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Abstract— Autonomous vehicles have seen great advance-
ments in recent years, and such vehicles are now closer than
ever to being commercially available. The advent of driverless
cars provides opportunities for optimizing traffic in ways
not possible before. This paper introduces an open source
multiagent microscopic traffic simulator called AORTA, which
stands for Approximately Orchestrated Routing and Transporta-
tion Analyzer, designed for optimizing autonomous traffic at
a city-wide scale. AORTA creates scale simulations of the
real world by generating maps using publicly available road
data from OpenStreetMap (OSM). This allows simulations to
be set up through AORTA for a desired region anywhere in
the world in a matter of minutes. AORTA allows for traffic
optimization by creating intelligent behaviors for individual
driver agents and intersection policies to be followed by these
agents. These behaviors and policies define how agents interact
with one another, control when they cross intersections, and
route agents to their destination. This paper demonstrates a
simple application using AORTA through an experiment testing
intersection policies at a city-wide scale.

I. INTRODUCTION

Autonomous vehicle technology has made tremendous
progress in the last decade. In 2007, six of the competing
teams completed the 96 km course set for the DARPA Urban
Challenge [1]. They did so while obeying the traffic laws fol-
lowed by human drivers, navigating along with other moving
vehicles, and following correct intersection precedence order.
Since then, Google’s driverless cars have clocked more than
250,000 km on public roads in urban California, USA [2]. In
2010, researchers from the University of Parma successfully
completed an autonomous intercontinental run from Parma,
Italy to Shanghai, China [3]. The successful completion of all
these milestones suggests that autonomous cars are here to
stay, and are ever closer to becoming commercially available.
With the arrival of autonomous cars, it also becomes possible
to optimize traffic in ways not possible for human drivers.

This paper introduces an open source multigent micro-
scopic traffic simulator called AORTA, which stands for Ap-
proximately Orchestrated Routing and Transportation Ana-
lyzer. AORTA is a platform designed for testing autonomous
vehicle behaviors and intersection policies. Autonomous
vehicles, termed agents, use behaviors to interact with one
another, follow intersection policies, and decide on both long
term and short term actions. Intersection policies designate
when it is safe for an agent to cross an intersection. AORTA’s

Fig. 1: Visualizing autonomous agents in downtown Austin, Texas, with
AORTA’s UI

goal is to allow for the definition of new agent behaviors
and intersection policies to optimize autonomous traffic.
Additionally, by assigning human-like behaviors such as the
“car following model” [4] to agents and traffic-signal-like
policies to intersections, AORTA could potentially simulate
human traffic.

Like any other microscopic traffic simulator, AORTA
needs maps to run simulations. One of AORTA’s key features
is that it generates maps using real road data available
from OpenStreetMap (OSM) [5], a moderated, user-editable
interface for world maps. A map for any desired city in the
world can be downloaded, which is then parsed by AORTA to
set up a scale simulation of the real world in a few minutes.
AORTA is available open-source and is easily extensible,1

making it easy for users to test out a number of agent
behaviors and intersection policies in a short time span.

This paper explores the state-of-the-art in traffic simulators
in Section II, followed by a description of AORTA’s architec-
ture in section III. Use of OSM data in AORTA is explained
in Section IV, along with a description of the simulator in
Section V. Section VI demonstrates an application built on
top of AORTA and presents a simple experiment evaluating
different intersection policies in a large scale scenario. The
paper then concludes with a discussion on future work.

II. RELATED WORK

Computational processing power has made excellent ad-
vancements in the last two decades. Parallel computing and
the use of GPUs have enabled microscopic models of traffic

1Code available at http://code.google.com/p/road-rage
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simulation to generate results at a meaningful scale (city-
wide or greater) [6], [7]. As a result, a number of multiagent
micro-simulators have been introduced in the past decade.
We review relevant simulators and other related work in this
section.

OSM data has been used by traffic simulators in the
past. MATSim is one such multiagent simulator that focuses
on performing large-scale simulations in a relatively small
amount of time [8]. Traffic demand is supplied to MATSim
in the form of plans that an individual may intend to follow
in a given day. MATSim aims to improve these plans by
attempting to minimize the total amount of time by which in-
dividuals are late to their destinations. This goal is somewhat
different from that of AORTA, where the routes (demand)
supplied by individuals is taken as is. Instead, AORTA
focuses on vehicle behaviors and intersection policies to
improve the execution of routes.

Another popular open source traffic simulator that can use
OSM data is SUMO [9], which shares many similar goals
with AORTA. SUMO has been used to study the effect of
automated transportation systems, route planning of individ-
ual vehicles, and dynamically adapting traffic signal policies
to increase traffic efficiency. While SUMO has a flexible
system for managing traditional traffic signals, AORTA’s
general intersection policies are designed with autonomous
vehicles in mind. These policies can use traditional schemes
such as traffic signals or stop-sign based precedence, or
more efficient methods designed specifically for autonomous
vehicles [10]. In addition, AORTA’s core implementation,
written in Scala [11], differs from that of SUMO, written in
C++, in that it uses a higher-level language.

Efforts have been made to optimize traffic flow in the
context of autonomous vehicles. AIM [10] is one such
approach that aims to optimize traffic flow of autonomous
vehicles at a given intersection. The AIM approach has been
applied to a regular grid of four intersections [12], while
AORTA has the potential to apply some of the same research
at a city-wide scale to real-world road networks.

Autonomous agents have also been used in the past to
model human traffic. For instance, one approach models
human merging and lane changing behavior through the use
of autonomous agents interacting with one another [13].
Another approach attempted to improve traffic congestion
for human drivers by using a network of autonomous in-
tersections. These intersections have the ability to interact
with one another and execute a dynamic traffic signal policy
minimizing overall wait time [14].

III. ARCHITECTURE

AORTA is divided into three modular components: the
map model, micro-simulation engine, and user interface
(UI). The map model transforms OSM maps into AORTA
graphs, then answers pathfinding and geometry queries. The
simulation engine adds a notion of agents, vehicle dynamics,
and collisions. Finally, the UI interactively renders the map
and agents. A headless mode also exists to run experiments

Fig. 2: A summary of AORTA’s components.

without the overhead of visualization. The interaction be-
tween modules is visualized in Fig. 2.

AORTA’s implementation uses Scala, a language imple-
mented on the Java Virtual Machine [11]. Scala provides the
advantage of functional programming constructs while still
permitting imperative style. Extensions and clients built on
top of AORTA can be written in either Java or Scala. The
software is open-source and easily extensible. For instance,
the stop sign policy used in experiments described in Section
VI is implemented in just 70 lines of code.

Sections IV and V describe map construction from OSM
data and the simulation engine used in the AORTA frame-
work respectively.

IV. MAP CONSTRUCTION FROM OSM

One of the key features of AORTA is the simulation of
traffic on existing road network data from OpenStreetMap
[5]. The data from OSM is not directly suitable for running
a simulation and is pre-processed through a map builder
utility. Section IV-A describes the map model generated by
the builder, Section IV-B describes the process of refining
OSM data, and Section IV-C describes limitations with this
process.

A. Map Model

A map is represented as a directed graph with lanes as
edges and turns as vertices. A road groups a set of lanes
together, one set for each direction of travel. Intersections
map the possible turns from incoming to outgoing lanes.
Since both lanes and turns support traffic, they are both called
traversables, meaning agents may exist on them.

The map also has a geometric interpretation, used for visu-
alization and measuring physical distances. A road contains
a sequence of points, defining the center line that divides the
road into two directions of travel. AORTA interprets these
points as straight line segments and projects parallel lanes
out using a fixed width. Turns are approximated with a single
straight line segment connecting the end of one lane to the
start of another.



B. Map Construction Passes

The builder works incrementally while parsing OSM
graphs into the map model, with each pass feeding the next.
The map model is then stored in an XML format.

1) OSM encodes many paths besides drivable roads, so
the builder first filters these out. Next, the builder
marks OSM nodes common to multiple roads, since
they implicitly indicate intersections. Overpasses do
not share nodes with the roads they cross [15].

2) OSM ways (sequences of nodes) include many inter-
sections, so the builder next splits ways into undirected
segments of roads between exactly two intersections.

3) The builder multiplies undirected roads into directed
lanes in each direction (unless the road is marked one-
way). The builder guesses the number of lanes based
on OSM’s “road type” tag or an explicit number of
lanes, when that data is available.

4) The builder constructs turns between incoming and
outgoing lanes at each intersection. The angle between
the two lanes determines whether the turn is a left,
right, straight, or U-turn. When several lanes all cross
into fewer lanes, the builder forces merging at the
rightmost lanes.

5) Due to OSM’s lack of turn data, the directed graph may
not be connected. The builder removes small discon-
nected portions, leaving the largest strongly connected
component.

C. Limitations with OSM

AORTA’s map construction process, although flexible,
cannot completely account for incompleteness in OSM data.
Road type annotations imprecisely imply the number of lanes
and typical speed limits. Heuristically enumerating the turns
at each intersection often misses common features like right
turn-only lanes and shared center left turn lanes. In some
circumstances, one intersection appears to be several in close
proximity, since OSM has only geometric data, as opposed
to functional data, on how roads meet. If OSM encoded
functional information, the realism of the simulation would
improve. Other simulators have dealt with similar issues [16].

V. SIMULATION

This section describes AORTA’s agent model and the
simulator’s mechanisms for creating agents, verifying safety,
and allowing agents and intersections to control themselves.
Comments on current limitations and how to extend the
simulator follow.

A. Simulation Dynamics

AORTA uses microscopic simulation, modeling individual
drivers as point agents with a simple acceleration-based
dynamics model. Time is modeled discretely, and an agent
accelerates at a fixed rate for the duration of a “step” to
achieve a new position and velocity. Space is continuous,
meaning agents occupy a moving interval of a lane, rather
than one fixed tile of the road. Each time step lasts for the

same fixed duration, and the simulation does the following
for each time step:

1) Introduces new agents into the map
2) Updates the position and velocity of agents based on

their choice of acceleration in the previous step
3) Checks for collisions
4) Allows each agent’s behavior to choose an action for

the next step

B. Spawning new agents

To introduce new agents into the simulation in real-time,
users can create generators programatically or using the
UI. The generator produces the desired amount of traffic
by initializing agents from random locations inside a start
polygon to random destinations within a goal polygon. Users
can draw these polygons by mouse in the UI, allowing
specific traffic patterns like rush-hour scenarios to be easily
simulated. A generator polygon may also cover the entire
map, uniformly distributing traffic everywhere.

Every step, a generator creates some number of new
agents. The generator either immediately performs any
timely computation required by the agent’s route policy, such
as pathfinding, or delegates it to a pool of worker threads to
process in the background. Once an agent’s route is ready,
the agent waits alongside its starting lane (as if it is in a
driveway or parking lot). When the lane has no agents that
could potentially crash into the new vehicle, the new agent
enters the system.

C. Collision checking

All traversables (lanes and turns) maintain an ordered
queue of occupying agents. A collision is detected when two
agents reverse order after a time step has completed.

Intersections check for collisions by verifying no two
agents are simultaneously performing conflicting turns.
AORTA has a low-granularity model of turn conflict. If two
vehicles at any point along two different turns could ever
come into contact, then the turns are always in conflict,
regardless of where the agents actually are along the turns.
This is visualized in Fig. 3a. Further work is required
before higher granularity can be introduced through space-
time tiling intersections [10], due to some of the complex
intersection geometries inferred from OSM. An example of
such a complex intersection is shown in Fig. 3b.

(a) An agent cannot turn left while
agents on the perpendicular road
cross

(b) A difficult intersection to tile
in New Orleans, Louisiana. Note
there are no overpasses pictured.

Fig. 3: Examples of AORTA’s modeling of intersections and turns



D. Agent Behaviors

Each agent has a behavior governing it, responsible for
obeying intersection policies and avoiding collisions. Before
each step, the behavior chooses one of two actions for the
agent to perform: disappearing from the map (when the
agent is at rest and is done with its route) or accelerating
at some rate. Behaviors query current and upcoming lanes
and intersections to find other nearby agents and determine
all constraints that must be satisfied for a safe choice. The
behavior also picks turns once an agent reaches the end of
a lane by consulting a route strategy that finds a path to the
destination.

E. Intersection Policies

A behavior interacts with an intersection policy by sending
it the agent’s desired turn, the agent’s speed, the current
distance from the start of the intersection, and the length
of time the agent has been idling at rest. The policy replies
by ordering the agent to stop or proceed. The behavior will
continue to statelessly poll the policy every step until the
agent begins the turn. The policy may approve an agent for
entry one step and deny it the next, as long as the agent could
safely brake without danger of entering the intersection. The
policy is free to allow concurrent turns in any arrangement
by different agents as long as no two simultaneous turns
conflict.

F. Current Limitations

In the currently released version of the simulator, the abil-
ity for agents to change lanes has not yet been implemented.
As a result, gridlock potentially occurs. Each agent maintains
a safe following distance from the next. If a lane is filled,
then an agent may be forced to stop in an intersection mid-
turn and block other traffic. The default behavior prevents
this by refusing to start a turn before the lookahead engine
guarantees no agent will trigger a premature stop.

However, with very high volumes of traffic, it is possible
for waiting agents to accumulate and fill lanes to their
capacity. When this happens in a circular manner so that
the agent at the front of each lane is waiting to perform
a turn into another full lane with a similar agent at the
front, gridlock [17] occurs: no agent in the system will
make progress unless an agent at the front decides to pick a
different turn. AORTA has the ability to detect such cyclic
dependencies.

Fig. 4: Each of the red agents wants to turn left, so none of them can.

In many observed cases, the gridlock is caused by
AORTA’s present lack of lane-changing support: agents loop

around intersections such as those pictured in Fig. 4 in order
to enter a lane adjacent to their original lane. Since such
routes are still legal, it is desirable to prevent or mend
this problem without requesting different routes. However,
choosing alternative moves (by changing lanes or rerouting)
is an important constituent of a sufficient condition for the
liveness of a road network [17].

G. Extending AORTA

There are three main configurable components of the
simulation, each with at least one existing implementation:
agent behaviors, routing strategies, and intersection policies.

Currently, all agents use a primary behavior that is a
generalized, baseline behavior that guarantees not to collide
with another agent or enter an intersection at the wrong time.
Since it picks the highest safe choice of acceleration at each
step, it could easily be extended to mimic human drivers by
traveling at some random lesser acceleration or to optimize
fuel efficiency by tuning movement.

Intersection policies are one of the most interesting aspects
of the simulation to tweak, especially in light of autonomous
vehicles. Current policies include traditional stop signs,
traffic signals, and an AIM-inspired autonomous reservation
policy [10]. The traffic signals are further extensible by
assigning groups of non-conflicting turns at each intersection
with some duration and offset. Future policies could include
signals that adapt timings and refinements to the autonomous
reservation policy.

To pick turns, agent behaviors consult a route strategy.
Two simple implementations exist already: a static route
using A* [18] and a drunken walk that probabilistically
moves towards the destination. Users can experiment with
dynamic replanning or hierarchical planning [19] without
modifying any code other than creating a new route imple-
mentation. Route policies could also interact with a single
central manager to gain some sort of global insight or with
autonomous intersections to avoid congestion.

VI. EXPERIMENTAL RESULTS

This section presents a simple experiment showing how
different policies affect the throughput of intersections. In
this experiment, every intersection in the map uses either a
stop sign, traffic signal, or autonomous reservation policy.
The results demonstrate that policies affect total system
performance and that AORTA is a useful tool for evaluating
this relation.

A. Experimental Setup

The experiment simulates one hour of traffic in two cities:
a 9×11 km2 slice of downtown Austin, Texas2, and a 15×13
km2 slice of downtown Houston, Texas3. The step duration
is fixed at 0.1 seconds. While the intersection policies vary,
the agents spawned and their routes remain the same. A

2bounded by the Mopac, Springdale Road, Oltorf Street and Koenig Lane
3bounded by Ella Boulevard, Eastex Freeway, West Alabama Street and

Crosstimbers Street



(a) Average delay in Austin (b) Average delay in Houston

(c) Number of agents driving in Austin (d) Number of agents driving in Houston

Fig. 5: Autonomous reservations outperform stop signs and traffic signals in these experiments.

generator creates one new agent every 1 simulation second,
with a uniformly random starting position and goal.

These experiments are deterministically reproducible. A
seed for the pseudo-random number generator, the input
graph, and the generators’ configuration fully determine the
outcome of any simulation 4. After setting up a scenario in
the UI, users can save this configuration for re-simulation.

The speed of simulation depends on the step duration
dt, the map size, and the number of agents. A measure
independent of these factors is the number of agent steps
per second. On a 2.4 GHz machine, this can be observed to
average at about 150,000, a number comparable to existing
simulators [20]. When the time step is 0.1 seconds, this
means 15,000 agents can be comfortably simulated in real-
time. Further optimizations are planned.

B. Intersection Policies Evaluated

Stop signs accept agents first-come, first-served, refusing
agents until they have idled at rest for 1 second. This delay
approximates human reaction time.

The traffic signal policy requires timings and groups
of simultaneous turns for each intersection. The heuristic
currently assigning these arbitrarily picks one major road,

4This determinism may break down when generators use worker threads
while the simulation is running, since tasks may finish and agents may enter
the road at different times.

schedules turns from that road to others, then repeats the pro-
cess from all reachable roads using a breadth-first search. By
estimating how long performing one turn and traveling along
the next lane takes, the timing of the next intersection can be
scheduled so that agents from the first road continue traveling
without stopping for several consecutive intersections. This
heuristic is far from optimal, meaning the performance of
traffic signals described below could be improved, perhaps
by incorporating packages such as SYNCHRO [21].

The last policy tested is an autonomous reservation policy
inspired by AIM [10]. Because agents explicitly commu-
nicate with intersections to schedule their turn, this policy
is only suitable for autonomous drivers. This policy groups
agents with compatible turns together, allowing new agents
to join existing groups. To prevent one heavy direction of
traffic from hogging the intersection indefinitely, a timeout
preemptively cycles through reservations.

C. Results

If an agent travels along a lane at the speed limit and
does not slow down to wait at an intersection, then it
traverses the lane in an optimal amount of time. If the
intersection orders it to stop or if other agents in the same
lane have slowed down by the intersection’s orders, then the
intersection has caused some delay. This delay can be used
as one measure of intersection performance. Figures 5a and
5b graph the average of this delay per agent. Similar trends



are observed in both cities: an average of less than 1 second
of delay at autonomous reservation intersections, 7 (Austin)
or 8 (Houston) seconds at stop signs, and 16 (Austin) or
17 (Houston) seconds at traffic signals using the heuristic
described above. These results will vary with different traffic
levels and policy configurations, so the important demonstra-
tion is that AORTA can be used as a framework for evaluating
these policies.

The number of agents driving at some time changes
because the continuous generator introduces a new agent
every second. This count reaches a steady state when the
generator introduces an agent at the same rate as older agents
finish their route. Fig. 5c reveals that autonomous reser-
vations let agents reach their destination twice as quickly
as the competition in Austin, with a steady-state of about
400 agents. There, the count for traffic signals continues
to increase because gridlock occurred in one segment of
the map, causing agents to not finish their route. Fig. 5d
reveals a similar trend in Houston, except that gridlock
occurred both during the trial with traffic signals and stop
signs. Unexpected starvation was also observed: although the
signals cycle through turns regularly, agents cannot proceed
when the previous cycle caused a destination lane to fill and
become blocked.

Repeating this or other experiments in more locations only
requires those locations to be exported from the OSM web-
site. Editing the intersection policies is similarly convenient,
as users can ignore most of AORTA’s code-base and just
change the logic described in Section V-E. For reference,
the most complex intersection policy, traffic signals with the
flooding heuristic for timing assignment, is only 400 lines of
code in Scala.

VII. CONCLUSION

This paper has presented AORTA, a new city-scale traffic
simulation framework that focuses on configurability. In
conjunction with Open Street Maps, AORTA allows users
to repeat an experiment in different places with minimal
effort. Future work will exploit the flexible infrastructure
of interactions between agent behaviors and intersections by
exploring dynamic replanning and adaptable signal timings.
On top of these structures, applications could experiment
with ideas such as dynamic contra-flow [22]. There will also
be an effort to improve AORTA as a framework by including
a lane-changing model, preventing gridlock, and supporting
more agents through parallel computing.
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