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Abstract In recent years, great strides have been made towards creating autonomous agents
that can learn via interaction with their environment. When considering just an individual
agent, it is often appropriate to model the world as being stationary, meaning that the same
action from the same state will always yield the same (possibly stochastic) effects. However,
in the presence of other independent agents, the environment is not stationary: an action’s
effects may depend on the actions of the other agents. This non-stationarity poses the primary
challenge of multiagent learning and comprises the main reason that it is best considered
distinctly from single agent learning. The multiagent learning problem is often studied in the
stylized settings provided by repeated matrix games. The goal of this article is to introduce
a novel multiagent learning algorithm for such a setting, called Convergence with Model
Learning and Safety (or CMLeS), that achieves a new set of objectives which have not been
previously achieved. Specifically, CMLeS is the first multiagent learning algorithm to achieve
the following three objectives: (1) converges to following a Nash equilibrium joint-policy
in self-play; (2) achieves close to the best response when interacting with a set of memory-
bounded agents whose memory size is upper bounded by a known value; and (3) ensures an
individual return that is very close to its security value when interacting with any other set of
agents. Our presentation of CMLeS is backed by a rigorous theoretical analysis, including
an analysis of sample complexity wherever applicable.
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1 Introduction

A multiagent system [47] can be defined as a group of autonomous, interacting entities shar-
ing a common environment, which they perceive with sensors and upon which they act with
actuators. Multiagent systems are finding applications in a wide variety of domains including
robotic teams [38], distributed control [40], data mining [44] and resource allocation [14].
They may arise as the most natural way of looking at the system, or may provide an alternative
perspective on systems that are originally regarded as centralized. For instance, in robotic
teams the control authority is naturally distributed among the robots [38]. In resource man-
agement, while resources can be managed by a central authority, identifying each resource
with an agent may provide a helpful, distributed perspective on the system [14].

Although the agents in a multiagent system can be programmed with behaviors designed in
advance, it is often necessary that they learn new behaviors online, such that the performance
of the agent or of the whole multiagent system gradually improves. This is usually because the
complexity of the environment makes the a priori design of a good agent behavior difficult or
even impossible. Moreover, in an environment that changes over time, a hardwired behavior
may often be inappropriate.

An alternative to hard wiring agents with a predefined behavior is to allow them to adapt
and learn new behavior online. This brings us to the field of reinforcement learning (RL) [41].
An RL agent learns through interaction with its dynamic environment. At each time step, the
agent perceives the complete state of the environment and takes an action, which causes it to
transit to a new state. The agent receives a scalar reward signal that evaluates the quality of
this transition. Well-understood algorithms with good convergence properties are available
for solving the single agent RL task (such as Q-learning [45]).

However, several new challenges arise for RL in multiagent systems. In a multiagent
environment the learning agent must also adapt to the behavior of other learning (and therefore
non-stationary) agents in the environment. Only then will it be able to coordinate its behavior
with theirs, such that a coherent joint behavior results. This non-stationarity poses the primary
challenge of learning in multiagent systems and comprises the main reason that it is best
considered distinctly from single agent RL. When some or all of these entities are learning,
especially about each other, we arrive at the field of multiagent learning (or MAL for short).

Multiagent learning is often studied in the stylized settings provided by repeated matrix
games (normal form games) such as the Prisoner’s Dilemma, Game of Chicken and Rock–
Paper–Scissors [30]. Repeated games of this type provide the simplest setting that encap-
sulates many of the key challenges posed by MAL. Specifically, they abstract away the
conventional notion of state (situatedness) and allow one to focus purely on the impact of
the agents’ actions on each other’s outcomes, or utilities.

Such research on MAL in repeated games typically strives to develop algorithms that can
provably converge to following the optimal policy when interacting with specific classes of
other agents, along with decent performance guarantees in self-play (interacting with other
agents with the same strategy). For example, there is a significant volume of prior work in
MAL that proposes algorithms that converge to following the optimal exploitation policy
when interacting with other stationary agents (agents who choose their actions from a fixed
distribution over their action space), while also converging to following a Nash equilibrium
(NE) [29] joint-policy in self-play [7,16].
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However, requiring that the other agents in the environment all be stationary is quite
restrictive. For one thing, it eliminates the possibility that any of the other agents are them-
selves responding to the past actions of other agents. In an attempt to address the above
issue, there has been a growing body of more recent work in MAL that focuses on learning
in the presence of memory-bounded adaptive agents, or simply memory-bounded agents,
whose policy is a (fixed) function of some historical window of past joint-actions by all the
agents [11,32,33]. Though memory-bounded agents are restricted to consulting only a fixed
window of past joint-actions to decide their current step action, they are still a step forward
towards considering “fully adaptive agents” that use the entire history of play to decide their
actions.

There are three main reasons which motivate us to consider a memory-bounded agent as
a candidate agent behavior for our learning algorithms to model and exploit. First, memory-
bounded behavior is quite prevalent in day to day life. For example, often while deciding
whether we should visit a restaurant or watch a movie pertaining to a particular director,
our decision is guided by our most recent experiences from having performed that action.
Second, in practice every agent has a finite memory. For example if an agent is a computer, its
memory is limited by its primary and secondary storage capacity. Third and most importantly,
despite how restrictive it might appear, a large set of agents from both the game theory and the
MAL literatures are in fact memory-bounded. Common examples include Godfather [39],
polynomial Nash policy [26] and Bounded Fictitious Play [35]. Furthermore, if we consider
agents whose future behavior depends on the entire history, we lose the ability to (provably)
learn anything about them in a single repeated game, since we see a given history only
once. The concept of memory-boundedness limits the agent’s ability to condition on history,
thereby giving us a chance of learning its policy online.

The goal of this article is to develop a novel MAL algorithm that achieves a new set of
goals which have not been previously achieved by any MAL algorithm, while interacting with
memory-bounded agents. In this regard we propose a novel multiagent learning algorithm
called Convergence with Model Learning and Safety (or CMLeS, pronounced “seemless”,
for short) that in a multi-player multi-action (arbitrary) repeated matrix game, is the first to
achieve the following three objectives:

– Convergence: converges to following a NE joint-policy in self-play (when all the other
agents are also CMLeS agents);

– Targeted Optimality against memory-bounded agents: achieves close to the best response
when interacting with a set of memory-bounded agents whose memory size is upper
bounded by a known value Kmax ;

– Safety: achieves an individual return very close to its security value when interacting
with any other set of agents;

Convergence with Model Learning and Safety serves as a significant improvement over the
current state-of-the-art MAL algorithm that achieves convergence in self-play for arbitrary
repeated games, called Awesome [16]. CMLeS improves upon Awesome by additionally
guaranteeing both targeted optimality against memory-bounded agents and safety. CMLeS
also improves upon the state-of-the-art MAL algorithm that models memory-bounded agents,
known as Pcm(A) [33], in the following two ways.

1. The only guarantee of optimality against memory-bounded agents that Pcm(A) provides
is against the ones that are drawn from an initially chosen target set. In contrast, CMLeS
can model any memory-bounded agent(s) whose memory size is loosely upper-bounded
by Kmax . Thus it does not require a target set of agents as input: its only input in this
regard is Kmax ;
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Table 1 Payoff matrix for
Prisoner’s Dilemma (PD)

Cooperate Defect

Cooperate (3,3) (1,4)
Defect (4,1) (2,2)

2. Once convinced that the other agents are not self-play agents, Pcm(A) achieves targeted
optimality against memory-bounded agents by requiring that all feasible bounded his-
tories of size Kmax be visited a sufficient number of times. Kmax for Pcm(A) is the
maximum memory size of any agent from its target set.
For CMLeS, Kmax serves as a conservative upper-bound of the true memory size (say
K ). To achieve targeted optimality, requiring visits to all feasible bounded histories of
size Kmax may be very wasteful if K is significantly smaller than Kmax . Our key theo-
retical result concerning CMLeS shows that it achieves targeted optimality by requiring
a sufficient number of visits to only all feasible bounded histories of size K . In that way
CMLeS is much more sample efficient than Pcm(A).

Additionally, CMLeS achieves convergence (as described above) in self-play. On the
other hand, Pcm(A) assures a joint-return that maximizes social welfare [sum of the average
payoffs of all the Pcm(A) agents], in self-play. In order to maximize social welfare, Pcm(A)
assumes that all the Pcm(A) agents will coordinate and follow an appropriate joint-policy. In
contrast, CMLeS makes no such prior assumption of pre-coordination and instead enables
the CMLeS agents to converge to a NE joint-policy. This lack of reliance on pre-coordination
is a key distinction between CMLeS and Pcm(A).

The remainder of the article is organized as follows. Section 2 presents the background
and concepts necessary for understanding all the technical details of CMLeS, Sects. 3 and 4
present all the algorithmic aspects (rigorous specification and analysis) of CMLeS, Sect. 5
presents some preliminary empirical results, Sect. 6 summarizes the related work pertaining
to this line of research, and Sect. 7 concludes.

2 Background and concepts

This section serves two purposes. First, it reviews the concepts from repeated matrix
games [30] and Markov Decision Processes [34] that are necessary for fully understanding
the technical details of CMLeS. Second, it establishes the notation that we use throughout
this article.

Definition 1 Matrix game: A matrix game represents a scenario in which n agents are
interacting with each other by simultaneously selecting actions. Without loss of gener-
ality, we assume that the set of actions available to all the agents are the same, i.e.,
A1 = . . . = Ai = . . . = An = A. The payoff received by an agent i in the interaction
is determined by a utility function over the agents’ joint-action, ui : An �→ �.

Table 1 presents the payoff matrix of the famous Prisoner’s Dilemma game. An outcome
is a set of payoffs for all agents achieved as a result of a joint-action. Thus in Prisoner’s
Dilemma when both the agents play “cooperate”, the resulting outcome is (3, 3).

Definition 2 Repeated game: A repeated game is a setting in which the agents play a matrix
game repeatedly.
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While playing a repeated game each agent follows a policy to choose its action on each
step.

Definition 3 Policy: The policy for an agent in a repeated game is a function mapping each
possible history of play to a distribution over its actions (a.k.a. mixed action). Formally it is
defined as follows:

∀k ≥ 0, π : Ank �→ �A, (�A means a distribution over A)

We say an agent i is playing a stationary policy if it plays the same mixed action at every
time step. An agent also achieves an expected return from playing the repeated game as
defined next.

Definition 4 Expected return: In a repeated game, when all the other agents follow their own
share of a joint-policy, an agent i by following its own share πi of the joint-policy, achieves
an expected return given by

Uπi
T =

∑T
t=1 rt

T

over those T steps. rt is i’s expected payoff at time t from following πi given that all the
other agents are following their own share of the joint-policy.

Note that based on the above definition, this article focuses on the average reward setting,
not on the discounted reward setting [41]. The former has been the chosen setting in most of
the prior work on repeated games [7,26,33].

A very crucial solution concept pertaining to learning in repeated games is the NE (named
after John Forbes Nash) [29]. It is a joint-policy where no agent gains by unilaterally deviating
to follow a different policy. In other words, if each agent chooses a policy and no agent benefits
by changing its own policy unilaterally, then the corresponding joint-policy constitutes a NE
joint-policy.

The most popular form of NE is the single stage NE. It is a stationary joint-policy that
serves as a NE of both the single stage (the matrix game played just once) and the repeated
game (when played repeatedly in every stage). It is a stationary joint-policy because each
agent’s policy is independent of the history of interactions so far and fixed for every time
step.

Definition 5 Single stage NE: Formally a single stage NE is defined as follows. Let the set
of all possible stationary policies for i be�i , while that of the other agents be�−i . Assume
that all agents are following a stationary joint-policy. Let agent i’s share of the stationary
joint-policy be πi while the rest of the agents’ share be π−i . Let Uπi be i’s expected payoff
(utility) from following πi when all the other agents follow π−i , i.e.,

Uπi = Eai∼πi ,a−i∼π−i (ui (ai , a−i ))

We call this stationary joint-policy a single stage NE if for all such i’s, the following inequality
holds:

∀π ′i ∈ �i ,U
π ′i ≤ Uπi

For example in Prisoners Dilemma (Table 1), the single stage NE is to play “defect”. If
one agent plays “defect”, there is no incentive for the other agent to deviate from playing
“defect”. Similarly the single stage NE in Rock–Paper–Scissors (R–P–S) (Table 2) is to play
each action with probability 1/3.
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Table 2 Payoff matrix for
Rock–Paper–Scissors

Rock Paper Scissor

Rock (0, 0) (−1,1) (1,−1)

Paper (1,−1) (0, 0) (−1,1)

Scissors (−1,1) (1,−1) (0, 0)

Henceforth whenever we refer to a NE joint-policy, we mean a single stage NE joint-policy.
Nash Equilibrium is a hard solution concept to achieve primarily because of the difficulty of

computing one for arbitrary matrix games. In fact the computational complexity of computing
a NE for arbitrary matrix games is known to be PPAD complete [13]. In such scenarios, we
are often concerned with what the agent can achieve on its own as the best of all worst case
scenarios. That leads us to the concept of security value for an agent in a matrix game.

Definition 6 Security value: The security value (aka maximin value) SVi for an agent i is
the expected payoff it can guarantee on every time step regardless of the policies the other
agents use. Formally it is defined as follows:

SVi = max
πi∈�i

min
π−i∈�−i

Eai∼πi ,a−i∼π−i (ui (ai , a−i )) (1)

A stationary policy that guarantees the security value is called the safety policy. A safety
policy for an agent can be computed through a simple linear program by solving Eq. 1. For
example in R–P–S (Table 2), playing each action with probability 1/3, guarantees a security
value of 0 to an agent, regardless of the policy the other agent uses.

S As a starting point, achieving the security value is a reasonable solution concept, but
often a better return is achievable, especially when the other agent(s) exhibit limitations that
can be modeled and exploited.

In practice, the other agent(s) may have unknown policies and may themselves be adapting.
Ideally, we would like to develop algorithms that are guaranteed to perform “optimally” (yield
maximal expected return) against any possible set of agent policies. However the prospect
of doing so is limited by a variant of the No Free Lunch theorem [46]: any algorithm that
tries to maximally exploit some class of agent policies can itself be exploited by some other
class.

However, if one is willing to restrict the class of possible other agents to some finite set
of policies, it is possible to develop learning algorithms that are guaranteed to perform well
against agents drawn from this set. This article is concerned with modeling one such class
of agent policies, namely memory-bounded agents.

Let the set of all feasible bounded histories of size K be HK . Note, while playing against
a set of memory-bounded agents of memory size K , not all bounded histories of size K are
necessarily reachable. For example while playing against an agent that never plays a specific
action, it is impossible to have any bounded history which has that agent playing that specific
action.

Definition 7 Memory-bounded agent: A memory-bounded agent characterized by its mem-
ory size K chooses its next mixed action as a function of the most recent K joint-actions
played in the current history. Formally its policy π is represented as:

π : HK �→ �A

Memory-bounded agents occur frequently in the literature of repeated games. For example
the famous tit-for-tat policy [30] for playing the repeated Prisoner’s Dilemma which leads
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0,0 1,−1

1,−1 −1,1

−1,1 0,01,−1

0,0

−1,1

R−P−S

(R,P)

0.25

0.5

0.25

R

P

S

(R,P)
0.25

0.25

0.5

(S,R) (S,P) (S,S)

Partial Transition Function
for state (R,P) and action S

Opponent Strategy

Fig. 1 Example of the partial transition function for state (R,P)

to two rational agents coordinating by playing “cooperate”, is a memory-bounded policy
with memory size 1. The agent only remembers the last action played by the other agent and
repeats that in the current time step.

Henceforth for the introduction of the remaining concepts, we assume that there are just
two agents playing the repeated game, where one of the agents is under our control and
denoted by i . The other agent, denoted by o, is memory-bounded and has an unknown policy
πo. The key insight enabling our research is that in a scenario where o is memory-bounded,
the dynamics of playing against o can be modeled as a Markov Decision Process (or MDP
for short) [34].

Consider the following example of such an MDP (refer Fig. 1). In R–P–S, assume o is a
memory-bounded agent with K = 1. Let the current state be (R, P), meaning that on the
previous step, agent i selected R and o selected P . Assume that from that state, o’s policy is
to play actions R, P and S with probability 0.25, 0.25, and 0.5 respectively. When i chooses
to take action S in state (R, P), the probabilities of transitioning to states (S, R), (S, P)
and (S, S) are then 0.25, 0.25 and 0.5 respectively. Transitions to states that have a different
action for i , such as (R, R), have probability 0. The reward obtained by i when it transitions
to state (S, R), (S, P) and (S, S) are −1, 1 and 0 respectively. Thus, both the transition and
the reward functions follow the Markovian dynamics and are completely determined by the
unknown πo.

By modeling the interaction dynamics as an MDP, we can find the optimal policy of
playing against o (best response) by solving for the optimal policy [41] of the MDP. Note
such a policy is a mapping from the state space of the MDP to a single action, that i needs to
take when in that particular state of the MDP. If πo were known, then we could compute the
optimal policy offline. However, since we assume that πo is unknown, we need to solve for
the optimal policy of the MDP using online RL methods: a key functionality of CMLeS.

There are numerous algorithms for computing the optimal policy of an MDP for the
average reward setting (techniques such as Value Iteration and Policy Iteration). Instead of
presenting them in detail, we point the reader to [28] for an excellent survey of these methods.
For the purposes of understanding the technical details of CMLeS, an in-depth knowledge
of these algorithms is not necessary. The knowledge of the fact that they do exist and can
successfully compute an optimal policy for a MDP is sufficient.

Following a specific policy in a MDP induces a Markov chain [34] on visited states. For
simplicity of analysis, we assume that the corresponding induced Markov chain is always
unichain [34]. Such MDPs are called unichain MDPs [24].

There are a number of interesting properties of unichain MDPs. Foremost among them
is that for any policy of the MDP, the infinite-horizon return from following that policy is
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independent of the start state and is a unique value. Restricting our attention to just unichain
MDPs simplifies our analysis while trying to compute an optimal policy for the MDP induced
by o (optimal policy of playing against o), as we do not need to worry about different returns
originating from different states. We acknowledge that in practice it may not be possible
to predict beforehand whether the underlying induced MDP is unichain. Nonetheless, the
unichain assumption is not a limitation on our algorithms; it is just a simplifying assumption
for the sake of theoretical analysis.1 Our result naturally extends to a memory-bounded o
that induces a multichain MDP with just a small and necessary change to the definition of
best performance we can expect from CMLeS (analogous to how the approaches presented
in [24,9] extend to multichain MDPs).

Henceforth whenever we refer to an induced MDP, we mean an induced MDP that is
unichain.

Let Uπ
T (s) and Uπ (s) be the T -step expected return and the infinite-horizon expected

return respectively accrued by i , from following a policy π when starting in state s in the
MDP induced by o. More formally if rt is the expected reward at time step t from following
π when starting in state s. Then,

Uπ
T (s) =

∑T
t=0 rt

T
and Uπ (s) = limT→∞Uπ

T (s) (2)

Since the infinite-horizon return from all the states for a unichain MDP is the same for a fixed
policy π , we denote it by a unique value Uπ . That is for all states s the limit in Eq. 2 exists
and ∀s : Uπ (s) = Uπ .

While seeking theoretical guarantees about the quality of the time averaged return of a
learning algorithm in a MDP after a finite number of steps, we need to take into account some
notion of the mixing times of policies in the MDP. More formally, we need to understand
the concept of the ε-return mixing time [24] of a policy in a MDP. The concept of the
ε-return mixing time is a very crucial one as it plays a key part in the derivation of the sample
complexity bound for CMLeS.

The standard notion of the ε-mixing time for a policy in a MDP quantifies the smallest
number T of steps required to ensure that the distribution of states visited when following
the policy is within ε of the stationary distribution induced by that policy where the distance
between the distributions is measured by max norm or some standard measure. ε is generally
a small value between 0 and 1. In contrast to the ε-mixing time, the ε-return mixing time
only requires the expected return after T steps to approach the infinite-horizon return. The
ε-return mixing time of π is defined as follows.

Definition 8 ε-return mixing time: For an 0 < ε < 1, the ε-return mixing time T of a policy
π in a MDP is the smallest T such that ∀T ′ ≥ T and ∀s, |Uπ

T ′(s)−Uπ |∞ ≤ ε.2

In other words, once we have executed a policy π for at least T steps where T is the
ε-return mixing time of π , the expected return is always within a bound ε of Uπ , irrespective
of the start state.

That concludes our introduction of concepts pertaining to repeated matrix games and
MDPs. The concepts covered above are sufficient for understanding most of the technical
contributions of this article. We reserve a small amount of notation of local relevance for
later sections. We now move on to present the algorithmic details of CMLeS. We begin by
specifying a very crucial subroutine of CMLeS.

1 A very common assumption in RL literature while dealing with MDPs in average reward setting [9,24,28]
2 ||∞ is the max norm.
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3 Model learning with safety (MLeS)

In this section, we introduce an algorithm, Model Learning with Safety (MLeS for short),
a sub-routine of CMLeS that ensures targeted optimality against memory-bounded agents
and safety against any other set of agents. Later in Sect. 4 we build on it to propose the full
blown CMLeS algorithm that achieves convergence as well. MLeS is a significant algorithm
by itself as it is the first to achieve the following two objectives:

Targeted optimality: if these other agents are memory-bounded with their memory size
upper-bounded by Kmax , MLeS then achieves close to the best response
with a high probability;

Safety: MLeS achieves close to the security value against any other set of agents
which cannot be represented as being Kmax memory-bounded;

We begin by showing how MLeS achieves the targeted optimality objective. For ease of
presentation, assume a two player repeated game between an MLeS agent (the agent under
our control), denoted by i , and a memory-bounded agent o, with K and πo being its unknown
memory size and policy respectively. Note, a set of memory-bounded agents with a memory
size K can be treated as a single memory-bounded agent of the same memory size whose
action space and policy are just the joint-action space and the joint-policy of all the agents
respectively. Hence, considering a repeated game against a single memory-bounded agent
automatically imparts the main technical ideas of MLeS upon us.

We assume that K is upper-bounded by a known value Kmax , i.e., Kmax ≥ K . Now, we
can always model πo by assuming that it is memory-bounded with memory size Kmax . In
this regard, we define a model for πo as follows.

Definition 9 Model: A model π̂k of πo is defined by a possible memory size k ≤ Kmax

and specifies a distribution over the action set A (mixed action) for every feasible bounded
history of size k, i.e., π̂k : Hk �→ �A.

Note that modeling πo based on Kmax may involve learning over a much larger state space
than is necessary. Our goal is to modelπo with the shortest most descriptive model (the model
pertaining to the true memory size K or less).

Model Learning and safety is introduced in Algorithm 1. For the sake of clarity, we break
our algorithmic analysis of MLeS into five parts. First in Sect. 3.1, we discuss the choice
of the inputs for MLeS. Second in Sect. 3.2, we describe how MLeS operates from a high-
level. Third and fourth in Sects. 3.3 and 3.4 we focus on MLeS’s two main algorithmic
components: the Find -Model algorithm and its action selection mechanism respectively.
Finally in Sect. 3.5, we remove a crucial assumption made in the aforementioned four sections
(namely Assumption 1 from Sect. 3.1), show how MLeS achieves safety and thereby complete
our specification of MLeS.

3.1 Inputs to MLeS

The inputs to MLeS are ε, δ, T and Kmax . Both ε and δ are small probability values. T
is the planning horizon explained in the next paragraph. A reader not interested in a deep
theoretical understanding of MLeS may skip the rest of this subsection and treat these inputs
as free parameters. We devote the rest of this subsection justifying the choice behind these
input parameters that facilitates our theoretical claims concerning MLeS.

Model Learning and safety operates by planning for T time steps at a time. In each such
planning iteration, it uses the best model of πo at hand and plans its actions for the next
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T time steps based on it. Let U∗ be the expected return from the best response against o,
i.e., the optimal return achievable in the MDP induced by πo. To facilitate the theory behind
our claim that MLeS converges to following the best response against o, we assume that the
(ε, T ) pair taken as input always satisfies the following assumption:

Assumption 1 The planning horizon T is sufficiently large and the ε sufficiently small to
ensure that

1. T is at least the ε-return mixing time of the optimal policy for the MDP;
2. for any sub-optimal policy π and for any state s of the induced MDP, Uπ

T (s) < U∗ −2ε;

Another way of thinking of Assumption 1 is that if we achieve a T -step expected return
as high as U∗ − 2ε in the underlying MDP from any start state, then we must be following
the optimal policy for the MDP.

A pertinent question is whether for any memory-bounded o such an (ε, T ) pair exists or
not. Let Û be the expected return in the MDP from the best sub-optimal policy. Lets choose

an ε smaller than U∗−Û
3 . Let T be the maximum of all ε-return mixing times from all policies.

Clearly this choice of an (ε, T ) pair satisfies Assumption 1. Hence for any memory-bounded
o, there exists an (ε, T ) pair that satisfies Assumption 1. A careful reader will note that our
desired T can be larger than the ε-return mixing time of the optimal policy for the MDP.

Our initial analysis caters to the special (and the more interesting) case where we assume
that MLeS is aware of such an (ε, T ) pair that satisfies Assumption 1 (Sects. 3.2 – 3.4). Later
in Sect. 3.5, we show how a simple extension of our solution for this special case solves the
more general problem where MLeS is unaware of such an (ε, T ) pair a-priori.

3.2 High level idea behind MLeS

This subsection provides the high level idea behind MLeS (Algorithm 1). Since MLeS is
unaware of the exact K that characterizes πo, it maintains a model of πo for every 0 ≤ k ≤
Kmax . Thus it maintains Kmax + 1 models in total. Let the model that is based on the past
k joint-actions be π̂k . Internally each π̂k maintains a value Mk(bk) which is the maximum
likelihood distribution of o’s play, for every possible value bk of the past k joint-actions. So
Mk(bk) is a distribution over the action space A.

For example, assume k = 2, A = {a1, a2} and a possible value of bk = {(a1, a2), (a1, a2)}.
Then Mk(bk) = 0.3 indicates that the probability estimate (computed as a maximum likeli-
hood estimate) of o playing action a1 for a 2-sized joint-history {(a1, a2), (a1, a2)} is 0.3.

Whenever the past k joint-actions assume a value bk in online play, we say a visit to bk
has occurred. π̂k(bk) is then defined as follows:

π̂k(bk) = Mk(bk) once visi t (bk) = mk

= ⊥ when visi t (bk) < mk

where visi t (bk) is the number of times bk has been visited and mk is a parameter unique to
each k. In other words, once a bk is visited mk times, we consider the estimate Mk(bk) reliable
and assign π̂k(bk) to it. Henceforth we make no updates to π̂k(bk) (for visi t (bk) > mk).
We discuss later (Eq. 5) how mk is chosen for each k. If a reliable estimate of Mk(bk) is
unavailable (when visi t (bk) < mk), then π̂k(bk) is set to ⊥ (meaning “I don’t know”).

Model Learning and safety operates by planning for T steps at a time. The operations
performed by MLeS on each such T -step planning iteration are as follows:

M1. Determine π̂best (Line 2). Almost in every planning iteration assign the predictive
model that best describes πo as π̂best by making a call to Find -Model. However once
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Algorithm 1: MLeS

input: ε, δ, T, Kmax
repeat1

Determine π̂best ;2
Compute a policy using π̂best (policy to follow for next T steps);3
τ ← 04
repeat5

Execute the policy;6
τ ← τ + 1;7

until τ > T8
Update all models based on the past T joint-actions;9

until forever10

in every � 1−3ε
ε
� planning iterations, assign π̂best by selecting randomly amongst the

Kmax + 1 models. The need of this exploratory iteration would become obvious once
we specify our action selection mechanism in Sect. 3.4.

M2. Compute a stationary policy based on the π̂best returned and execute it for the next
T -steps (Lines 3–8). Note, a stationary policy in this case refers to a policy that is
stationary in the context of an MDP, i.e., plays a fixed action for each state of the MDP.

M3. Update all models based on the past T joint-actions (Line 9).

Note the better the model returned in Step M1, the higher is the return accrued in Step
M2. The main objective of Step M1 is then to consistently return a π̂best which is a close
approximation of πo. That brings us to the concept of an ε-approx model for πo.

Definition 10 ε-approx model: We call a model π̂ an ε-approx model of πo, when for each
feasible instantiation bK of a bounded history of size K (i.e., bK ∈ HK ), the prediction made
by π̂ is �=⊥ and within a bound ε of πo(bK).

In order to have a close approximation of πo, Step M1 relies on Find -Model to return
an ε

T -approx model of πo. An ε
T -approx model of πo is desired because the T -step expected

return from following the optimal policy pertaining to such a model is always within ε of the
T -step expected return from following the optimal policy pertaining to the true model πo.
We next specify the details of Find -Model, the main algorithmic component of MLeS.

3.3 Find-model algorithm

Find -Model is the model selection algorithm running at the heart of MLeS. Its objective is
to output the best predictive model for πo from all possible Kmax + 1 models maintained by
MLeS.

Intuitively, all models of size≥ K can learn πo accurately (as they span over all of the past
K joint-actions) with the bigger models requiring more samples to do so. On the other hand
models of size < K cannot fully represent πo. From a high-level perspective, Find -Model
operates by comparing models of increasing size incrementally to determine the shortest
most descriptive model such that all larger models cease to be more predictive of πo.

The next few paragraphs explain how Find -Model functions. A reader not interested
in deep technical details may directly skip to the paragraph before Lemma 3.1, our main
theoretical result concerning Find -Model. In short, Lemma 3.1 specifies the sufficient
condition on exploration that needs to be satisfied for Find -Model to return an ε

T -approx
model of πo.
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Algorithm 2: Find -Model

for all 0 ≤ k < Kmax , compute �k and σk ;1
for 0 ≤ k < Kmax do2

f lag← true;3

for k ≤ k′ < Kmax do4
if �k′ ≥ σk′ then5

f lag← false;6
break;7

if f lag then8
π̂best ← π̂k ;9
break;10

return π̂best ;11

Since our approach involves comparing models of different sizes, we need some way of
measuring how much they differ in their predictions. To that end we use a metric �k .

Definition 11 �k :�k is the maximum difference in prediction between consecutive models
of size k and k + 1. Let Aug(bk) be the set of all k + 1 length bounded histories which have
bk as the value of its first k joint-actions, and any possible value for the k+ 1’st joint-action.
Then,

�k = max
bk,bk+1∈Aug(bk))

||π̂k(bk)− π̂k+1(bk+1)||∞ s.t. π̂k+1(bk+1) �=⊥ . (3)

We will choose mk’s such that π̂k+1(bk+1) �=⊥ will always imply π̂k(bk) �=⊥. If for all
bk+1’s, π̂k+1(bk+1) =⊥, then by default �k is set to −1.

Find -Model is fully specified in Algorithm 2. Its key steps are as follows.

S1. On every T -step planing iteration, for all 0 ≤ k < Kmax , compute �k (using Eq. 3)
and σk . If �k = −1, then we assign σk = 1.
If�k �= −1, then we assignσk as the tightest estimate satisfying the following condition:

Pr(�k < σk) > 1− δ

Kmax + 1
∀k ≥ K (4)

By tightest we mean an estimate as close to �k as possible. In such a case the σk is
assigned as follows:

σk =
√

1

2mk
log

(
2 (Kmax + 1) |A|Nk

δ

)

+
√

1

2mk+1
log

(
2(Kmax + 1)|A|Nk+1

δ

)

Nk denotes the number of bounded histories of size k. The complete details on how we
arrived at this is presented in Appendix “Computation of σk” Section. Why we require
the error probability from Eq. 4 to be δ

Kmax+1 becomes apparent in the following step.
S2. Find -Model then searches for that smallest value of k such that all the subsequent�k’s

are less than their corresponding σk’s (Lines 2–11 of Algorithm 2). It then concludes
that this smallest k is the true value of K and returns π̂k as π̂best . Since for each k ≥ K ,
there is an error probability of at most δ

Kmax+1 with which the condition from Eq. 4 may
fail, the total error probability with which Find -Model selects a model of size ≥ K
remains upper-bounded by

∑Kmax
i=0

δ
Kmax+1 = δ. Hence Find -Model always selects a

model of size at most K with a high probability of at least 1− δ.
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It is important to note that although we compute a σk for every 0 ≤ k < Kmax , Eq. 4 is
only guaranteed to hold for K ≤ k < Kmax . However, in the early learning stages, Eq. 4
may also hold for all k ∈ [k′, Kmax }, for some k′ < K . This is generally true when we
have not explored enough to deduce the relevance of all of the past K joint-actions. So
initially Find -Model may return sub-optimal models that are based on a shorter memory
size than K . However once sufficient exploration has occurred (as quantified in the upcoming
Lemma 3.1), then the model returned by Find -Model is an ε

T -approx of πo, with a high
certainty.

We now state our main theoretical result concerning Find -Model. It states the sufficient
condition on the exploration required to ensure that the π̂best returned by Find -Model is an
ε
T -approx of πo, with a high likelihood. Complete details of all the calculations involved in
the proof are presented in Appendix “Proof of Lemma 3.1” Section. Recall that Nk denotes
the number of bounded histories of size k, i.e., Nk is the size of Hk .

Lemma 3.1 For any 0 < ε < 1 and 0 < δ < 1 and mK = O
(

K 2
max T 2

ε2 log
(

Kmax NK |A|
δ

))
,

once every bK ∈ HK has been visited mK times, the π̂best returned by Find -Model is of
memory size at most K and an ε

T -approx of πo, with a high probability of at least 1− 2δ.

Thus it suffices to set mk such that π̂k stops predicting ⊥ for a bk as follows,

mk = O

(
K 2

max T 2

ε2 log

(
Kmax Nk |A|

δ

))

(5)

Lemma 3.1 gives us the condition that needs to be satisfied to ensure that the π̂best returned
by Find -Model is an ε

T -approx of πo. However, it says nothing about how MLeS should
select its actions to ensure that this condition is satisfied. Next we focus on its action selection
mechanism (Step M2) which ensures that the exploration condition from Lemma 3.1 holds.

3.4 Action selection

In order to ensure that the condition of visits specified in Lemma 3.1 is met as quickly as
possible, MLeS uses an action selection mechanism based on the model-based RL algorithm
Rmax [9]. We begin with a brief summary of how Rmax operates.

Rmax periodically computes a stationary policy by carefully balancing exploration and
exploitation. The objective of the policy is to ensure faster exploration of state-action pairs
that have not been visited many times, while ensuring a near optimal return if an accurate
model of the MDP has already been learned. To encourage exploration of state-action pairs
that have not been visited a sufficient number of times (say m), Rmax assigns an exploratory
bonus to visiting that state-action pair. For state-action pairs that have been visited m times,
Rmax performs the conventional Dynamic Programming backup. The policy is recomputed
every time a new state-action pair is visited for the mth time.

There are two reasons why we choose Rmax as the RL algorithm for our action selection
mechanism. First, its propensity to visit less visited states early in its learning stage is in
line with our goal of achieving the necessary visits to all the bK’s (as recommended by
Lemma 3.1) as early as possible. Second, it comes with a formal guarantee on the number of
samples required to satisfy this exploration, which in turn facilitates our sample complexity
bound for MLeS.

MLeS maintains a separate instance of Rmax for each of the possible Kmax + 1 MDPs
corresponding to the Kmax + 1 possible models of πo. At any iteration of MLeS, let the
π̂best returned by Step M1 be π̂k and the MDP associated with it be Mk . MLeS then picks
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the stationary policy computed from the Rmax instance associated with Mk to decide on
the next T -step actions. The policy for the Rmax instance can be computed using any
of the standard techniques, namely Value Iteration and Policy Iteration. MLeS believes that
k is the true value of K and hence attempts to explore all bk ∈ Hk,mk times to satisfy the
condition of visits from Lemma 3.1. The policy computed from the Rmax instance associated
with Mk precisely helps it to achieve that. However, there is a possibility that MLeS might
get stuck at a part of the state space where only some amongst the past K joint-actions are
truly active (it may not reach up to K ). In that case, it might converge to exploiting based on
a sub-optimal model π̂k and the return may then be far below U∗.

In order to avoid that, once in every � 1−3ε
ε
� such T -step planning iterations, MLeS com-

putes the policy slightly differently. First, it chooses a k randomly from 0 to Kmax . The goal
in this iteration is to visit a new bounded history of size k which has not been visited mk times.
If such a visit is not possible (maybe because all such bounded histories have already been
visited mk times or they are reachable from the current start state with a very low probability),
then exploit based on the current π̂best . The Rmax policy computation is then as follows.
Assume that the state space of the underlying MDP comprised of all past Kmax joint-actions.
First, for all states of the MDP whose past k joint-actions have not been visited mk times,
provide them the exploratory bonus. For every other state use π̂best to perform the Bellman
back up. Note π̂best only concerns itself with the joint-actions that are within its memory size
and not on all of the past Kmax joint-actions. Henceforth for future references, we call such
a planning iteration as an exploratory iteration and the former a greedy iteration.

Now due to these exploratory iterations, π̂K is chosen periodically as the random model in
these exploratory iterations. Eventually by the implicit explore or exploit property of Rmax,
it can be shown that at some exploratory iteration where MLeS chooses π̂K as the random
model, it must achieve an expected return as high as U∗ − 2ε, with a high probability (since
there are only finitely many entries to explore). Then from Assumption 1, we know that
MLeS must be following the optimal policy, otherwise such a high return would not have
been possible. Thus MLeS has learned a decent enough model of πo that yields the optimal
policy. Henceforth, in every greedy iteration, it keeps exploiting based on this model and
follows the optimal policy which eventually leads to a near optimal return. Complete details
of how the above happens is presented in Appendix “Proof of Lemma 3.2” Section as the
proof of the upcoming Lemma, our main theoretical result concerning MLeS.

Lemma 3.2 For any 0 < ε < 1 and 0 < δ < 1, with a high probability of at least 1 − 4δ,
MLeS achieves an actual return ≥ U∗− 5ε against any memory-bounded o with memory
size K , in a number of time steps given by

O

(
NK K 3

max T 3

ε7 log

(
Kmax NK |A|

δ

)

log2
(

1

δ

))

,

a quantity polynomial in 1
ε
, 1
δ
, Kmax , NK , |A| and T .

Note that our sample complexity bound is a worst case bound. All our efforts have been
towards optimizing this worst case sample complexity bound.

The computational complexity of MLeS for every planning iteration comprises two parts.
The first part arises from Find -Model, while the latter from the action selection step. Find -
Model takes an order of O(K 2

max ) computations on each planning iteration. For the action
selection step we need to solve a MDP. To be more precise, we need to solve the induced MDP
pertaining to a memory size at most K . Hence our computational complexity for the action
selection step is dependent on the size of the state space of this MDP which is exponential
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in K . Also internally we need to maintain all Kmax + 1 MDPs since we are unsure about
the true value of K . This means that our space complexity is exponential in Kmax . In this
regard, the practicality of MLeS depends on neither |A| nor Kmax (or rather |A|Kmax ) being
overwhelmingly large.

Also a pertinent question is whether an upper-bound Kmax of the true memory size can
be guessed beforehand. In cases where such a Kmax is unknown a-priori, we settle for a
Kmax which does not incur a huge computational or space complexity (a value that suits the
computational and space demands of MLeS). MLeS then tries to figure out the best memory
size within that bound to model the other agent. In cases it cannot, it will resort to modeling
based on a model that spans over a memory size Kmax . We provide some preliminary empirical
evidence of MLeS’s applicability in Sect. 5.

This concludes our discussion on how MLeS achieves targeted optimality against memory-
bounded agents when Assumption 1 is satisfied. Next we show how Assumption 1 can be
removed and also how MLeS can be modified to achieve safety.

3.5 Removing assumption 1 and achieving safety

Our methodology follows the same line of reasoning as used by Rmax when it attempts to
achieve a near optimal return in a MDP in polynomial sample complexity in cases where it
is unaware of its desired planning horizon T . We first discuss how Rmax does so.

Let P(T ′) denote the number of samples required by Rmax to achieve a near optimal
return when the value of the planning horizon is T ′. P(T ′) is polynomial in T ′, the size
of the state and action space of the MDP (namely the size of the MDP), as well as other
relevant parameters. Being unaware of T , Rmax then repeatedly runs itself in restarts with
incremental values of T , i.e., it first runs with T = 1, then with T = 2, and so forth. Whenever
P(T ′) time steps have elapsed since it started running with a planning horizon T ′, it stops
and restarts with T ′ +1. So eventually at some restart T ′ equals T and from that run onwards
it always accrues a near optimal return. Since

∑T
T ′=1 P(T ′) is still polynomial in T , the size

of the MDP and other relevant parameters, this technique of running Rmax in restarts still
preserves its desired polynomial sample complexity property.

We use a similar technique when we lack a prior knowledge of a desired (ε, T ) pair that
satisfies Assumption 1. However there are a couple of subtle distinctions worth noting. First,
unlike the case of Rmax we are unsure of the state space of the underlying MDP since we
are unsure of the memory size. Second, we are dealing with two unknown values, namely
ε and T , as opposed to just one for Rmax. Next we explain the modified MLeS that addresses
both of these problems with an emphasis on how it differs from the above presented version
of Rmax.

Again, let the true memory size of the memory-bounded agent be K , where K ≤ Kmax .
The modified MLeS algorithm operates as follows:

– We keep running Algorithm 1 in restarts with incremental values of T and decremental
values of ε and δ. Let the values for T, ε and δ on run i be Ti , εi and δi respectively. We
restart whenever Algorithm 1 has converged to a model and the number of time steps
elapsed since it has converged to that model is equal to the sample complexity bound
provided in Lemma 3.2. Note the latter requires a value of K which we get from our
converged model. In each run i , Algorithm 1 always converges to a model that is at most
of size K with an error probability of at most δi (from Lemma 3.1).

– Let Ti , δi and εi be assigned on the i’th run as follows:

Ti = 2i , δi = δini t

2i
and εi = εini t

2i
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where δini t and εini t are small initial probability values. Thus the total probability of ever
selecting a model of size > K is upper-bounded by

∑∞
1 δi =∑∞

1
δini t
2i = δini t . So we

have assured that our modified version of MLeS (running Algorithm 1 in restarts) never
ever operates on an MDP that is of memory size > K , with a high probability of at least
1− δini t .

– Furthermore, the number of runs required to reach the desired (ε, T ) pair is upper-
bounded by max(�log2(T )�, �log2(

1
ε
)�) + 1. Suppose we reach our desired T earlier

than our desired ε. Then the values of δi and Ti at the run when we reach our desired ε
are,

δi = δini t

2�log2(
1
ε
)�+1
≈ O (εδini t ) and Ti = 2�log2(

1
ε
)�+1 = O

(
1

ε

)

On the contrary if we reach our desired ε earlier than our desired T , then the values of
δi and εi at the run when we reach our desired T are,

δi = δini t

2�log2(T )�+1
≈ O

(
δini t

T

)

and εi = εini t

2�log2(T )�+1
≈ O

(εini t

T

)

Thus for each run until we reach the desired value of (ε, T ) the sample complexity is
polynomially dependent on the quantities listed in Lemma 3.2. Hence the total number of
time steps elapsed until our modified version of MLeS starts accruing a near optimal return
is also polynomially dependent on the same quantities.

Now all that remains to be shown is how this modified version of MLeS can be further
improved to achieve safety. This can be achieved as follows. We always require that MLeS
(the modified version) checks its actual return before every restart. If the actual return is below
SVi −ε, it plays its safety policy a sufficient number of time steps following it to compensate
for the loss and bring the return back to within ε of SVi , with a high probability of 1 − δ.
The number of time steps it requires to play its safety policy to compensate for this loss is
polynomial in the number of time steps for which that run lasted, 1

ε
and 1

δ
. Hence before

every restart, MLeS always achieves an actual return ≥ SVi − ε with a high probability of
1− δ.

However by the definition of safety from [18], we require MLeS to ensure that there exists
a T > 0 such that the expected return from any T ′ ≥ T steps of learning is provably within a
desired bound of SVi . What we show here is that only at the beginning of any restart, MLeS
achieves an actual return≥ SVi−ε with a high certainty. What if the actual return falls below
SVi − ε in every run following a restart? Then we have not achieved safety. In this regard it
can be shown that after a certain number of restarts this never happens. In other words once
we have ensured that the actual return remains ≥ SVi − ε for a certain number of restarts,
then we have compensated enough to ensure that even if the learner achieves an actual return
of zero in the next run, the overall actual return never falls below SVi − 2ε. Hence there
exists a T such that MLeS always achieves an actual return≥ SVi −2ε with a high certainty,
for any T ′ > T time steps of learning. Hence safety is achieved by this modified version
of MLeS. We point the reader to Appendix “Achieving safety when Assumption 1 does not
hold” Section for a complete account of the details behind this claim.

This completes our analysis of MLeS. Next we present our full blown CMLeS algorithm.
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4 Convergence with model learning and safety (CMLeS)

Convergence with model learning and safety builds upon MLeS by adding convergence to
a NE joint-policy in self-play. CMLeS begins by testing the other agents to see if they are
also running CMLeS (self-play); when not, it uses MLeS as a subroutine. We assume that
all the CMLeS agents have the same input parameter values (i.e. same ε and δ) since they
are instances of the same algorithm and these values can be treated as hard coded in the
algorithm specification. The algorithmic structure of CMLeS (Algorithm 3) comprises the
following steps.

Lines 1–2: We assume that all agents have access to a NE solver and they compute a
NE joint-policy. If the game has multiple NE joint-policies, CMLeS chooses
randomly amongst them. So different CMLeS agents may settle for a different
NE joint-policy. Each CMLeS agent computes a NE joint-policy and assigns
every other agent their component of the joint-policy. We do not assume that
every CMLeS agent computes the same NE in cases where there are more
than one NE (since they are instances of the same algorithm) because each
instance may randomize differently;3

Lines 3–4: CMLeS maintains a null hypothesis that all agents are following the same
NE joint-policy (AAP E = true). AAP E stands for “all agents playing equi-
librium”. The hypothesis is not rejected unless CMLeS has evidence to the
contrary. τ keeps count of the number of times the execution reaches Line 4;

Lines 5–8 : Whenever the algorithm reaches Line 5, it plays the equilibrium policy for a
fixed number of time steps, Nτ . It keeps a running estimate of the empirical
distribution of actions played by all agents, including itself, during this run.
At Line 8, if for any agent j (including itself), the empirical distribution φτj
differs from π∗j by at least ε, AAP E is set to false. The CMLeS agent has
reason to believe that j may not be following the same NE joint-policy that
it computed. How the Nτ value is computed for each τ is explained later in
Eq. 6. For the time being it suffices to know that Nτ is just a function of |A|, ε
and δ. Hence every agent computes the same Nτ and remains synchronized;

Lines 9–16: If AAP E remains true after the execution of Line 8, the CMLeS agents
continue to the next NE coordination phase by switching the execution back
to Line 5. Once AAP E is set to false, CMLeS goes through a series of steps in
which it checks whether the other agents are memory-bounded with memory
size at most Kmax . The details are explained below in Theorem 4.2. For the
time being it suffices to know that the CMLeS agents follow a fixed set of
actions to signal to one another that they are indeed CMLeS agents and in the
process also detect Kmax memory-bounded agents;

Lines 17–21: If all the agents follow the same fixed set of actions as described in Lines 10–
16, then CMLeS sets AAP E back to true and goes into a new NE coordination
phase. For that it again computes a new NE joint-policy by choosing randomly
from amongst the possible set of NE joint-policies;

Lines 22–23: Before the CMLeS agents enter a new NE coordination phase, they check
for each agent whether its actual return is below ε of its security value. If so,
then that agent plays its safety policy for a sufficient number of time steps to
compensate and ensure an actual return within ε of its security value, with a
high probability of 1− δ. Akin to MLeS, the number of time steps it requires

3 Though we agree that making that assumption would simplify the algorithmic structure of CMLeS
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to play its safety policy depends polynomially on Nτ ,
1
ε

and 1
δ
. To keep every

CMLeS agent in sync, once a CMLeS agent switches to following its safety
policy to compensate for any loss, every other agent also does so, and waits
for the process to complete. Once that is over, they go back and start a new
NE coordination phase (Line 4);

Line 25: When the algorithm reaches here, it is sure (with probability 1) that not all
agents are following CMLeS. Then it switches to following MLeS;

Algorithm 3: CMLeS

input: ε, δ, τ = 0, τ ′ = 0
for ∀ j in the set of agents including itself do1

π∗j ←ComputeNashEquilibriumStrategy( j)2

AAP E ← true3
while AAP E do4

for Nτ time steps do5
Play π∗sel f6

For every agent j (including itself) update φτj7

recompute AAP E using the φτj ’s and π∗j ’s8

if AAP E is false then9
if τ ′ = 0 then10

Play ai , Kmax +1 times11

else if τ ′ = 1 then12
Play ai , Kmax times followed by a13
random action other than ai14

else15
Play ai , Kmax +1 times16

if all agents play the above prescribed set of actions then17
AAP E ← true18

τ ′ ← τ ′ + 119
for ∀ j in the set of agents including itself do20

π∗j ←ComputeNashEquilibriumStrategy( j)21

if actual return < SVsel f − ε then22
play safety policy enough times to compensate23

τ ← τ + 124

Play MLeS25

Next we highlight some of CMLeS’s key theoretical properties.

4.1 Theoretical underpinnings

We first show how Nτ is computed for each τ . Theoretically we want a Nτ such that if any
agent j is following its share of a NE joint-policy π∗j , then the empirical distribution of its
actions over that Nτ time period (φτj ) is always within ε of π∗j with an error probability of at

most δ
2τ+1 . We can compute that easily from Hoeffding bound,

Nτ = O

( |A|2
ε2 log

(
2τ

δ

))

(6)
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Now we prove CMLeS’s first theoretical property.

Theorem 4.1 In self-play, the CMLeS agents converge to following a NE joint-policy in the
limit.

Proof The proof follows in three parts. The first part of the proof shows that in self-play
the execution of CMLeS always reaches Line 5 once it reaches Line 10. That is the CMLeS
agents get infinite number of chances to coordinate to a NE joint-policy. This holds because
once its execution reaches Line 10, it follows a fixed set of prescribed actions. Since each
CMLeS agent follows this fixed policy, CMLeS remains assured that all other agents are
indeed CMLeS agents and its execution reaches Line 5 to start a new NE coordination phase.

The second part shows that all the CMLeS agents compute the same NE joint-policy
periodically. This is very easy to show. If there are k different NE joint-policies and n agents,
then in expectation once in every kn NE coordination phases, the CMLeS agents must choose
the same NE joint-policy.

The third part shows that in self-play, the probability of all the CMLeS agents following
a NE joint-policy forever, once they select the same one in some NE coordination phase,
is non-zero and this probability increases monotonically with every such NE coordination
phase (where they select the same NE joint-policy). This is ensured by our choice of Nτ
for each τ . Assume that the first time when they compute the same NE joint-policy is for a
NE coordination phase with τ = p. From union bound, it can be shown that the probability
of AAP E ever getting set to false from that NE coordination phase and onwards is upper

bounded by n
∑∞

τ=p

δ

2τ+1 =
nδ

2p
. Let the next NE coordination phase when all agents

compute the same NE joint-policy be q (q > p). The probability of AAP E ever getting set

to false from that NE coordination phase and onwards is upper bounded by n
∑∞

τ=q

δ

2τ+1 =
nδ

2q
, and so forth. Since nδ

2p >
nδ
2q , the claim follows.

Combining these three parts of the proof, it follows that in infinite repeated play, CMLeS
converges to following a NE joint-policy in the limit. ��

Convergence with model learning and safety cannot distinguish between a CMLeS agent
and a memory-bounded agent if the latter by chance plays the computed NE joint-policy from
the beginning, and may coordinate with it to converge to a NE. Note, this might not strictly be
the best response against such a group of agents, but we believe it is still a reasonable solution
concept. Henceforth, our analysis on memory-bounded agents will exclude this special case.

Theorem 4.2 CMLeS achieves targeted optimality against memory-bounded agents whose
memory size is upper-bounded by a known value Kmax .

Proof The proof follows in two parts. In the first part, we argue that given these other agents
are not following the NE joint-policy, every time the execution reaches Line 5, there is a
non-zero probability that it reaches Line 10. This part of the proof follows trivially from how
we compute AAP E in Line 8.

The second part of the proof shows that given the execution reaches Line 10 periodically,
the execution must eventually reach Line 25 at some point and switch to following MLeS. We
utilize the property that a K memory-bounded agent is also a Kmax memory-bounded agent.
The first time AAP E is set to false, CMLeS selects a pre-chosen action ai and then plays it
Kmax +1 times in a row. The second time when AAP E is set to false, it plays ai , Kmax times
followed by a different action. If the other agents have behaved identically in both of the
above situations, then CMLeS knows : 1) either the rest of the agents are following CMLeS,
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or, 2) if they are memory-bounded with a memory size upper-bounded by Kmax , they play
stochastically for a Kmax bounded memory where all agents play ai . The latter observation
comes in handy below. Henceforth, whenever AAP E is set to false, CMLeS always plays
ai , Kmax +1 times in a row. Since a memory-bounded agent must be stochastic (from the
above observation), at some point of time, it will play a different action on the Kmax +1th
step with a non-zero probability. CMLeS then rejects the null hypothesis that all other agents
are CMLeS agents and jumps to Line 25.

Combining these two parts of the proof, it follows that against memory-bounded agents
whose memory size is upper-bounded by Kmax , CMLeS eventually converges to following
MLeS and hence achieves targeted optimality. ��

Note that CMLeS may achieve a low payoff when signaling to other CMLeS agents (Lines
10–16). The purpose of this phase is two fold: (1) to identify a Kmax memory-bounded agent
if one exists; (2) to ensure that all CMLeS agents remain synchronized. An inquisitive reader
may wonder whether this signaling phase can be improved to ensure a decent payoff for the
CMLeS agent while it is in progress. We believe this is a very challenging problem and our
ongoing research focuses on exploring possible avenues to make this phase more efficient.

All that remains to be shown is that CMLeS achieves safety against arbitrary agents.
If CMLeS converges to following MLeS, then by virtue of MLeS, it achieves safety. If
CMLeS never converges to following MLeS, then Lines 22–23 ensure that at the beginning
of any NE coordination phase, it always achieves an actual return ≥ SVi − ε with a high
probability of 1− δ. It can shown that after a certain number of NE coordination phases, we
compensate enough to ensure that even if CMLeS achieves an actual return of zero in the
next coordination phase, the overall actual return never falls below SVi − 2ε (analogous to
the proof in Appendix “Achieving safety when Assumption 1 does not hold” Section). Hence
safety is achieved by CMLeS.

That completes our theoretical specification of CMLeS. Next we present some preliminary
results pertaining to MLeS, the chief model learning component of CMLeS.

5 Results

Whereas the main contribution of this article is the introduction of CMLeS as a theoretically
grounded MAL algorithm, we would also like it to be useful in practice. As an empirical exer-
cise, we choose to focus on how efficiently MLeS (the main component of CMLeS) models
memory-bounded agents in comparison to existing algorithms, Pcm(A) and Awesome. Our
empirical analysis uses the version of MLeS presented in Algorithm 1, not the one which
runs in restarts.

Theoretically, the specification of MLeS depends on the following input parameters:
δ, ε, T and Kmax . δ, ε and T together determine the mk and σk for each model. Recall that
mk is the number of visits we require to each bk to consider the estimate Mk(bk) (empirical
distribution of o’s play for a k sized bounded history bk) reliable. Furthermore we require the
(ε, T ) pair to satisfy Assumption 1. An implementation of MLeS straight from its theoretical
specification is challenging for the following reasons.

1. First, there exists no principled way of guessing an (ε, T ) pair a priori that satisfies
Assumption 1.

2. Second, even if we know such an (ε, T ) pair, the value of each mk computed based on it is
prohibitively high for practical purposes. Note, the definition of mk is a very conservative
one and in practice much smaller values of mk should suffice.
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Hence we introduce a few approximations when implementing MLeS. First, instead of
seeding MLeS with a δ, ε, Kmax and T , we seed it with an m, δ and Kmax . m plays the
role of mk and is the same for models of all sizes. δ is required to compute the value of
σk . All our results are reported for m = 20 and δ = 0.2. Kmax in our case consists of the
past 10 joint-actions. In other words, we let MLeS figure out which amongst these past 10
joint-actions can be best used to model the other agents.

Also, note that MLeS needs an exploratory iteration once every � 1−3ε
ε
� planning iterations.

Since we do not specify a value for ε, it is not clear when to opt for an exploratory iteration.
Hence we opt against an exploratory iteration. In all of our experiments, the explorations that
happen in the greedy iterations are sufficient to generate good results.

Finally, MLeS functions by planning for T time steps at a time (see Algorithm 1). Such a
T -step action selection policy is just the stationary Rmax policy computed by running Value
Iteration in the underlying MDP and executed for T steps. In our implementation, we keep
executing the computed stationary Rmax policy forever, unless a new state of the underlying
MDP gets visited for the m’th time. In that case, we recompute it. This approach is structurally
similar to the one described in Algorithm 1, except that it is more computationally efficient.

We use the three-player Prisoner’s Dilemma (PD) game as our representative matrix game.
The game is a three player version of the n-player PD present in gamut.4 In this version, the
payoff to each agent is based on the number of agents who “cooperate” not including the
agent itself. If the number of other agents who “cooperate” is i , then we say that C(i) is the
payoff for cooperating and D(i) is the payoff for defecting. In order for this payoff scheme
to result in a Prisoners Dilemma, it must be the case that:

– D(i) > C(i) for 0 ≤ i ≤ n − 1;
– D(i + 1) > D(i) and also C(i + 1) > C(i) for 0 ≤ i < n − 1;
– C(i) > D(i)+C(i−1)

2 for 0 < i ≤ n − 1;

The payoffs supporting this payoff scheme is automatically generated by gamut and so
we need not worry about it. The memory-bounded strategies we test against are,

Type 1: every other player plays “defect” if in the last five steps MLeS played “defect”
even once. Otherwise, they play “ cooperate”. The agents are thus deterministic
memory-bounded strategies with K = 5;

Type 2: every other player behaves as type-1 with 0.5 probability, or else plays completely
randomly. In this case, the agents are stochastic with K = 5;

The total number of bounded histories of size ten in this case is 810, which makes Pcm(A)
highly inefficient. However, MLeS quickly figures out the true K and converges to the optimal
behavior in a reasonable number of steps. Figure 2 shows our results against these two types
of agents. The Y-axis shows the payoff of each algorithm as a fraction of the optimal payoff
achievable against the respective opponent. Each plot has been averaged over 30 runs to
increase robustness.

Against type-1 agents (Fig. 2 upper-figure), MLeS figures out the true memory size in
about 2,000 steps and converges to playing near optimally by 20,000 steps. Against type-2
agents (Fig. 2 lower-figure), it takes a little longer to converge to playing near optimally
(about 30,000 steps) because in this case, the number of feasible bounded histories of size 5
are much more. Both Awesome and Pcm(A) perform much worse.

This experiment further corroborates our claim that MLeS is quite useful in cases where |A|
and Kmax are not overwhelmingly large. Our current research focuses on proposing variants

4 http://gamut.stanford.edu
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Fig. 2 Against memory-bounded agents in three player PD

of MLeS (and CMLeS) that are practically applicable for more complex and general domains.
This completes our empirical analysis. Next we present some related work pertaining to this
line of research.

6 Related work

The purpose of this section is to situate CMLeS in the literature of MAL. CMLeS extends
the frontier of MAL research by a significant margin by achieving a new set of objectives
that have not been achieved by any other MAL algorithm to date. CMLeS is the first to
achieve convergence in self-play, targeted optimality against memory-bounded agents and
safety against any other set of agents.

Before the MAL problem started getting attention within the Artificial Intelligence com-
munity, some of its key challenges were addressed numerous times in Game Theory, under
the names of universal consistency and the Bayes Envelope, dating back to the work of Han-
nan [20]. In the field of Game Theory, to the best of our knowledge, [18] were the first to
put forth a set of criteria for learning in repeated games. Their work required the learner to
satisfy the following two requirements.

– Safety: the learning algorithm must guarantee at least the security value of the game.
– Consistency: the learning algorithm must guarantee that it does as well as the best response

to the empirical distribution of play when interacting against an agent whose policy is
stationary.

As a follow up they introduced the requirement of universal consistency which requires a
learning algorithm to perform at least as well as the best response to the empirical distribution
of play, regardless of the type of policy of the other agents. They showed that a simple
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modification of the Fictitious Play algorithm [10] called Cautious Fictitious Play, can actually
satisfy the criterion of universal consistency. They further strengthened their conditions by
requiring that the learning algorithm also adapts to simple patterns in the play of the other
agents [19].

While learning in repeated games has been addressed in the Game Theory field for over
a few decades now, the problem received its attention in the Artificial Intelligence (AI)
community fairly recently. To the best of our knowledge in the AI community, [8] were the
first to put forth a set of criteria for evaluating MAL algorithms, which was stricter that the
ones proposed until then in Game Theory. In games with two players and two actions per
player, their proposed algorithm WoLF-IGA [7] satisfies the following criteria:

– Rationality: converges to playing best response against stationary, or memoryless, oppo-
nents;

– Convergence: converges to playing a NE joint-policy in self-play;

WoLF-IGA is an improvement over the more general IGA algorithm previously proposed
by [36], which has very similar guarantees, only failing to converge to NE in one specific
scenario of self-play [7].

Subsequent approaches extended the rationality and convergence criteria to arbitrary
(multi-player, multi-action) repeated games [3,16]. Amongst them, Awesome [16] achieves
convergence and rationality in arbitrary repeated games without requiring the agents to
observe each others’ mixed action on every time step, while the algorithm by [3] requires the
agents to do so.

There has also been some research on developing MAL algorithms that converge to a NE in
self-play and achieve bounded, or no regret against other agents [6,3]. The regret reg(a j , si )of
agent i for playing a sequence of actions si instead of a playing a fixed action a j always, given
that the other agents played the sequence s−i , is defined as

∑T
t=1 ui (a j , st

−i ) − ui (st
i , st
−i ).

st
i and st

−i are the actions played by i and the other agents at time t respectively. The most
popular amongst such algorithms is GIGA-WoLF [6] that achieves at most zero regret on
average against all other agents and converges to a NE in only certain restrictive settings of
self-play (namely two player two action games).

However, most of the above cited algorithms do not generalize well to bigger games
and/or more sophisticated opponents (mostly tailored for stationary opponents). Noticing
this limitation in the current MAL algorithms, more recently [33] proposed a newer set
of evaluation criteria with the hope that algorithms adhering to these new criteria would
generalize well to bigger games and against more sophisticated opponents. Their criteria
called guarded optimality requires the learning algorithm to choose a target set of agent
behaviors a priori and while interacting in a population comprised of self, agents from the
target set and other arbitrary agents (agents outside the target set) satisfy the following two
criteria:

– maximize social welfare by exploiting the agents from the target set maximally;
– individually never achieve a return below the security value;

To that end they proposed two algorithms, namely PCM(S) and PCM(A), that achieve guarded
optimality against complete stationary agents and the broader class of memory-bounded
agents respectively. PCM(A) is an extension of Manipulator [32], a more specific algorithm
tailored for two player games.

Consistent with all the literature cited above, we assume in this article that the game (full
payoff matrix) is known to all agents.There is a significant volume of parallel literature in
MAL that does attempt to have the agents learn the game as well [4,15,22,25,27].
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There has also been some research where the focus has been on convergence to a correlated
equilibrium (CE) in self-play rather than a NE [17,21]. The concept of CE introduced by
Aumann [2] can be described as follows: assume on each time step each agent receives a
private signal which does not affect the payoffs. The agent then chooses its current step action
in the game depending on this signal. A CE of the original game is just a NE of the game with
the signals. If the signals are independent across the agents, CE is then just a NE in mixed or
pure strategies of the original game. But if the signals are correlated, then it is significantly
different than a NE.

There has also been a significant volume of research in MAL that uses Q-learning as the
base learning algorithm and does updates based on evolutionary methods, such as the model
based on replicator dynamics [3,23,43]. A popular representative of such algorithms is the
Frequency Adjusted Q-learning algorithm, or FAQ-learning [23], which uses a variation of
Q-learning that complies with the prediction of an evolutionary model based on replicator
dynamics. It has been both theoretically and empirically shown to converge to a NE in certain
two player two action general sum games.

Though our work mostly studies the MAL problem from a theoretical perspective, there
has been some research that studies the MAL problem from an empirical standpoint [1,5]. The
main objective of these works is to empirically study the performance of the different MAL
algorithms when pitted against each other and to test their relative strengths and weaknesses
in practice. In this regard, this article introduces CMLeS as a new candidate for study in this
way.

There has also been a significant volume of recent work on opponent modeling in different
game theoretic settings, apart from repeated matrix games. Most notable amongst them are
the works on opponent modeling in Poker, an extensive form game [37]. There has also been
some research addressing opponent modeling in games which have emerged from popular
competitions, such as the Lemonade Stand game [42] and the games from the Trading Agent
competitions [31]. Again most of these works are empirical and tailored to the specific domain
of interest.

7 Conclusion and future work

In this article, we introduced a novel MAL algorithm, CMLeS, which in an arbitrary repeated
game, achieves convergence, targeted-optimality against memory-bounded agents whose
memory size is upper-bounded by a known value Kmax , and safety. A key contribution of
CMLeS is in the manner it handles memory-bounded agents: it requires only a loose upper
bound of the other agents memory size. Second, and more importantly, CMLeS improves
upon the state of the art algorithm, by promising targeted optimality against memory-bounded
agents by requiring sufficient number of visits to only all feasible joint histories of size K ,
where K is the other agents’ true memory size. CMLeS’s sample complexity guarantee of
achieving targeted optimality against memory-bounded agents is state-of-the-art. We back
our presentation of CMLeS with a thorough theoretical analysis of all of its properties.

As part of future work, we are looking at avenues that may further tighten the sample
complexity bound of CMLeS. Though we believe that our sample complexity analyses are
thorough and the bounds are reasonably tight, it would still be interesting to see whether they
can be further tightened. Especially, it would be interesting to check whether a bandit style
model selection technique improves our sample complexity bound. Also for CMLeS, our
default fall back guarantee is safety. That is if there are arbitrary agents in the population,
then CMLeS ensures an actual return very close to the security value, with a high certainty.
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It would be interesting to check whether the safety property can be replaced with the no-
regret property (achieving universal consistency). That is in the presence of arbitrary agents
in the population, we would require CMLeS to achieve no-regret. If such is not achievable,
then it would be worthwhile to prove this negative result as an impossibility result. Also
as future work it would be worthwhile to further push the frontier of modeled agents from
memory-bounded ones to ones which are more complicated and yet can be modeled.
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Appendix

Computation of σk

For each k, the goal is to select a value for σk s.t. Equation. 4 is satisfied. To repeat, σk’s are
computed such that the following condition is satisfied:

Pr(�k < σk) > 1− δ

Kmax + 1
∀k ≥ K

where δ is a very small constant probability and �k �= −1.
In the computation of �k , Find -Model chooses a specific bk, a bk+1 ∈ Aug(bk)

and an action j for which the models Mk and Mk+1 differ maximally on that particular
time step. Let Mk(bk, j) be the probability value assigned to action j by Mk(bk). Without
loss of generality, assume Mk(bk, j) ≥ Mk+1(bk+1, j). Then �k < σk implies satisfying
Mk(bk, j)− Mk+1(bk+1, j) < σk . For k ≥ K , we can then rewrite the above inequality as,

Mk (bk, j)− E (Mk (bk, j))+ (E (Mk+1 (bk+1, j))− Mk+1 (bk+1, j)) < σk (7)

Equation 7 follows from the reasoning that∀k ≥ K ,E (Mk (bk, j)) = E(Mk+1(bk+1, j)).
One way to satisfy Inequality 7 is by ensuring that,

Mk (bk, j)− E (Mk (bk, j)) < σ1

E (Mk+1 (bk+1, j))− Mk+1 (bk+1, j) < σ2 (8)

and subsequently setting σk = σ1+ σ2.
Now, since we are unsure which pair of bk and bk+1, or action may get selected, we need

to ensure that the inequalities presented in 8 are satisfied for all possible choices of bk,bk+1’s
and actions. Thus we need to ensure that the following inequalities are satisfied:

Pr((Mk(bk, j)− E(Mk(bk, j)) ≥ σ1) ≤ δ

2(Kmax + 1)|A|Nk
, and

Pr(E(Mk+1(bk+1, j))− Mk+1(bk+1, j) ≥ σ2) ≤ δ

2(Kmax + 1)|A|Nk+1
,

If the above inequalities are satisfied, then by union bound, we know that for any pair
of bk and bk+1, and an action j , both the inequalities presented in 8 are satisfied with an
error probability of at most δ

Kmax+1 . By Hoeffding bound, the above inequalities are always
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satisfied if we choose

σ1 =
√

1

2mk
log

(
2 (Kmax + 1) |A|Nk

δ

)

, σ2 =
√

1

2mk+1
log

(
2 (Kmax + 1) |A|Nk+1

δ

)

Then by subsequently assigning σk = σ1 + σ2, we have our desired result Pr(�k <

σk) > 1− δ
Kmax+1 .

Proof of Lemma 3.1

In this section we present the proof for Lemma 3.1.

Observation 1 Let at any planning iteration, the probability with which Find -Model
selects a model of size < K be p. If all sub-optimal models of size < K are rejected,
then it selects π̂K with probability at least 1 − (Kmax − K ) δ

Kmax+1 (from Eq. 4 main draft
and using union bound). Therefore, the probability with which it selects a model ≤ K is at

least p + (1 − p)
(

1− (Kmax − K ) δ
Kmax+1

)
≥ 1 − δ. So models with size > K are only

selected with a low probability of at most δ. This is exactly in line with our first goal: we
want a model that is at most of size K with a high probability of 1− δ.
Observation 2 If Find -Model selects π̂K as π̂best , then we have the best model. If it selects
a model of size k < K , then we have a model which approximates π̂K with an error of at
most

∑

k≤k′<K
�k′ ≤

∑

k≤k′<K
σk′ , over all bK’s that have been visited mK times. This

follows directly from the definition of�k (Eq. 3 main draft), and Line 5 of the Find -Model
algorithm. The latter ensures that the following is true:�k < σk,�k+1 < σk+1, . . . ,�K−1 <

σK−1.

Observation 3 Furthermore, from Hoeffding bound, it follows that once a bK is visited

O
(

1
ψ2 log

(
NK |A|
δ

))
times, then MK (bK) is a ψ-approx of πo(bK) with a probability of

failure at most δ
NK

. Revisit Eq. 3 (main draft) for a re-cap on how π̂K is related to MK .

Observation 4 Combining the above three observations and applying union bound, it fol-

lows that once a bK is visited mK = O
(

1
ψ2 log

(
NK |A|
δ

))
times, with probability at least

1 − (1 + 1
NK
)δ, π̂best is of size at most k ≤ K and π̂best (bK) is an

(∑

k≤k′<K
σk′ + ψ

)
-

approx of πo (bK).

Thus all we need to do is choose mK such that
∑

k≤k′<K
σk′ + ψ is bounded by ε

T and

ensure that every bK gets visited mK times. It can be shown that the above is satisfied if we

choose mK = O
(

K 2
max T 2

ε2 log
(

Kmax NK |A|
δ

))
. The following explains why that is true.

Suppose we choose mk for any k as follows:

mk = (2Kmax + 1)2 T 2

ε2 log

(
2 (Kmax + 1) |A|Nk

δ

)

It follows that once a bK is visited mK = (2Kmax+1)2T 2

ε2 log
(

2(Kmax+1)|A|NK
δ

)
times,

then π̂K (bK) is an ε
(2Kmax+1)T -approx of πo(bK), with a probability of failure at most

δ
2(Kmax+1)NK

< δ
NK

(from Observation 3 by replacing ψ with ε
(2Kmax+1)T and δ with

δ
2(Kmax+1) ).
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Assume the worst case that Find -Model returns a model of size 0 (π̂0) as π̂best . Then from

Observation 4, this means π̂best (bK) is an
(∑K−1

k=0 σk + ε
(2Kmax+1)T

)
-approx of πo (bK),

with probability of failure at most
(

1+ 1
NK

)
δ .

Now we know,

σk =
√

1

2mk+1
log

(
2(Kmax + 1)|A|Nk+1

δ

)

+
√

1

2mk
log

(
2(Kmax + 1)|A|Nk

δ

)

(9)

Putting the values of mk and mk+1 in Eq. 9 gives us,

∀k, σk ≤
√

2ε
(2Kmax+1)T

Thus
K−1∑

k=0

σk + ε

(2Kmax + 1)T
≤ ε

T
.

So we have shown that once a bK is visited mK times, then π̂best (bK) is an ε
T -approx of

πo(bK), with a probability of failure at most (1+ 1
NK
)δ. The rest of the proof follows from

summing up the error from all feasible bK’s using union bound. Then if follows that once all
bK’s are visited mK times, the π̂best returned by Find -Model is of size at most K and an
ε
T -approx of πo with an error probability of at most 2δ.

Proof of Lemma 3.2

In this section we present the proof for Lemma 3.2. The analysis is an extension of that of
Rmax with some differences to account for the learning of an opponent model. We present
the proof in steps.

1. The inputs to MLeS are Kmax , δ, ε and T . Recall that the (ε, T ) pair taken as input
satisfies Assumption 1. Given an (ε, T ) pair as input, we need to learn an ε

T -approx
model of πo.
The number of entries denoted as L1 that needs to be explored is as follows:

L1 = NK mK (10)

This follows from observing that the size of the relevant state space is NK and each state
needs to be visited mK times (from Lemma 3.1). Now,

mK = O

(
K 2

max T 2

ε2 log

(
Kmax NK |A|

δ

))

Substituting the value for mK in Eq. 10, we then get,

L1 = O

(
NK K 2

max T 2

ε2 log

(
Kmax NK |A|

δ

))

2. The Implicit Explore and Exploit Lemma of Rmax states that the policy followed by
Rmax will either exploit and attain an expected return that is within ε of the optimal
return for the learned approximate MDP, or will explore with probability at least ε in the
true MDP (Lemma 6 of [4] ). Now we are going to assume the worst case scenario that
the explorations to different entries (from Lemma 3.1) only happen in the exploratory
iterations and when MLeS chooses K as the random value from [0, n]. For the case of
MLeS this implies that eventually at some exploratory iteration, MLeS must choose
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K as the random value from [0, Kmax ] and also achieve a T -step expected return that
is within ε of the optimal return for the approximate MDP. This is because there are a
finite number of entries to explore (L1 in this case) and hence by the Implicit Explore
and Exploit Lemma, Rmax must exploit at some point.
However what we are really concerned about is the return in the true MDP, not in the
approximate MDP induced by the learned model. Note, every probability value estimated
by our model is ε

T close to the correct value, with a probability of failure at most 2δ
(from Lemma 3.1). In other words our model is an ε

T -approx model of πo with a failure
probability of at most 2δ. Then it follows that the return achieved in the true MDP can
never be below 2ε of the optimal return U∗ over those T steps, with a probability of
failure at most 2δ (from the Approximation Lemma of RMax). This follows from the
reasoning that if Rmax is exploiting then it must be confining itself to “known” state
action pairs (state action pairs for which it believes it has a near accurate model). From
Lemma 3.1 it is true that the predictions made by π̂best for these “known” state action
pairs are near accurate with an error of at most ε

T .
Now this is where Assumption 1 comes handy. Since, the expected return in the true
MDP is at least U∗ − 2ε, then from Assumption 1, the model π̂best based on which we
are planning must be sufficient enough to yield the optimal policy. Otherwise such a high
expected return would not have been possible. Note no sub-optimal policy could have
achieved that high an expected return over T steps. Hence from then onwards in every
greedy iteration MLeS always follows the optimal policy.

3. For simplification of analysis, assume that the above mentioned exploratory iteration
occurs only after all the entries are visited the sufficient number of times and each such
entry is only explored in an exploratory iteration where MLeS chooses K as the random
value from [0, Kmax ]. Then the expected number of time steps elapsed before this iteration
occurs is,

L2 = L1× (Kmax + 1)(φ + 1)× 1

ε
× T , where φ = �1− 3ε

ε
�

The reasoning behind is as follows:

i. each such iteration in expectation occurs once in every (Kmax + 1)(φ+ 1) iterations
(since the exploratory iteration happens once every φ+1 iterations and on each such
exploratory iteration a value from 0, Kmax is only picked with probability 1

Kmax+1 ;
ii. the exploration probability of visiting a new slot in each such iteration is at least ε;

and
iii. each iteration lasts for at most T time steps.

Then substituting the values of L1 from Eq. 11 and using φ = � 1−3ε
ε
� = O

( 1
ε

)
, we

get,

L2 = O

(
NK K 3

max T 3

ε4 log

(
Kmax NK |A|

δ

))

Then from Hoeffding bound, it can be shown that the actual number of time steps taken
for all the above explorations to succeed is,

L3 = O

(

L2× log

(
1

δ

))

and L3 = O

(

L2× log

(
1

δ

))

(11)

with a probability of failure at most δ.
4. Once the above has been achieved, from then onwards in every greedy iteration the

return is at least U∗ − 2ε, with a probability of failure at most 3δ. Now since we have
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an exploratory iteration after every φ = � 1−3ε
ε
� = O

( 1
ε

)
iterations, the expected return

over every φ + 1 iterations is at least:

φ

φ + 1
(U∗ − 2ε)+ 1

φ + 1
× 0

≥ U∗ − 3ε, substituting φ = �1− 3ε

ε
�

5. Now, in the worst case the expected return over all of the first L3 time steps may be
0. This is because the objective of MLeS in these time steps is to learn the opponent
model to a decent approximation and that often leads to a poor expected return. Thus,
the number of time steps needed in total to compensate for the above loss and ensure an
expected return of at least U∗ − 4ε is at most,

L4 = L3× 1− 3ε

ε
= O

(
L3

ε

)

= O

(
L2

ε
log

(
1

δ

))

Substituting the values of L2 from Eq. 11, we get,

L4 = O

(
NK K 3

max T 3

ε5
log

(
Kmax NK |A|

δ

)

log

(
1

δ

))

6. Finally, what we have shown is that MLeS achieves an expected return ≥ U∗ − 4ε, with
a high probability of at least 1 − 3δ, in L4 time steps. However our aim is to derive a
learning time bound for the actual return. Then, by Hoeffding bound, the actual return
of MLeS is ≥ U∗ − 5ε, with failure probability of at most 4δ, after,

L5 = O

(
L4

ε2 log

(
1

δ

))

number of time steps.

Substituting the values of L4 from Eq. 12, we get,

L5 = O

(
NK K 3

max T 3

ε7 log

(
Kmax NK |A|

δ

)

log2
(

1

δ

))

(12)

This concludes the derivation.

Achieving safety when Assumption 1 does not hold

The notion of safety from Fudenberg and Levine [18] requires the learner i to ensure that
there always exists a T > 0 such that the expected return accrued by i remains ≥ SVi − ε
provably for any T ′ ≥ T . However for our extended version of MLeS that runs in restarts,
we show that only at the beginning of any restart, MLeS achieves an actual return≥ SVi − ε
with a high certainty. What if the actual return falls below SVi − ε in every run following
a restart? Then we have not achieved safety. In this section we show that provably after a
certain number of restarts this never happens.

Now, as a re-cap, each run i lasts for at least the the following time steps:

X (i) = O

(
NK K 3

max T 3
i

ε7
i

log

(
Kmax NK |A|

δi

)

log2
(

1

δi

))

time steps. (13)

The values of δi , εi and Ti on run i are assigned as follows:

δi = δini t

2i
, εi = εini t

2i
, Ti = 2i
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Substituting these values in Eq. 13, we get,

X (i) = O

(
NK K 3

max 210i

ε7
ini t

log

(
2i Kmax NK |A|

δini t

)

log2
(

2i

δini t

))

= O

(
NK

2 K 4
max |A|213i

ε7
ini tδ

3
ini t

)

(14)

In the presence of arbitrary agents in the population (agents who are not Kmax memory-
bounded), MLeS converges to modeling them based on some K ≤ Kmax . Note, once it
switches to a bigger value of K , it cannot go back to a smaller value. Hence in the worst case,
MLeS converges to modeling them based on a memory size Kmax . Thus from then onwards
each run i lasts for the following time steps,

X (i) = O

(
NKmax

2 K 4
max |A|213i

ε7
ini tδ

3
ini t

)

substituting K = Kmax in Eq. 14.

= Õ
(

213i
)

by getting rid of all the constant terms.

Let, f (x) = 213x , and,

g(x) =
x∑

j=1

f ( j)− f (x + 1) =
x∑

j=1

213 j − 213(x+1) = 2
13x(x+1)

2 − 213(x+1)

Our goal is to show that there exists a value of x such that g(x) is monotonically increasing
from that value onwards. Note if that is true, then we know that there exists a value of i , say
i ′, such that from i ′ and onwards, the difference in the number of time steps elapsed until
restart i ′ +1 and the length of run i ′ +1 is an increasing function. If that holds, then we must
eventually reach a point when we have compensated enough in the preceding runs to ensure
that the return never falls below SVi − ε after the current run, even if the current run yields
no return. Hence the rest of the proof focuses on showing that g(x) is an increasing function
from some value of x onwards.

Now,

d (g (x))

dx
= 13log (2)

(
2x + 1

2
2

13x(x+1)
2 − 213(x+1)

)

which is clearly positive for x > 2. Hence by the rule of increasing functions, g(x) is
monotonically increasing for x > 2. That concludes our analysis.
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