
Team Orienteering Coverage Planning with Uncertain Reward

Bo Liu1, Xuesu Xiao1 and Peter Stone1,2

Abstract— Many municipalities and large organizations have
fleets of vehicles that need to be coordinated for tasks such as
garbage collection or infrastructure inspection. Motivated by
this need, this paper focuses on the common subproblem in
which a team of vehicles needs to plan coordinated routes to
patrol an area over iterations while minimizing temporally and
spatially dependent costs. In particular, at a specific location
(e.g., a vertex on a graph), we assume the cost accumulates
over time and its growth rate is a random variable with
a fixed but unknown mean, and the cost is reset to zero
whenever any vehicle visits the vertex (representing the robot
“servicing” the vertex). We formulate this problem in graph
terminology and call it Team Orienteering Coverage Planning
with Uncertain Reward (TOCPUR). We propose to solve
TOCPUR by simultaneously estimating the accumulated cost
at every vertex on the graph and solving a novel variant of
the Team Orienteering Problem (TOP) iteratively, which we
call the Team Orienteering Coverage Problem (TOCP). We
provide the first mixed integer programming formulation for
the TOCP, as a significant adaptation of the original TOP.
We introduce a new benchmark consisting of hundreds of
randomly generated graphs for comparing different methods.
We show the proposed solution outperforms both the exact
TOP solution and a greedy algorithm. In addition, we provide
a demo of our method on a team of three physical robots in
a real-world environment. The code is publicly available at
https://github.com/Cranial-XIX/TOCPUR.git.

I. INTRODUCTION

Mobile agent fleets are now being used for many purposes
in our daily life, such as a team of mobile robots delivering
food [1], a school bus fleet picking up students, or a garbage
truck fleet collecting garbage.

In many such situations, visiting a particular location
results in some benefit (e.g. collecting piled up garbage),
which we model as a reward. The overall objective is there-
fore to collect as much reward as possible, while ensuring
that each vehicle’s travel time stays within some budget.
This problem can be formulated as the Team Orienteering
Problem (TOP) [2]. However, TOP assumes the reward at
each location is a known constant before being collected
and set to zero. This formulation does not suit problems in
which the reward can accumulate over time. For example,
consider a garbage truck fleet collecting garbage in a city.
The amount of garbage in general grows over time and it
becomes much more beneficial to visit a location that has
not been visited for a long time. The expected garbage
growth rate at different locations might be different and
unknown to the agents beforehand. But whenever an agent
visits a location and collects the garbage, it can update its

1Xuesu Xiao, Bo Liu, and Peter Stone are with Department of Computer
Science, University of Texas at Austin, Austin, TX 78712 {bliu, xiao,
pstone}@cs.utexas.edu. 2Peter Stone is also affiliated with Sony AI .

Fig. 1: Real-World Demonstration: From the same black
vertex (v1), a fleet of three robots is tasked with visiting all
red vertices and as many yellow vertices as possible. Within
the same budget, the optimal plan of the TOCP problem
covers all red and yellow vertices (lower left), while the
greedy plan misses many optional yellow vertices and does
a lot of backtracking (lower right).

estimation of the growth rate at that location. In addition
to TOP assuming a known constant reward, in its typical
formulation each location can only be visited once, which
again significantly limits its application.

As a result, in this paper, we introduce a novel cover-
age planning problem, called Team Orienteering Coverage
Planning with Uncertain Reward (TOCPUR). In TOCPUR,
a team of mobile agents is tasked to patrol a set of predefined
locations over multiple iterations. The goal is to reduce the
time- and place-dependent costs (i.e., negative rewards). In
particular, we assume the cost grows between iterations and
stays constant within an iteration, and each vertex can be
visited multiple times in an iteration but the cost is only
reduced once (e.g., the garbage is collected during the first
visit on that day where each day is an iteration). Optionally,

https://github.com/Cranial-XIX/TOCPUR.git

A

edge planned route (w/ direction)start/end vertex

A

TOP TOCP

Fig. 2: The TOP (left) and the TOCP (right) plans on the
same graph instance. In the standard TOP formulation, an
agent cannot traverse a vertex twice. Hence in TOP, it is
impossible to visit the nodes on the right of A in a closed
route that starts/ends at the leftmost vertex.

we allow users to specify a subset of locations that the fleet
has to visit. This option is useful when the fleet of agents
has a primary task (e.g. routine check at certain locations)
and some secondary tasks (e.g. collecting as much garbage
as possible).

We solve TOCPUR by simultaneously estimating the
unknown and growing costs over the area and solving a novel
variant of the TOP, called the Team Orienteering Coverage
Problem (TOCP), which allows multiple visits to the same
nodes. In this paper, we refer to TOCP and TOP plans as
the solutions to their corresponding problems. We introduce
a benchmark of hundreds of randomly generated graphs
and show improved performance using the proposed method
compared to both the TOP solution and a greedy algorithm.
We also demonstrate the proposed planner working on a team
of three physical robots in a real-world environment (Fig. 1).

II. RELATED WORK

In this section, we briefly review prior literature in orien-
teering problems and coverage planning.

a) Orienteering Problem: The proposed TOCPUR
problem is closely related to the team orienteering problem
(TOP) [2], which is a multi-tour extension of the orienteering
problem (OP) [3]. The OP originates from the Travelling
Salesman Problem and is heavily studied in the optimization
community. In the standard OP, an agent needs to plan a path
under a fixed length constraint that collects as much reward
as possible as it traverses the vertices along that path. The
TOP is then a multi-tour extension of the OP where a team
of agents plan consecutively, which is equivalent to a single
agent planning multiple times. The major difference between
TOCPUR and TOP is that in TOCPUR, we allow each vertex
to be visited multiple times, which better resembles many
real-world scenarios but makes the problem harder. As a
result, the planned route becomes a walk instead of a path
(e.g. a walk without loops) for each agent (See Fig. 2).
While this modification seems to be a small change, the core
constraints in the formulation of the standard TOP problem
can no longer be used. This modification is also the key
contribution of our formulation of the TOCPUR problem.
In addition, TOCPUR models cumulative reward over time
where at each time step, the reward is sampled identically

and independently from a fixed unknown distribution. This
setup is similar to the OP with stochastic profits (OPSP) [4].
However, in OPSP, the objective is to maximize the prob-
ability that the total collected profit will be greater than a
predefined target value. In addition, OPSP does not allow
for reward/profit to grow over time.

Besides TOP and OPSP, there exists a big family of
variants of the OP. For instance, prior research has considered
the OP with time window (OPTW) [5] where the agent
can only visit a vertex within a pre-specified time window.
Generalized OP (GOP) extends OP such that the reward
at each vertex is a non-linear function with respect to a
set of attributes. OP with variable profit (OPVP) considers
multiple passes for each node where each pass collects
a fixed percentage of the remaining resource [6]. Multi-
agent OP (MAOP) [7] considers a competitive game among
multiple agents trying to solve the OP individually. More
recently, multi-visit TOP (MVTOP) [8] has been proposed
where each vertex needs to be served by multiple agents with
different skills in a certain order. In general, different com-
binations of having multiple tours, multiple agents, different
time windows, and stochastic rewards have been studied.
However, in the formulation of all these variants of the OP,
each vertex is only allowed to be visited once by a single
vehicle in a single tour. TOCPUR, by allowing multiple
visit to a single vertex for a single agent, has much broader
applications. Gunawan et al. [9] provide a comprehensive
overview of existing variants of the OP.

b) Coverage Planning: Coverage planning (CP)
is the task in robotics of determining a path to cover all
points in an area while avoiding obstacles. Standard CP
problems involve both high-level path planning and low-
level motion planning. Typical methods will break the free
space, i.e., the space free of obstacles, down into simple,
non-overlapping regions called cells [10]. Then an exhaustive
walk through the graph defined by the decomposed cells is
found. TOPCUR is similar to CP problems in that it aims
to fully cover a set of must-visit vertices and maximizes
the coverage over other vertices through planned routes. In
our current formulation, TOPCUR primarily focuses on the
high-level path planning.

III. BACKGROUND

In this section, we introduce the notations and formally
define the TOCPUR problem using graph terminology.

A. Notation

We represent the area to be patrolled as a symmetric
directed graph G = (V,E), where V = {v1, v2, . . . , vN}
is the set of N vertices and E is the edge set. eij denotes an
edge from vi to vj , which has a length of lij .1 In addition, we
assume the agent fleet consists of M agents in total, which
we call agent 1 to M when the context is clear. We use [x]
to denote {1, 2, . . . , x}, and [a, b] to denote {a, a+1, . . . , b}.

1Since G is symmetric directed, if eij exists, eji also exists and lij = lji.
The symmetric directed assumption represents bidirectional traffic.

i j i j
Fig. 3: If eij is visited twice (blue), we can remove them by
reversing the direction of another route connecting vj to vi.

B. Problem Formulation

In this section, we define the TOCPUR problem. We
consider H iterations of route planning for a vehicle fleet
of size M over a symmetric directed graph G = (V,E).
Each vertex vi accumulates a cost of κi,t right before the
t-th iteration, where E[κi,t] = µ∗i and µ∗i is unknown a
priori. In other words, the cost at each vertex approximately
grows linearly in expectation at an unknown rate (In the
garbage truck application, think of an iteration as a day of
garbage collection and κi,t as the amount of garbage that
appears overnight at location i prior to day t). Next, denote
Ti,t as the most recent iteration prior to t when the vehicle
fleet visited vi. Then vi at iteration t accumulates a total
cost of ci,t =

∑t
k=Ti,t+1 κi,k. The entire cost over G at

iteration t is specified as c(G, t) =
∑
i∈[N] ci,t. Intuitively,

the total cost at the end of an iteration is the sum of the
current accumulated costs of all the vertices not visited
during that iteration (the current cost of those visited is reset
to 0). The goal is then to plan M routes {τm,t}Mm=1, each
no longer than a maximum length lmax, for all vehicles at
each iteration t ∈ [H], such that the expected total cost on
G over the horizon is minimized. Specifically, each route
τm,t = (v1, . . . , v1) is a sequence of vertices that starts and
ends in v1. Optionally, we can include a set of “must visit”
vertices I such that the fleet has to visit all vertices in I
during each iteration. The whole problem can be described
as the following optimization:

minimize
{{τm,t}Mm=1}Ht=1

L = E
[H∑
t=1

c(G, t)
]
, where

c(G, t) =

N∑
i=1

t∑
k=Ti,t+1

κi,k.

subject to ∀m, t
∑

eij∈τm,t

lij ≤ lmax,

∀i, t, Ti,t+1 =

{
t if vi ∈

⋃
m τm,t,

Ti,t otherwise

∀i, Ti,1 = 0,

(optionally) ∀vi ∈ I, vi ∈
⋃
m

τm,t.

(1)
Here,

⋃
m τm,t =

⋃
m{v | v ∈ τm,t} and we abuse the

notation a bit to denote eij ∈ τ if vi, vj appear consecutively
in τ . This optimization problem (Opt. 1) is NP-hard even
when we know {µ∗i } exactly since it can easily reduce to
the Travelling Salesman Problem. We emphasize two points:
1) As κi,t is drawn randomly from a distribution with an

unknown mean µ∗i , it is in general impossible to have an
optimal open-loop plans for solving Opt. 1. 2) Unlike in
TOP, we do not assume that each vi can only appear once in
any τm,t. However, as we will see in the following, we can
safely assume each eij appears at most once in any τm,t.

IV. METHOD

In this section, we propose to solve the TOCPUR problem
by optimizing the per-iteration objective while updating the
reward estimation simultaneously. The per-iteration objective
is then specified by a novel mixed integer programming
formulation. In addition, we provide a simple greedy method
as a baseline for solving the problem approximately.

A. Reward Estimation and Per-Iteration Planning

Solving Opt. 1 exactly for large H is computationally in-
tractable. In fact, even when H = 1 and {µ∗i }Ni=1 are known,
the problem remains NP-hard. In addition, because {µ∗i }Ni=1

are hidden, an optimal solution must consists of closed-
loop plans that take past observations (e.g. κ) into con-
sideration. Therefore, we propose to optimize the expected
cost E

[
c(G, t)

]
iteratively while updating the estimates of

{µ∗i }Mi=1 simultaneously. Specifically, we keep track of Ti,t
for each node vi, as well as the total observed cumulative
cost at vi, i.e. Ci,t =

∑Ti,t

k=1 κi,k. The maximum likelihood
estimation of µ∗i at time t is therefore

µ̂i,t =

Ci,t

Ti,t
=

∑Ti,t
k=1 κi,k

Ti,t
Ti,t > 0

µdefault Ti,t = 0,
(2)

where µdefault is a default value or a pre-specified value
based on prior knowledge when there has been no visits to
a node. Therefore, at each iteration t, we can use {µ̂i,t}Ni=1

to estimate E
[
c(G, t)

]
, i.e. ĉ(G, t) =

∑N
i=1 µ̂i,t(t − Ti,t) ≈∑N

i=1 µ
∗
i (t − Ti,t) = E

[
c(G, t)

]
. Following the convention

in orienteering problems [2], we formulate the per-iteration
optimization as a mixed integer program (MIP). In the
following, we will temporarily ignore the subscript t. Let
{xijm}, {yim} and {zi} be the binary decision variables
and i, j ∈ [N] and m ∈ [M]. xijm = 1 if agent m traverses
eij and 0 otherwise. Similarly, yim = 1 if agent m visits vi
and zi = 1 if any agent visits vi. It is sufficient to assume
xijm is binary, as justified by the following proposition.

Proposition 1: Any optimal solution of Opt. 1 has an
equivalent solution where each eij is traversed at most once
for a single agent at a single iteration.

Proof: Assume otherwise. Let eij be the edge that is
visited at least twice. If vi is only visited once, then certainly
we can remove one traversal of eij with no problems. If vi
is visited more than once, then there has to exist a route p,
i.e. a sequence of vertices, that goes from vj back to vi. But
then, since G is symmetric directed, we can remove both
traversals of eij by reversing the traversal direction of the
edges along the route p. This change results in visiting the
same set of vertices with a shorter length (See Fig. 3).

The per-iteration optimization is then formulated as the
following MIP, which we call the team orienteering coverage

problem (TOCP).2

maximize

M∑
m=1

N∑
i=2

ĉi,tzi (3)

∀m,
N∑
j=2

x1jm =

N∑
i=2

xi1m = 1 (4)

∀m, i, xiim = 0 (5)

∀m, i, yim ≤
N∑
j=1

xijm ≤
yim · lmax

mineij∈E lij
(6)

∀i, zi ≤
∑
m

yim ≤ zi ·M (7)

∀m, i,
N∑
j=1

xijm =

N∑
j=1

xjim (8)

∀m,
N∑
i=1

N∑
j=1

lijxijm ≤ lmax (9)

∀m,
N∑
j=1

u1jm −
N∑
i=1

ui1m =

N∑
j=2

yjm (10)

∀m, i > 1,

N∑
j=1

uijm −
N∑
j=1

ujim = yim (11)

∀m, i, j, 0 ≤ uijm ≤ N · xijm (12)

(optionally) ∀vi ∈ I, zi = 1 (13)

Eq. 3 is the objective. Eq. 4 ensures all agents start and
end in v1. Eq. 5 eliminates self-loops. Eq. 6-7 enforce the
definitions of yim and zi. For instance, yim = 0 if and
only if ∀j, xijm = 0.3 Eq. 8 ensures the conservation of
flow. Eq. 9 ensures each agent travels within the length
budget lmax. Eq. 10-12 ensures the found route τm for each
agent m is strongly connected. The variables {uijm} define
an amount of flow that begins at v1 and is reduced by 1
at every node m visits in sequence. For instance, the net
outflow at v1 for m should be

∑
j∈[2,N] yjm (Eq. 10), the

number of vertices m visits in τm. If m’s trajectory were
to include two disconnected components, then there would
be no way to consume all of the flow (e.g., Eq. 10-12
would be violated). Note that uijm should only be positive
if m traverses eij , which is ensured by Eq. 12. Finally,
Eq. 13 optionally ensures that all “must visit” vertices in
I are visited. In the above MIP, Eq. 6-7 and Eq. 10-12 are
novel constraints designed specifically for TOCP. The whole
algorithm for solving TOCPUR is summarized in Alg. 1.

Remark: The sub-optimality of Alg. 1 originates
from two sources: 1) the decomposition sub-optimality
caused by decomposing the long horizon planning into
per-iteration planning; and 2) the uncertainty sub-optimality
caused by inaccurate estimation of {µ∗i }, which decreases as
we visit each vertex more often. It is not immediately clear

2Without futher specification, we assume m ∈ [M], i, j ∈ [N].
3The ideal constraint is yim = 1(

∑
j xijm > 1). But due to the need

for constraints to be linear, we represent the constraint with two inequalities.

Algorithm 1 Reward Estimation and Per-Iteration Planning

1: Maintain: for each vi, we maintain Ti,t, the most recent
iteration when vi was visited (Ti,1 = 0), and Ci,t, the
observed cumulative cost at vi up to time Ti,t.

2: Input: the graph G = (V,E), the “must visit” vertices
I , the maximum traversal budget lmax.

3: for t = 1 to H do
4: ∀i, update µ̂i,t according to Eq. 2.
5: ∀i, ĉi,t = µ̂i,t · (t− Ti,t).
6: Plan {τm,t}Mm=1 by solving Opt. 3-13.

7: ∀i ∈ [N], Ti,t+1 =

{
t if vi ∈

⋃
m τm,t,

Ti,t otherwise.
.

8: Ci,t =
∑Ti,t

k=1 κi,k.
9: end for

Algorithm 2 Greedy Per-Iteration Planning

1: Input: the graph G = (V,E), the estimated cost growth
for all vertices {µ̂i,t}Ni=1, the time since last visit to each
node {Ti,t}Ni=1, the “must visit” vertices I , the maximum
traversal budget lmax, D : V × V → R, a function that
outputs the shortest distance between any pair of vertices
(e.g., calculated by Floyd-Warshall).

2: ∀i ∈ [N], compute ĉi,t = µ̂i,t · (t− Ti,t).
3: A← I and B ← V \ I . (must/optionally visit vertices)
4: ∀m ∈ [M], τm,t = [], fm = 0 (whether m finishes),
vm = v1 (current location of m), lm = 0 (travelled
distance of m).

5: while
∑
m fm < M do

6: for agent m ∈ {x | fx = 0, x ∈ [M]} do
7: Z ← {v | lm +D(vm, v) +D(v, v1) ≤ lmax}.
8: if A ∩ Z 6= ∅ then
9: v ← argminx∈A∩Z D(vm, v); X ← A.

10: else if B ∩ Z 6= ∅ then
11: v ← argmaxv∈B∩Z ĉi,t/D(vm, v); X ← B.
12: else
13: v = v1; fm = 1; X ← ∅.
14: end if
15: lm ← lm +D(vm, v).
16: Let p be the shortest path from vm to v.
17: X ← X \ p; τm,t append p; vm ← v.
18: end for
19: end while

whether the decomposition sub-optimality can ever arise.
To illustrate that it can arise, we provide an example such
that even when the true {µ∗i } are provided, the per-iteration
optimal plans are still not optimal over the horizon. The
example is illustrated in Fig. 4 with H = 2. In Fig. 4, the
leftmost graph shows the initial costs on all vertices. For
illustration simplicity, we assume there is no growing cost
at this moment (so each vertex only has accumulate an
initial cost). Due to the travel length budget lmax = 5, the
per-iteration optimal plans achieve a total cost of 12, while
the optimal plans achieve a cost of 9 over two steps.

1

1

1

2

1

1

2

1
1

4

4

4

4

3

2

t = 1 t = 2 t = 1 t = 2

Per-Iteration Optimal Plans Optimal PlansEdge Length

5

1

4

4

3

2

Vertex Cost

x vertex with cost x x edge with length x planned routesstart/end vertex

cost = 4+4 +4 = 12 cost = 4+3+2 +0 = 9= 5

Fig. 4: An example problem with H = 2 and M = 1, where the per-iteration plans are not optimal. left: the graph G. The
initial vertex cost is specified on the vertex and the edge length is labeled on each edge. Note that all edges are bi-directional
and we assume lmax = 5. middle: the optimal per-iteration plans visits 4 vertices at t = 1, and only one of the two un-visited
vertices at t = 2. right: the optimal plans visit 3 nodes at each iteration, covering all nodes in the end.

B. Greedy Per Step Planning

In addition to the exact MIP solution from Opt. 3-13, we
provide a greedy algorithm that efficiently and approximately
solves TOCP and therefore TOCPUR, summarized in Alg. 2.
The principle idea is to prioritize must visit vertices first.
When all “must visit” vertices have been visited, we priori-
tize vertices with a larger ratio between ĉi,t and the current
distance to vi.

V. EXPERIMENTS

In this section, we conduct simulated experiments to
evaluate two hypotheses: 1) the proposed iterative method
outperforms an exact TOP method, and 2) solving the MIP in
Opt. 3-13 exactly outperforms the simple greedy algorithm.

A. Simulated Experiments

To compare the proposed method with the exact TOP
method and the greedy method, we introduce a new bench-
mark that consists of 600 randomly generated graphs. For
each graph, the number of vertices N is drawn uniformly
at random from {10, 12, 14, 16, 18, 20}. The vertex v1 is
positioned at (0, 0) in the standard euclidean plain. For ver-
tices v2, . . . , vN , each vertex’s position is drawn uniformly
at random from a 10×10 square centered at the origin, with
its sides parallel to the x- and y-axes. Then each vertex vi
is connected to its closest ni vertices, where ni is drawn
uniformly at random from {3, 4, 5}. lmax is drawn from
U(20, 20+2N), where U(a, b) denotes a uniform distribution
from a to b. The number of agents M is drawn uniformly
at random from {2, 3, 4, 5}. The number of “must visit” ver-
tices, NI , is set to min(X,M), where X is drawn uniformly
at random from {1, 2, 3}. Denote Vreachable as all vertices
reachable from v1 within the travel budget lmax; we sample
NI vertices from Vreachable without replacement to form I .
Finally, for each vi, the expected growth of cost µ∗i is drawn
from U(0.1, 0.9). For each iteration t, the actual growth
κi,t = min(max(xi,t, 0), 1), where xi,t ∼ N (µ∗i , 0.1).
Finally, we generate 120 random graphs with random seeds
ranging from [1, 120], following the above procedure for
each horizon H in {2, 4, 6, 8, 10}, which results in a total of
600 random graphs. We summarize the experiment results

TOP TOCP Greedy

0

2

4

6

Av
g.
 C
os
t

0
10
20
30
40
50

Av
g.
 T
im
H
(m
in
)

H 2 H 4 H 6 H 8 H 10
0

20

40

60

1
um
. 8
nf
in
is
hH
d

Fig. 5: Comparison among TOCP, TOP, and the greedy
algorithm on 600 randomly generated graphs.

in Fig. 5. In all cases, we follow Alg. 1, and varying the
per-iteration method (line 6 of Alg. 1). We compare TOCP
solutions with exact TOP solutions and the solutions found
by Alg. 2. We limit the per-iteration computation time of
TOP and TOCP to 1000 seconds. Therefore, occasionally
TOP and TOCP might not find a feasible solution. The first
row of Fig. 5 shows the total cumulative cost for each horizon
H , averaged over the subset of 120 random graphs where
all methods find a solution. The total cumulative cost is
essentially the objective in Eq. 1. TOCP solutions outperform
the ones found by the greedy method, and both outperform
TOP solutions by a large margin. We provide additional
pairwise independent-samples T-tests in Table I and highlight
the conclusions that are statistically significant (p ≤ 0.05).

TOP-TOCP Greedy-TOCP
Horizon t-score p-value t-score p-value
H = 2 3.63 .0004 2.38 .018
H = 4 4.00 .0001 2.04 .043
H = 6 4.36 .00004 1.97 .050
H = 8 4.46 .00003 1.95 .054
H = 10 4.48 .00003 1.96 .052

TABLE I: Independent-samples T-tests for TOP v.s. TOCP
and the greedy method v.s. TOCP.

Fig. 6: Solutions from TOP, TOCP and the greedy method on an example graph with H = 1 and M = 3.

The second row in Fig. 5 reports the average computation
time, again over the subset of graphs where all methods find
solutions. As expected, TOP and TOCP take much longer
than the greedy method does. The last row of Fig. 5 reports
the number of graphs for which each method fails to find
a solution. Since TOP does not allow a second visit to any
vertex, TOP fails more often than TOCP.

In addition to the quantitative evaluations in Fig. 5. We
also provide a qualitative visualization with H = 1 and M =
3 in Fig. 6 to further showcase the difference in the three
methods used. Among all three methods, TOCP is the only
one that cover all vertices, thus clearing all the costs.

B. Physical Demo

We additionally record a demo of applying Alg. 1 on three
physical robots. For simplicity, we assume H = 1 and the
ground truth reward (or cost) of each node is given a priori.4

VI. CONCLUSION

In this work, we formulate a novel variant of the team
orienteering problem (TOP) that allows multiple visits to the
same vertex and uncertain cumulative costs on each vertex
over a horizon. We propose a method to iteratively find
the per-iteration optimal plans using a novel mixed integer
programming formulation based on the maximum likelihood
estimates of each vertex’s costs. The simulated experiments
show that the proposed method greatly outperforms the exact
TOP solution. We also provide a real-world demo of the
proposed method on three physical robots. In this paper, we
focus on high-level route planning. An interesitng direction
for future work is to incorporate obstacle avoidance into
TOCPUR.

ACKNOWLEDGMENT

This work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. LARG research is

4The video link is at https://drive.google.com/file/d/
1pwE-zLbpcYK2DGeWZ2L5ePZsuO78KCpc/view?usp=sharing.

supported in part by NSF (CPS-1739964, IIS-1724157, NRI-
1925082), ONR (N00014-18-2243), FLI (RFP2-000), ARO
(W911NF-19-2-0333), DARPA, Lockheed Martin, GM, and
Bosch. Peter Stone serves as the Executive Director of Sony
AI America and receives financial compensation for this
work. The terms of this arrangement have been reviewed and
approved by the University of Texas at Austin in accordance
with its policy on objectivity in research. We thank Harel
Yedidsion and Yuqian Jiang for their thoughtful discussion
on designing the greedy algorithm.

REFERENCES

[1] Y. Sun, L. Guan, Z. Chang, C. Li, and Y. Gao, “Design of a low-cost
indoor navigation system for food delivery robot based on multi-sensor
information fusion,” Sensors, vol. 19, no. 22, p. 4980, 2019.

[2] I.-M. Chao, B. L. Golden, and E. A. Wasil, “The team orienteering
problem,” European journal of operational research, vol. 88, no. 3,
pp. 464–474, 1996.

[3] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,”
Naval Research Logistics (NRL), vol. 34, no. 3, pp. 307–318, 1987.

[4] T. Ilhan, S. M. Iravani, and M. S. Daskin, “The orienteering problem
with stochastic profits,” Iie Transactions, vol. 40, no. 4, pp. 406–421,
2008.

[5] N. Labadie, R. Mansini, J. Melechovskỳ, and R. W. Calvo, “The
team orienteering problem with time windows: An lp-based granu-
lar variable neighborhood search,” European Journal of Operational
Research, vol. 220, no. 1, pp. 15–27, 2012.

[6] G. Erdogan and G. Laporte, “The orienteering problem with variable
profits,” Networks, vol. 61, no. 2, pp. 104–116, 2013.

[7] C. Chen, S.-F. Cheng, and H. C. Lau, “Multi-agent orienteering
problem with time-dependent capacity constraints,” Web Intelligence
and Agent Systems: An International Journal, vol. 12, no. 4, pp. 347–
358, 2014.

[8] S. Hanafi, R. Mansini, and R. Zanotti, “The multi-visit team orien-
teering problem with precedence constraints,” European journal of
operational research, vol. 282, no. 2, pp. 515–529, 2020.

[9] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering prob-
lem: A survey of recent variants, solution approaches and applica-
tions,” European Journal of Operational Research, vol. 255, no. 2,
pp. 315–332, 2016.

[10] T. Oksanen and A. Visala, “Coverage path planning algorithms for
agricultural field machines,” Journal of field robotics, vol. 26, no. 8,
pp. 651–668, 2009.

https://drive.google.com/file/d/1pwE-zLbpcYK2DGeWZ2L5ePZsuO78KCpc/view?usp=sharing
https://drive.google.com/file/d/1pwE-zLbpcYK2DGeWZ2L5ePZsuO78KCpc/view?usp=sharing

	Introduction
	Related Work
	Background
	Notation
	Problem Formulation

	Method
	Reward Estimation and Per-Iteration Planning
	Greedy Per Step Planning

	Experiments
	Simulated Experiments
	Physical Demo

	Conclusion
	References

