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Abstract— Humans learn complex motor skills with prac-
tice and training. Though the learning process is not fully
understood, several theories from motor learning, neuroscience,
education, and game design suggest that curriculum-based
training may be the key to efficient skill acquisition. However,
designing such a curriculum and understanding its effects on
learning are challenging problems. In this paper, we define
the Human-skill Curriculum Markov Decision Process (H-
CMDP) to systematize the design of training protocols. We
also identify a vocabulary of performance features to enable
the approximation for a human’s skill level across a variety of
cognitive and motor tasks. A novel task domain is introduced as
a testbed to evaluate the effectiveness of our approach. Human
subject experiments show that (1) participants can learn to
improve their performance in tasks within this domain, (2)
the learning is quantifiable via our performance features, and
(3) the domain is flexible enough to create distinct levels of
difficulty. The long-term goal of this work is to systematize
the process of curriculum-based training toward the design of
protocols for robot-mediated rehabilitation.

I. INTRODUCTION

Human skill acquisition is a complicated phenomenon
that is difficult to capture or characterize. Understanding
human learning is of great interest to several fields including
neuroscience, physical therapy, and sports training [2]–[5].
The theory that motor re-learning post a neurological injury
is akin to novel motor learning [3] has further increased the
interest in skill acquisition from a rehabilitation perspec-
tive. Recent advances in rehabilitation robots have greatly
expanded the realm of possibilities for providing repeat-
able and consistent training. However, design of effective
protocols for rehabilitation remains an open challenge. A
robot controller must first understand the human’s current
abilities – what is easy, difficult, or impossible to perform.
This estimation needs be comprehensive enough to inform
the training process, and responsive to the learner’s training
progress. Crucial to this model of learning is the design
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Fig. 1. Curriculum learning settings: The existing CMDP for RL agents [6]
(left) and our parallel framework for human training, say with a rehabilita-
tion robot (right).

of performance measures that allow the inference of motor
learning [4], [5]. We propose a vocabulary based on existing
literature that will be used to discuss and evaluate human
skill learning in the context of training protocol design.

While the characterization of human ability is formidable
in itself, leveraging this information to improve training
paradigms is even more challenging. Curriculum-based train-
ing is a well-known method to improve the efficiency of
skill acquisition in the fields of motor learning and neuro-
science [7]–[10] and robotic surgery training [11]. Previous
studies have implemented manual selection of successive
task difficulty for efficient learning [11]–[17]. However, this
manual process, being subjective rather than systematic,
may result in sub-optimal ordering of tasks. Recent work
in Reinforcement Learning (RL) has introduced means to
construct automatic curricula for RL agents [18]–[20].

The first contribution of this paper is the formulation of
a Curriculum Markov Decision Process for Human skill
acquisition which extends a Curriculum MDP for RL agents
(CMDP, Fig. 1, left) to be used for human learners (H-
CMDP, Fig. 1, right). The main challenge in this formulation
is that the instantaneous skill state is fully observable in
RL agents, but is hidden in human learners. We address
this challenge by proposing a set of performance features
to evaluate the learner’s skill state. The second contribution
of this paper is a novel platform, Reach Ninja, designed to
serve as a testbed for our formulation and implementation of
the H-CMDP in this and future works. We use this testbed
to demonstrate how a skill state is captured using specific
metrics that quantify the features described in Section III.
We further demonstrate the validity of this task domain in
enabling and characterizing learning in the human agent.

In the future we plan to determine and tackle the chal-
lenges of implementing a H-CMDP for human skill ac-
quisition across a variety of task domains. This research



is particularly motivated by the potential application to the
design and evaluation of training protocols for rehabilitation.

II. BACKGROUND

Motor learning is central to the rehabilitation goal of pro-
moting recovery by facilitating learning of impaired motor
behavior [13], [21]–[23]. Previous research has also shown
that humans can learn or adapt to specific motor behaviors
[24]–[26]. Training on sub-tasks that build in difficulty
and intensity – or a curriculum – has also been shown
to be effective in neurorehabilitaiton, e.g., in stroke treat-
ment. Several theories in motor learning and sport science
(challenge point [7], flow channel [8], dynamic difficulty
adjustment [9], zone of proximal development [10]) have
suggested a possible method to use this information towards
protocol design through curriculum-based training.

In this paper, we propose a framework for curriculum
design for motor skill acquisition using techniques from Re-
inforcement learning. Reinforcement learning is a paradigm
for learning sequential decision making tasks for an artificial
agent acting in an environment. It models a task as a Markov
Decision Process (MDP) [27]. A MDP, M, is a 4-tuple
(S,A, p,r) , where S is the set of states in the environment,
A is the set of actions the agent can take, p(s′|s,a) is a
transition function that gives the probability of transitioning
from state s to state s′ after taking action a, and r(s,a,s′) is
a reward function that gives the immediate reward for taking
action a in state s and transitioning to state s′. At each time
step t, the agent observes its state and chooses an action
according to its policy π(a|s). Its goal is to learn an optimal
policy π∗, which maximizes the expected return (cumulative
sum of rewards) until the episode ends.

Learning this optimal policy requires the RL agent to
explore the environment and accumulate rewards, which
may be difficult due to sparse rewards or the presence
of adversarial agents or elements. One way to accelerate
learning in such complex settings is to first train the agent on
an easier source task that requires fewer actions to reach the
goal, or has fewer elements in the environment that the agent
needs to learn about. The knowledge acquired in this simpler
environment can then be transferred to improve learning on
the more challenging target task [28]. Moreover, an agent
can train on a sequence of source tasks, called a curriculum,
where each subsequent task becomes progressively harder
and builds upon skills learned in previous tasks. Curriculum
learning [20] is a methodology to optimize the order in which
tasks are presented to the agent, so as to improve learning
speed or performance on a final target task.

In this paper, we draw inspiration from a hierarchical
model for curriculum design that poses curriculum gener-
ation as an interaction between two MDPs [29]. The first
is a lower level MDP acting as the student agent, which is
the recipient of the curriculum. This agent interacts in the
standard way with a given task. The second is a higher level
Curriculum MDP (CMDP, Fig. 2, top) for the teacher, whose
goal is to select tasks for the student to train on.
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Fig. 2. Schematic representing a CMDP (top) and a H-CMDP (bottom). SC:
states of the CMDP, or the learner’s skill, which is hidden in the case of the
human learner; ac: action space of the CMDP, or the source task selection;
SP: proxy state of the human learner; and f : performance features.

The reward function in a CMDP is defined to maximize
asymptotic performance by rewarding transitions into termi-
nal states that improve the final performance on the target
task. This reward may also be tailored towards achieving
other goals such as reaching a threshold level of performance.
In this paper, we take the first step to extend the CMDP
formulation for a human learner. We begin by demonstrating
the challenges offered by the human learner and describe the
state space for the human learner CMDP.

III. EVALUATING HUMAN PERFORMANCE

Adapting a CMDP to human motor learning is impeded
by two main challenges introduced by the human learner
to the representation of the CMDP states. First, unlike RL
agents, the human learner’s state of knowledge (or policy)
is not observable. This setting is equivalent to the problem
of designing a CMDP for a black box agent. Second, an RL
agent may be retrained from a specific initial skill level any
number of times. On the other hand, not only is it impossible
for the human learner to unlearn a task, there is no way
to stop the learning process to evaluate performance, or to
control when learning will occur. To aid our discussion in
handling these differences, we define the following terms:

Definition 1: The Skill State of the learner is its internal
state, which holds all information about the learner’s skill.
For an RL agent, this state is represented by the agent’s
policy that is visible to the teacher. However, in human
learners, this internal state is hidden from the teacher.

Definition 2: The Proxy State of the learner is a belief
about the learner’s skill state. For a set of proxy states, we
assume that there is a surjective function f : SC −→ SP that
maps each skill state to a proxy state.

Definition 3: The Performance Features of the learner
on the task is a list of measurable quantities that can be
observed, and that can be mapped to the learner’s proxy state.

Definition 4: The Probe Task may be the same as the
target task being learned, or one that is designed to evaluate
the learner’s performance. This task is used to query a



learner’s instantaneous proxy state, and must be incorporated
into the training paradigm as learning cannot be stopped.

As a first step to bridge the gap in performance evaluation,
we propose to formalize a CMDP for human motor learning
such that the person’s performance on different metrics on
the target task will be used as a proxy for their skill state.
Rather than direct access to a student MDP, we have access
to a list of features that correlate with the proxy state of the
learner, as depicted in Fig. 2. This setting can be modeled as
a Partially Observable MDP (POMDP) [30]. In a POMDP,
the true state of the agent (in our case, the learner’s skill state)
is unknown, so observations (performance features) are used
to create a belief (proxy state) about the learner’s hidden skill
state. Further, as it is impossible to pause or reverse learning
in humans, we rely on extensive and carefully designed
human subject experiments to validate our method.

A. Human-skill Curriculum Markov Decision Process

Definition 5: The Human-skill Curriculum Markov Deci-
sion Process (H-CMDP), MC, is a CMDP with each state in
the state space sC ∈ SC is a proxy to the skill state, and is
mapped to a list of features sC = 〈 f1, f2, . . . ,〉 that estimate
the learner’s skill using a variety of metrics in the target task.

For a given target task, a feature f , and a threshold
value f ∗, we define a set of proxy states that pass the
feature threshold SC

f ∗ as all the states in which the student’s
performance on the target task on the feature f is greater
than or equal to f ∗. The learner is said to have acquired a
skill when they reach a proxy state sn in the set

⋂
f

SC
f ∗ for

all of the features that define the proxy state space.
The main modifications in a H-CMDP compared to a

CMDP are: (1) the state space does not consist of the
true knowledge state, but of a set of performance features
that estimate the human skill overcoming the challenge of
observing the true skill state of the learner; and (2) the
evaluation of the learner’s skill state must take place through
probe tasks that are incorporated into the training.

B. State Evaluation through Performance Features

The efficacy of the proxy state in approximating the
true skill state depends primarily on the selection of the
performance features used to define the proxy state during
a probe task. These features must be selected such that they
form a clear picture of human skill learning. We propose a set
of general features based on existing literature on measuring
human performance. Note that all of the features chosen
represent a current state rather than an aggregated history of
states, so they preserve the Markovian property of an MDP.

Confidence: level of belief the human has in their own
ability. For example, making the task more challenging might
affect the confidence of a learner who has already reached
some level of confidence on an easier version of the task [31].

Accuracy: may be a binary, if the task ends with either
“success” or “failure”, or have a numeric value quantifying
the most important factor the learner needs to improve upon,
such as a task specific score.

Precision: reduction in variability or inconsistency in
performance, that may be caused due to noisy environment.
For example, this metric can be a success rate in a multi-trial
task, or the variability in a repetitive human movement [32].

Strategy: characterization of a possible strategy employed
by the learner. For example, this metric may capture similar-
ity to a specific motion pattern [33]. The difference between
strategy and precision is a subtle one, equivalent to that
between making a conscious decision to pursue a specific
movement pattern (strategy), and performing the movement
exactly as intended (precision).

The learner’s performance in these features is expected to
provide a comprehensive picture of the learner’s proxy state.
In the next section, we present a specific game designed
to evaluate curriculum learning for a novel learning task.
Specifically, we address the challenges of designing such a
task, defining the performance features and evaluating the
features in human subject experiments.

IV. DYNAMIC TASK DOMAIN: REACH NINJA

Prior research in skill acquisition has often focused on
controlled lab-based tasks, like target reaching, that are easy
to analyze, but too simplistic to benefit from curriculum-
based training. On the other hand, skills in applied settings,
such as surgical skill, tend to be more complex and harder
to learn and could benefit from curriculum-based training.
However, such skills can be challenging to analyze and do
not provide a convenient platform for broader research [17].
In this paper, we aim to design a target task that lies closer
to the center of the spectrum of simpler tasks (that are easy
to analyze) and highly complex tasks (that are not broadly
relevant). We propose a challenging and novel task such
that repeated practice is expected to result in quantifiable
learning. Moreover, source task difficulty modulation should
be clearly defined, and the effect of changing this difficulty
should result in quantifiable changes in performance. The
ultimate goal of constructing a curriculum for rehabilitation
motivates the generalizability of this discussion to a variety
of source and target tasks.

A. Game Design

Inspired by the popular phone game Fruit Ninja [34], we
present a game called “Reach Ninja”. The game is devel-
oped in Python 3.4 using OpenCV 4.4.0 [35] and Pygame
1.9.3 [36]. The game is packaged into locally executable
files using Pyinstaller 4.0 [37]. The application tracks the
movement of an object held in the player’s hand through their
webcam (Fig. 3a), and the position is presented on the screen
as a circular red marker called the cursor (Fig. 3b). During
the game, other circles (targets), either blue or black in color,
appear on the screen, entering from the bottom edge with
randomly chosen initial velocities and radii. The player’s goal
is to capture these targets using the red marker on screen,
through their hand motion, in order to maximize their score
in a fixed period of time (heuristically set to 40s). The targets
are also acted upon by a gravity-like force, resulting in a
predictable projectile motion. The blue (positive) targets are



(a) Webcam view (b) Gamescreen view

Fig. 3. Reach Ninja task domain. The left panel shows the webcam view (not visible to the player) and the player’s hand movement tracked online during
gamplay. The right panel shows the game screen (visible to the player) with the red marker tracking the player’s hand, and blue and black targets. Total
score and time remaining are always displayed on screen.

assigned a positive score depending on their size (smaller
size gives larger score) and velocity (faster gives larger
score), with the maximum possible score from a positive
target being 30. The black (negative) targets are assigned a
fixed negative score of -10 independent of size and speed.
The supplementary video includes clips of the game and
demonstrates the intuitive environment.

In a pilot study [1], it was unclear whether the baseline
version of the task satisfied the first guideline of being
challenging and novel. Towards making the task more chal-
lenging, we introduce two further dynamic interactions. The
first is partial feedback, where the red cursor is displayed
on screen only intermittently (1s on, 1s off), while the
hand tracking and game continue normally. This interaction
is designed to encourage players to learn the relationship
between their true hand position and the cursor displayed on
the screen. Second, we introduce a magnetic field around the
red marker such that the positive targets are repelled while
the negative targets are attracted. This interaction is expected
to encourage higher speeds that are required to overcome
the effect of the magnetic field. As these interactions can
be turned on or off easily, we inherently satisfy the second
requirement of easy source task difficulty modulation.

B. H-CMDP in the context of Reach Ninja

As discussed in section III-B, the use of the H-CMDP
depends on the features used to define the proxy skill state
of the learner. In this section, we instantiate these features in
the context of the Reach Ninja task, based on the extensive
‘expert knowledge’ of the game designers.

Confidence – Mean Speed (MS): speed of the red marker
(pixels/s) averaged over a game session of 40s. During
experiments, it is observed that a higher MS correspond
with more active play, implying that the learner has higher
confidence in their ability to control their movement.

Accuracy – Final Score Percentage (FSP): score at the end
of a 40s game as a percentage of the highest possible score. A
higher score directly corresponds with better accuracy hitting
the positive targets while avoiding the negative ones.

Precision – Captured Target Percentage (CTP): the per-
centage of targets that were successfully captured by the
participant with a positive increase in the score. A larger CTP
corresponds to the participants’ precision in avoiding the

negative targets while actively reaching for positive targets.
Strategy – Score Per Capture (SPC): ratio of the total score

from positive targets with the number of positive targets the
player captured as a percentage of the range of possible
positive scores (between 0 and 30). A larger SPC implies
on a choice to approach smaller and faster positive targets,
suggesting the use of a strategy to maximize the final score.

V. EXPERIMENTAL VALIDATION

Given the novelty of the Reach Ninja task domain and
the H-CMDP model, we focus our experimental efforts on
validating the suitability of the novel task towards studying
human learning. We test the hypotheses that the Reach Ninja
task domain satisfies the predetermined guidelines through a
human subject experiment validating the suitability of this
environment for learning.

A. EXPERIMENT PROTOCOL

10 subjects (6 male, 4 female, aged 27.1±3) participated
in the study. Each subject played 40 sessions of the target
game. The target game, which included both the partial
feedback and magnetic field interventions was used to probe
the players’ performance at various times during the ex-
periment. By turning off one of the two interventions, we
define two possible source tasks, Partial Feedback Source
Task (PFST), and Magnetic Field Source Task (MFST). To
study the effect of these source tasks on performance, 5 of the
10 subjects (referred to as the curriculum group) are trained
on a rudimentary curriculum. The curriculum is ordered as
follows: Sessions 1 – 4 are pre-training probe tasks (same as
the target task); sessions 5 – 14 are the PFST (magnetic field
off); session 15 is a probe task; sessions 16 – 25 are MFST
(partial feedback off); sessions 26 – 37 are the target task;
and sessions 38 – 40 are the post-training probe tasks. The
remaining 5 subjects (referred to as the control group) only
practice the target task for all 40 sessions. The comparison
of the performance in three stages is expected to demonstrate
learning through practice. This experiment was approved by
the Institutional Review Board at the University of Texas at
Austin under the protocol number 2020-07-0156.

B. EXPERIMENT RESULTS

Fig. 4 shows the FSP across 40 sessions for two represen-
tative subjects (Participants 1 and 6). The slope of the fitted
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Fig. 4. Final Score Percentage trend for participants 1 (control group) and
6 (curriculum group) over 40 session. The dashed line represents the trend
across all sessions.

trend line (0.4) demonstrates the participant’s tendency to
improve their FSP through practice over time. Fig. 5 shows
that in comparing the pre-training (sessions 2 – 4) versus
post-training (sessions 38 – 40) in terms of Final Score
Percentage, the overall increasing trend seen in Fig. 4a holds
for most participants regardless of their training group. This
trend is analyzed statistically and found to be significant
across all participants, as seen in Fig. 6 (top-right). The
remaining 3 metrics MS, CTP and SPC, are also compared
between pre- and post-training (see section IV-B). Repeated
measures ANOVA verifies that all feature values change
over the training with statistical significance indicated by
p < 0.05. In each case the change in the metric corresponds
to an increase in performance. Using the Holm-Bonferroni
correction with an ad-hoc contrast analysis, the FSP shows a
statistically significant increase only when comparing either
the pre-training task or MFST, to the PFST (p = 0.002 and
0.011 respectively, refer to Figure. 4b).

VI. DISCUSSION

In section III of this paper, we define the H-CMDP and
introduce the challenge of evaluating the hidden skill state of
a human learner. We then demonstrate our method to address
this challenge through the use of performance features and
a task domain designed for this project. These features form
the state space of the H-CMDP and are crucial to the future
steps of designing training curricula for human learners.

Our experimental results demonstrate that, through train-
ing, all 4 performance metrics (confidence, accuracy, preci-
sion and strategy) show statistically significant improvement
across the 10 subjects, corresponding to an improvement in
their overall skill state (Figure 6). As all of the performance
features show significant improvement, we deduce that learn-
ing occurs during the experiment’s training sessions. Further,
this learning process can be captured as exemplified in
Fig. 4a by a single participant’s FSP. We also observe an
interesting result in the source tasks used in the training for
the curriculum group (participants 6 - 10 in Fig. 5) where
performance is statistically different only when the magnetic
field intervention is removed. This observation is reflected in
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Fig. 5. Final Score Percentage: this plot compares the percentage of
the overall score achieved by players in pre-training versus post-training
sessions. The control group results are displayed as participants 1 - 5 and
the curriculum group as participants 6 - 10.

the change in FSP for Participant 6 (Figure. 4b), and suggests
that a majority of the challenge in the target task can be
attributed to the magnetic field intervention.

Though we observe statistically significant learning be-
tween pre-and post-training performance (Fig. 6), there is
large inter-trial variability in a single participant’s FSP over
the 40 sessions (Fig. 4). Our manually designed curriculum is
unable to elicit distinct improvements in learner performance
compared to repeated practice on the target task. These
observations demonstrate the challenges to the generalizabil-
ity of a curriculum for different participants due to human
variability. Further, the improvement in performance between
pre- and post-training trials does not necessarily demonstrate
motor learning, and additional retention and transfer tests are
needed for completeness [5]. Finally, the metrics discussed
in this paper are primarily outcome based. Future work will
focus on the measurement and comparison of kinematic and
coordination metrics [4], [5]. Together with an increased
number of experimental trials, these metrics will provide a
more complete picture of motor learning, transfer, and the
effect of curriculum-based training.

VII. CONCLUSION

This work introduces a formalization of the motor skill
acquisition process through curriculum-based training. We
begin by defining the Human-skill Curriculum Markov De-
cision Process and discussing the challenge of evaluating the
state space of this MDP, the human learner’s skill state.
We address this challenge by selecting a vocabulary of
performance features to characterize the human learner’s skill
referred to as their proxy skill state. We then define and
validate a new testbed task, Reach Ninja, for studying human
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Fig. 6. Pre-training versus post-training results for all metrics,
averaged across participants. All changes are statistically significant (p-
values: MS = 0.0043∗, FSP = 0.0082∗, CTP = 0.011∗, SPC = 0.031∗).



learning, and use the testbed to demonstrate our solution
implementation through human experiments. The results in
this paper constitute an important first step towards the de-
sign and deployment of a H-CMDP for automatic selection.
This work will be extended to a larger set of target tasks
and across a diverse set of skills and performance measures,
with the ultimate goal of supporting robotic rehabilitation in
impaired populations.
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