers of
64 neurons. The sim-to-real experiment results on Inverted-
Pendulum is shown in Fig. 5b. GAT fails to transfer a policy
from sim to “real”, as was discussed in the previous sections.
However, RGAT receives close to the optimal reward even
with a high-dimensional policy representation.

C. Sim-to-“Real” Experiments

Similar to the action transformation visualizations shown
in Section IV-A, we can visualize the transformations for
the sim-to-real case. Fig. 4 shows the action transformation
graphs for two different InvertedPendulum “real” world en-
vironments. On the left, the “real” pendulum has a greater
pendulum mass than the simulated pendulum. Therefore, the

(a) Shallow Network (b) Deep Network

Fig. 5: Average performance of RGAT and GAT over ten grounding steps for InvertedPendulum. The real pendulum has a mass of 100
units. The shaded region shows standard error over ten independent training runs. In the shallow network case (a), both algorithms do
well, but in the deep network case (b), GAT fails to reach optimal performance.

Fig. 6: Average performance of RGAT and GAT over twenty
grounding steps for HalfCheetah. The “real” HalfCheetah’s torso
is 15% heavier than the sim HalfCheetah. The shaded region
shows standard error over ten independent training runs. RGAT
outperforms GAT, but both algorithms eventually reach the optimal
reward.

magnitude of the actions decreases—a weaker force on the
lighter pendulum has the same effect as a stronger force on
the heavier pendulum. If the real pendulum is lighter, the
opposite happens, as is shown in the figure on the right.

Note that the action transformer takes both the state and
action as input, so the same input action could be transformed
to different output action depending on the state. Thus, this
effect accounts for some of the variance in Fig. 4, whereas
in Fig. 3 the variance is only due to modeling error.

To further test the effectiveness of RGAT, we repeat the
experiment from Fig. 5b on the HalfCheetah and Hopper
domains. The target policy architecture is the same as in
Fig. 5b. For these domains, using shallower networks is not
an option, because lower capacity networks fail to learn good
policies, even when trained directly on the real domain.

We chose the mass for the “real” environments based
on the analysis from the RARL paper [11]. Changing the
physical parameters of the robot results in different transition
dynamics, which acts as our surrogate for the “real” environ-

Fig. 7: Average performance of RGAT and GAT over ten grounding
steps for Hopper. The “real” Hopper’s torso is 27% heavier than
the sim Hopper. The shaded region shows standard error over ten
independent training runs. Here, GAT barely improves upon the
baseline. RGAT quickly reaches the green line in three grounding
steps.

ment; however in certain cases, it can make the task much
easier or harder. We thus verify that an agent trained directly
on the modified environment reaches the same optimal return
as is expected on the original domain. Therefore, if a policy
performs poorly on the modified simulator, we know this is
because of poor transfer and not because the task is harder.

Figs. 5a, 5b, 6, and 7 show plots comparing the per-
formance of GAT and RGAT. Both algorithms use 50 real
world trajectories for every grounding step. In all of these
experiments, RGAT performs significantly better than GAT
and performs as well as a policy trained directly on the ”real”
domain (green line). For comparison, the green lines on
these plots show the performance of a policy trained directly
on the real environment for up to ten million timesteps of
experience.

We also compare against the Action Noise Envelope
method [10]. Like GAT and RGAT, ANE is a sim-to-real
method that treats the simulator as a black-box. However,
ANE is not a grounding method—it seeks only to find policies

that are robust to a prespecified noise distribution. For a given
target domain, this distribution is typically unknown, but
we performed experiments for several specified distributions
and report only the best results. In the Inverted Pendulum
domain, ANE does well, but in the more complex domains,
it is unable to learn a policy that transfers well. This behavior
is expected because robustness methods try to perform well
over a variety of environments at the cost of performance on
any one particular domain.

D. Hyperparameters

Though we use the stable-baselines library hyperparame-
ters for policy improvement, using TRPO as the grounding
step optimizer introduces a new set of hyperparameters for
the algorithm. The parameters we found to be most critical
to the success of the algorithm were the maximum KL
divergence constraint and the entropy coefficient. We found
that if the action transformer policy changed too much during
a single grounding step, then the target policy often failed to
learn. Thus, the maximum KL divergence should be small, but
not so small that the policy cannot change at all. The entropy
coefficient should be large enough to ensure exploration. In
our experiments, we set the max KL divergence constraint
value to 1e-4 and entropy coefficient to 1e-5.

The discount factor for the action transformer, γAT , is an
additional hyperparamter we can control. Since the action
transformer in RGAT is an RL agent, it may pick suboptimal
actions at the present step to get a higher reward in the
future. In this sense, the action transformer tries to match
the whole trajectory instead of just individual transitions.
Setting γAT = 1 leads to matching the entire trajectory, and
setting γAT = 0 causes the learner to only look at individual
transitions. In our experiments, we set γAT to 0.99.

V. DISCUSSION AND FUTURE WORK

The experiments reported above confirm our hypotheses
that learning the action transformer end-to-end improves
its precision (Section IV-A) and that policies learned using
RGAT transfer better to the “real” world than policies learned
using GAT (Section IV-C). When the target policy network is
shallow, the difference between the algorithms is less notice-
able, but when the network capacity increases, inaccuracies
in the action transformer have a greater effect.

Having demonstrated success in transferring between sim-
ulators and having analyzed in detail the scenarios in which
RGAT outperforms GAT, the next important step in this
research is to validate RGAT on physical robots.

VI. CONCLUSION

This paper introduced Reinforced Grounded Action Trans-
formation (RGAT), a novel algorithm for grounded simu-
lation learning. We investigate why GAT fails to learn a
good action transformer and improve upon GAT by learning
an action transformer end-to-end. RGAT is able to learn
a policy for grounding a simulator, using limited amount
of experience from the target domain, and our method is
compatible with existing deep RL algorithms, such as TRPO.

We experimentally validated RGAT’s sim-to-real performance
on the InvertedPendulum, Hopper and HalfCheetah environ-
ments from MuJoCo, and we showed empirically that within
a few grounding steps, RGAT can produce a policy that
performs as well as a policy trained directly on the target
domain.

VII. ACKNOWLEDGMENT
This work has taken place in the Learning Agents Research

Group (LARG) at UT Austin. LARG research is supported in
part by NSF (CPS-1739964, IIS-1724157, NRI-1925082), ONR
(N00014-18-2243), FLI (RFP2-000), ARL, DARPA, Lockheed
Martin, GM, and Bosch. Peter Stone serves as the Executive
Director of Sony AI America and receives financial compensation
for this work. The terms of this arrangement have been reviewed
and approved by the University of Texas at Austin in accordance
with its policy on objectivity in research.

REFERENCES

[1] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone, “Humanoid robots
learning to walk faster: From the real world to simulation and back,”
in Int. Conf. on Autonomous Agents and Multiagent Systems, 2013.

[2] J. P. Hanna and P. Stone, “Grounded action transformation for robot
learning in simulation,” in AAAI Conf. on Artificial Intelligence, 2017.

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, 2017.

[4] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew,
A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider,
N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang, “Solving rubik’s cube with a robot hand,” 2019.

[5] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” 2015.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Int. Conf. on Machine Learning, 2018.

[8] S. Desai, H. Karnan, J. P. Hanna, G. Warnell, and P. Stone, “Stochastic
grounded action transformation for robot learning in simulation,” in
Int. Conf. on Intelligent Robots and Systems, 2020.

[9] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” 2018.

[10] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The
use of simulation in evolutionary robotics,” in Advances in Artificial
Life, 1995.

[11] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adver-
sarial reinforcement learning,” 2017.

[12] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” 2017.

[13] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” in Robotics: Science and Systems, 2018.

[14] A. Allevato, E. S. Short, M. Pryor, and A. L. Thomaz, “Tunenet: One-
shot residual tuning for system identification and sim-to-real robot task
transfer,” in Conf. on Robot Learning, 2019.

[15] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer, “Sim-to-real
transfer with neural-augmented robot simulation,” in Conf. on Robot
Learning, 2018.

[16] J. C. G. Higuera, D. Meger, and G. Dudek, “Adapting learned robotics
behaviours through policy adjustment,” in IEEE Int. Conf. on Robotics
and Automation, 2017.

[17] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 2018.

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[19] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,”
https://github.com/hill-a/stable-baselines, 2018.

