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Abstract While recent work in reinforcement learning (RL) has led to agents
capable of solving increasingly complex tasks, the issue of high sample com-
plexity is still a major concern. This issue has motivated the development
of additional techniques that augment RL methods in an attempt to increase
task learning speed. In particular, inter-agent teaching – endowing agents with
the ability to respond to instructions from others – has been responsible for
many of these developments. RL agents that can leverage instruction from
a more competent teacher have been shown to be able to learn tasks sig-
nificantly faster than agents that cannot take advantage of such instruction.
That said, the inter-agent teaching paradigm presents many new challenges
due to, among other factors, differences between the agents involved in the
teaching interaction. As a result, many inter-agent teaching methods work
only in restricted settings and have proven difficult to generalize to new do-
mains or scenarios. In this article, we propose two frameworks that provide a
comprehensive view of the challenges associated with inter-agent teaching. We
highlight state-of-the-art solutions, open problems, prospective applications,
and argue that new research in this area should be developed in the context
of the proposed frameworks.

Keywords Multiagent Learning · Transfer Learning · Reinforcement
Learning

F. L. Silva and A. H. R. Costa
University of São Paulo, Brazil
E-mail: {f.leno,anna.reali}@usp.br

G. Warnell
Army Research Laboratory, USA
E-mail: garrett.a.warnell.civ@mail.mil

P. Stone and F. L. Silva
The University of Texas at Austin, USA
E-mail: pstone@cs.utexas.edu



2 Felipe Leno Da Silva et al.

1 Introduction

Autonomous learning in sequential decision making tasks requires the ability
to reason over time-delayed feedback while taking into account environmental,
sensory, and actuation stochasticity [36]. In the multiagent setting, the learning
process must also contend with the presence and actuation of other actors
[8]. Although multiagent variants of reinforcement learning (RL) methods [5]
enable learning under such conditions, off-the-shelf RL methods can suffer from
high sample complexity, which limits their effectiveness in complex domains.
For example, exploring the environment to gather more samples in robotic
applications can be dangerous and may cause damage to the robotic platform.

One of the most successful approaches to addressing sample complexity
concerns in RL has been that of leveraging the experience of another, more
competent agent [51]. Although the literature reports several successful inter-
agent teaching strategies in terms of learning speed, real-world applications
have to cope with several additional challenges such as differences between
the sensors, actuators, and internal representations of the agents involved; de-
velopment of efficient interfaces and protocols through which instructions will
be transferred; and robustness to malicious instructions that could be received
from a possibly compromised agent in the system. These challenges are only
partially answered (sometimes neglected) in the current body of literature that
tends to focus only on single aspects of the teaching process.

In this article, we formulate two inter-agent teaching frameworks: one in
which the teacher is responsible for observing the student behavior and initi-
ating the instruction when it is most needed (i.e., Teacher-Driven), and one
in which the learner is proactive to ask for instructions when desired (i.e,
Learner-Driven). Although the literature has identified before the importance
of who initiates the teaching interaction [1], we present a novel and compre-
hensive organization and description of all steps involved in those frameworks.
We discuss the challenges involved in applying inter-agent transfer methods to
complex domains, the state-of-the-art approaches that seek to address these
challenges, and the open research questions in the area.

We expect that our contribution will support researchers in the field study-
ing how to leverage inter-agent teaching methods to create complex applica-
tions and also those that are currently pursuing open research questions that
demand further investigation.

The remainder of this article is organized as follows. Section 2 defines
what is the problem we are interested in, delimiting the scope of this article.
In Section 3, a brief background on RL is presented, along with the model
often used to describe sequential decision problems, in both single-agent and
multiagent cases. The detailed description of the two frameworks we propose
for inter-agent teaching is in Section 4. In Section 5 we discuss some application
examples. Finally, in Section 6 we conclude with remarks on the outcomes of
this study.
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2 Problem Statement and Scope

An inter-agent teaching relationship requires at least two agents, where a
teacher agent communicates information to a learner – presumably with the
intention to accelerate learning (hereafter called instruction). We define an in-
struction as any information communicated by a teacher to a learner with the
intention of accelerating learning that (a) is specialized to the task at hand, (b)
can be interpreted and assimilated by the learner, (c) is made available during
training, and (d) is devised without detailed knowledge of the learner’s inter-
nal representations and parameters (e.g., neural network hyperparameters).
Examples of instructions under this definition are demonstrations [46], action
advice [65], and scalar feedback [29] on the current learner policy. Importantly,
we do not consider here information made available before the training pro-
cess to be an instruction (e.g., a reward shaping [14] or a heuristic function [7]
built and made available before learning), nor do we consider as instruction
any information that requires explicit knowledge and/or access to the inter-
nal models and representations of the learner (e.g., directly copying models
from one robotic body to another, or keeping shared models that are directly
accessed and updated by multiple agents [39]).

Here, we assume that learner agents are indeed learning, but we do not
make the same assumption about teachers, i.e., they may or may not be learn-
ing. We further assume that learners are RL agents, but we allow teachers to
follow any type of learning algorithm and representation, e.g., teachers may
be RL agents, automated agents following a different algorithm, or humans.
Finally, we assume that teachers are competent in the learner’s task, though
they need not be more competent than the learner at all times.

Transfer Learning

Single-Agent Transfer

Value Function Transfer [59] Policy Reuse [16] Multi-task Learning [10]

Agents Teaching Agents

Human Feedback [26] Action Advising [47] LfD [61]

Fig. 1 Depiction of the transfer learning area and the scope of this article. Here, we consider
explicitly the subarea of agents teaching agents (highlighted in blue). The leaf nodes are
representative methods for each transfer learning subarea.

Figure 1 illustrates where the topic considered here fits within the cur-
rent body of literature. We use the following definition of transfer learning
as provided by Silva and Costa [49]. In general, RL algorithms map a knowl-
edge space K to a policy π ∈ Π, where Π is the space of policies that can
be possibly learned by the algorithm [34]. Typically, the knowledge space is
composed of samples of interactions with the environment, i.e., K = Ksamples.
Transfer learning [61] consists of leveraging previous knowledge to improve
learning speed or performance for a (target) task. This knowledge can come
either from a previous (source) task (K = Ksamples ∪ Ksource), or from other
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agents (K = Ksamples ∪ Kagents). Therefore, transfer learning can be divided
into two main subareas [51]: the subarea covered by our article, i.e., agents
teaching agents (ATA)—where knowledge is transferred across agents, and
single-agent transfer (SA)—where knowledge from source tasks is reused by
the same agent. These two subareas can be distinguished by the origin of the
knowledge to be reused, as depicted in Table 1. In ATA, the knowledge is gen-
erated with respect to target task, but it belongs to another agent. In SA, on
the other hand, the learning agent itself generates the knowledge to be reused,
but that knowledge is generated with respect to different tasks than the one
at hand.

Figure 1 provides an organization of example ATA and SA methods. SA
methods include value function transfer [62], policy reuse [17], and multi-task
learning [10]. Learning from feedback [29], action advising [50], and learning
from demonstration (LfD) [64] are ATA methods to be discussed in this article.
For survey articles focused on SA techniques, the reader may refer to the work
of Taylor and Stone [61] and Lazaric [34]. Silva and Costa [49] provide a broader
survey of both SA and ATA in multiagent tasks, while here we dive deeper into
ATA methods and propose general inter-agent teaching frameworks. Argall et
al. [3] provide a survey focused on learning from demonstration, while we
provide a more general view on ATA methods and discuss problems that have
been relaxed or neglected by the current literature.

Table 1 Diagram categorizing single-agent transfer (SA) and agents teaching agents (ATA)
according to the origin of the knowledge to be reused. In SA, the knowledge was generated
in a different source task by the specific agent that plans to reuse that knowledge. In ATA,
the knowledge to be reused was generated in the context of the learner’s task, but it was
generated by a different agent. If the knowledge was generated by a different agent for
a completely unrelated task, there is no reason to reuse it (lower right). If the own agent
generates the knowledge specialized for the target task, it corresponds to the typical learning
paradigm (upper left).

Same Agent
Y N

Same
Task

Y Standard RL ATA
N SA Not useful

The practical distinctions between SA and ATA that arise due to differ-
ences in knowledge source are made more clear in Table 2. ATA methods
require some sort of interface to communicate knowledge from one agent to an-
other since low-level details about the learner are not available to the teacher.
However, since the learner has explicit knowledge of its own internal models,
such an interface is not necessary for SA techniques. Further, ATA techniques
employ instructions that are specialized to and generated for the learner’s cur-
rent task, while SA methods reuse knowledge gathered in while performing a
different task.

As a further example of the differences between SA and ATA, consider a line
of general-purpose robots that can be trained to perform various tasks. Many
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Table 2 Visual representation of the distinctions between single-agent transfer (SA) and
agents teaching agents (ATA). SA methods do not require any interface to transfer knowl-
edge because that knowledge is both acquired a reused by the same agent. ATA techniques,
on the other hand, requires an interface to transfer knowledge from one agent to another,
i.e., a communication channel (left column). In SA, the agent has explicit knowledge of its
own internal representations and models. However, in ATA, the agents involved in knowledge
reuse do not have this detailed knowledge of one another (center column). Finally, while the
knowledge to be reused for SA is usually generated in the course of addressing a different
task and therefore must be adapted to a new one, the knowledge that is used in ATA is
specialized to the learner’s target task but generated by a different agent (right column).

Interfacing required Internal knowledge Specialized to task
SA × X ×
ATA X × X

tasks will require the robots to be able to execute a set of common behaviors,
such as manipulating objects and navigating the environment. Once one of
these common behaviors has been learned in the context of one task, it should
be the case that it can be reused in order to learn new tasks faster. Similarly,
one might imagine copying the memory of one robot to the memory of a new
robot that is expected to perform similar tasks such that the new robot can
immediately benefit from the knowledge gathered by the first agent. The above
types of knowledge reuse are examples of SA.

Now, consider a slightly different scenario in which we deploy one of these
robots in an environment where a human is willing to spend some time giving
detailed instructions for performing tasks or learning component behaviors.
We may also consider cases where another robot – perhaps built by a differ-
ent manufacturer – is the one available to provide the instruction. In these
scenarios, the learner does not have direct access to the internal models and
parameters of the prospective teachers and vice versa. This lack of knowl-
edge does not necessarily imply that the instructions are useless, but it does
present a new set of challenges to the instruction paradigm, e.g., establishing a
transfer protocol such that the agents can understand one another or utilizing
knowledge transferred from agents that use different sensors and actuators.
These challenges are exactly the ones considered in the study of ATA tech-
niques. Therefore, while both the SA and ATA paradigms share the common
objective of knowledge reuse, methods associated with each have to cope with
different challenges.

Finally, while we here primarily focus on sequential decision making prob-
lems, some of the ideas discussed are applicable to, and have at times been
investigated by, other research areas as well, e.g., active learning [48].

3 Background

Sequential decision making problems are often modeled as Markov decision
processes (MDPs) [42]. An MDP is composed of a tuple 〈S,A, T,R〉, where S
is a set of possible states describing both the agent and the environment, A is a
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set of actions that can be executed by the agent, T : S×A×S → [0, 1] is a state
transition function where the environment transitions to state s′ ∈ S after the
agent applies action a ∈ A in state s ∈ S with probability p(s′|s, a) ∼ T , and
R : S × A × S → R is a reward function that returns scalar-valued feedback
to the agent quantifying the agent’s task performance.

In many learning situations, the functions T and R are unknown to the
agent. In these situations, agents may utilize reinforcement learning (RL) [55]
techniques to learn behaviors through interacting with their environment and
observing samples of those functions. In particular, after observing the current
state s, the agent applies an action a, which leads to a transition to state s′

and a reward r. Samples of 〈s, a, s′, r〉 are the only feedback the agent has to
learn behaviors that achieve good task performance. More formally, the agent
seeks to learn an optimal policy π∗ : S → ∆(A) (where π∗(a|s) denotes the
likelihood of the policy selecting action a while in state s) that dictates, for any
state s ∈ S, the output distribution over actions will lead to maximization of
the expected sum of discounted future rewards. A policy π that approximates
π∗ can be learned from samples using many RL techniques. Broadly speaking,
however, there are two classes of approach. In the first class, the agent attempts
to directly learn a parameterized policy πθ by iteratively updating θ so that
πθ gets as close as possible to π∗ [56]. In the second class of RL approaches,
the agent tries to learn a value function Q : S × A → R that estimates the
expected sum of discounted futures rewards for state-action pairs, and then
uses Q to set the policy by selecting the action with highest value estimate
[67].

MDPs generalize to the multiagent case as stochastic games (SG) [9]. A SG
is a tuple 〈S,U, T,R1, . . . Rn〉, where n denotes the number of agents present
in the environment, S is the state space comprised of the local state of all
agents S = S1× . . .×Sn, and U = A1× . . .×An is the joint action space (each
agent chooses one action from their respective action sets simultaneously at
each step). In SGs, the transition function now depends on the joint state-
action information, i.e., T : S × U × S → [0, 1], and every agent has its
own reward function. Since each agent does not necessarily pursue the same
objective, SGs are typically solved using scenario-specific algorithms [15,26,
33]. That said, these algorithms typically follow the same general idea as those
for single-agent learning, i.e., they either directly approximate the joint policy
or joint value functions.

The main challenge of applying RL in both MDPs and SGs is that—
especially for more classical algorithms—learning even seemingly-simple tasks
can require a large amount of experience (i.e., large sample complexity). For
this reason, the research community has also been investigating ways in which
the RL paradigm can be improved, especially for more complex applications.
One such way is to consider scenarios in which the learner receives instruc-
tions from another, more-experienced agent. In both MDP and SG settings,
humans and/or other artificial agents are sometimes able to provide various
forms of instruction that can help a learning agent build good initial policies,
disambiguate knowledge, and/or reduce the amount of experience required in
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order to learn an acceptable policy [49]. Designing a framework that allows for
agents to instruct one another, i.e., inter-agent teaching, requires dealing with
a number of challenges. For example, one must design appropriate inter-agent
communication protocols, workable interfaces that consider differences in agent
sensors and actuators, and reasonable strategies for translating knowledge if
agents use different internal representations.

The majority of work in the literature related to agents teaching agents
focuses on only a portion of those problems—none has outlined and discussed
completely the modules that must be combined in order to design an efficient
and effective framework. To the best of our knowledge, this is the first article
that provides a comprehensive view of inter-agent teaching methods.

4 Proposed Frameworks

We shall now describe our own perspective on inter-agent teaching algorithms
and implementations. We start by providing high-level descriptions of two
broad categories of ATA techniques: those that are learner-driven, and those
that are teacher-driven. We then detail specific components of each of these
frameworks and discuss possible implementations based on the current body
of literature.

Broadly speaking, we categorize ATA techniques into one of the two frame-
works depicted in Figures 2 and 3, i.e., learner-driven and teacher-driven in-
teractions. Figure 2 depicts the learner-driven framework, in which the learner
is responsible for initiating the interaction between agents. Under this frame-
work, the learning agent must first generate a behavior, i.e., attempt to perform
its task using some initial policy. Then, throughout the course of the learning
process, it is up to the learning agent to decide when and how to define a query
to send to a (potential) teacher. Assuming the query is successfully received,
the teaching agent then evaluates the utility of actually providing instruction
to the learner in the context of the current situation. If the teacher deems the
situation worthy of instruction, the teacher then defines the instruction and
communicates that instruction to the learner. Finally, the learner then updates
its knowledge in response to the instruction, after which it is ready to initiate
another interaction with the teacher and/or resume learning through its own
means.

In contrast to the learner-driven framework for ATA, Figure 3 depicts the
teacher-driven framework, in which the teacher initiates the interaction be-
tween agents. The main difference between this framework and the learner-
driven framework is that, in this configuration, there is no explicit query gen-
erated by the learner. This lack of query means that it is up to the teacher
to decide when the instruction takes place. Although this is a relatively small
change at a high level, at the implementation level, it means that the teacher’s
utility-evaluation module has to cope with new challenges regarding when to
define and communicate instruction.



8 Felipe Leno Da Silva et al.

Learner-Driven Interaction

Learner Teacher

Generate Behavior

Explicit
Evaluate Utility

Define InstructionUpdate Knowledge
Explicit

Define Query

Fig. 2 A graphical depiction of the learner-driven ATA framework. The dashed line sep-
arates the learning agent from the teaching agent, where it is only possible to transmit
information from one agent to another using either implicit or explicit communication, de-
picted using an arrow. Rectangles correspond to inter-agent teaching modules, which are
described in Section 4.1 to 4.5.

Teacher-Driven Interaction

Learner Teacher

Generate Behavior
Implicit

Evaluate Utility

Define InstructionUpdate Knowledge
Explicit

Fig. 3 A graphical depiction of the teacher-driven ATA framework. The dashed line sep-
arates the learning agent from the teaching agent, where it is only possible to transmit
information from one agent to another using either implicit or explicit communication, de-
picted using an arrow. Rectangles correspond to inter-agent teaching modules, which are
described in Sections 4.1 to 4.5.

In the following subsections, we detail each of the component modules de-
fined above, list the main problems each module has to cope with, and discuss
state-of-the-art solutions. Table 3 summarizes the modules to be described.
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Table 3 List of all inter-agent teaching modules and the challenges they have to cope with.
Modules that are exclusively for learner-driven approaches are marked with †, and modules
exclusively for teacher-driven approaches are marked with ‡. When available, references to
representative works addressing each of the challenges are given (or to a survey when many
of them exist).

Behavior Generation (Sec. 4.1) Instruction Definition (Sec. 4.4)

Query Definition (Sec. 4.2)† - Instruction construction [49]
- Query timing [11,28,35,40,50] - Interfacing and translating instruction
- Teacher selection Knowledge Update (Sec. 4.5)
- Query construction - Receiving instruction

Utility Evaluation (Sec. 4.3) - Instruction reliability

- Behavior observation‡ [1,41] - Knowledge merging [49]
- Instruction timing [40,41,50]

4.1 Behavior Generation

Throughout the learning process, the learner must maintain some sort of
method of behavior generation, i.e., a policy. It is in the context of this be-
havior generation that each inter-agent teaching interaction takes place. To
start, before any learning can take place, the learner must first generate an
initial behavior from which it can start exploring.1 Generally, RL agents use a
random policy, though perhaps better initial policies can also be found using
the agents own experiences from similar previous tasks [61] (i.e., SA). Once
the initial policy has been set, the inter-agent interaction can begin, i.e., the
agent can then either generate its query (in the learner-driven paradigm) or
wait for instructions (in the teacher-driven interaction). Once the inter-agent
interaction has taken place and the learner has updated its knowledge and
behavior generator, the inter-agent interaction can begin anew.

4.2 Query Definition

In the context of its current behavior, the agent must define when, to whom,
and how to ask for instruction. Answering each of these questions poses an
interesting research problem, and solutions have been implemented in different
ways depending on the particular assumptions made and applications consid-
ered. This problem is relevant for learner-driven approaches.

– Query timing – When the learner should query the teacher is important
for two main reasons:
1. Communication is a scarce resource in many multiagent appli-

cations: In principle, it is possible to receive instructions at every time
step of the agent’s learning process [58]. In many applications, though,
communication is limited by, e.g., available bandwidth [53] or battery

1 Notice that the initial policy definition might be implicit (e.g., assuming the agent starts
with a random policy), effectively enabling the inter-agent interaction to start immediately
at the beginning of the learning process.
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power (e.g., when the agents are standalone robots or wireless sensors).
In many works, communication scarcity is modeled through a budget
(i.e., maximum amount of inter-agent interactions) [65,69,1,50], impos-
ing a hard threshold on how much agents are able to communicate. In
the case of human teachers in particular, communication is also limited
by human factors such as attention span and perceived tediousness of
instruction due to excessive interaction requests. Therefore, in general,
it is desirable for inter-agent teaching systems to limit the number of
queries to only those that are most needed. One very common proce-
dure adopted by most learning from demonstration methods [3] is to
query for instructions at fixed, predefined time, such as asking for a
fixed demonstrations at the very beginning of the learning procedure
[45,64]. Another option is to query randomly according to a decaying
probability that eventually approaches zero [12]. Those procedures both
restrict the required communication overhead to only that which is in-
curred during a known, short period of time, and allow the agent to
receive instruction from teachers that will not be available in the sys-
tem for a long period of time (e.g., when humans provide instructions
for a certain period of time and then leave the system). However, such
querying procedures are not efficient in the use of instructions, because
the instructions themselves may be sub-optimal, e.g., they may be given
for situations in which the learner already has a good policy [69].
Another possible querying strategy that can reduce communication
overhead is for the learner to estimate its confidence in its own policy,
and to query the teacher only in situations where that confidence is low
[1,50]. Since estimating confidence accurately is sometimes challenging,
the possibility of learning a student policy has also been explored, i.e.
modeling when to ask for instructions as a second task to be learned
simultaneously with the actual task [40,70]. However, adding a second
learning task might slow overall learning, and this approach has only
been shown to work well in simple tasks. Whether this idea can scale
to a broad range of complex domains or not is still an open question.

2. Instructions might hamper the learning process in some situ-
ations: Although teachers are expected to perform well at the learner’s
task, it may happen that the learner has acquired an even better pol-
icy for some situations [69]. Therefore, if the learner were to query the
teacher arbitrarily, an extra burden might be placed on the knowledge
update module (Section 4.5) to identify when the instruction might re-
sult in worse behavior than if it were not given at all. This concern is
especially relevant to situations in which the teachers themselves are
also learning the task [40,50]. Ideally, the learner would be able to esti-
mate portions of its policy that still need improvement [35] and query
for instructions directed toward those portions [11,28].

– Teacher selection – After the learner determines when to query a prospec-
tive teacher, it might have to reason about whom to query. Most inter-agent
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teaching methods assume that the teacher is known and has agreed to pro-
vide instructions. Even in these cases, practical issues might dictate the
teacher is inaccessible for portions of the learning process (e.g., the human
teacher is not available at that time or an automated teacher is too far
away to communicate with through a wireless network). Adaptive teacher-
definition algorithms have not been the subject of extensive research, and
how to automatically identify, engage with, and estimate the trustworthi-
ness of a new teacher is an open area of research. When multiple agents
could assume the role of the teacher [69], a proper teacher selection strategy
becomes even more important. However, most existing literature assumes
that all possible teachers can always be reached, which is not true for all
applications [50,69]. Taylor et al. [59] use the concept of a neighborhood,
where agents in close physical proximity are able to communicate to each
other. However, the neighborhood is both manually defined and static—
how to adaptively include or remove agents from neighborhoods is still an
open problem.

– Query construction – After the questions of when to query and whom to
query have been answered, the task of constructing the query may have to
be considered. Again, this is itself a challenging research problem, involving
both adhering to a given query protocol, and deciding what information
should be transmitted as part of the query. Most existing work implic-
itly assumes that the protocols for querying and receiving instructions are
predefined and known by all agents, which may not be a valid assump-
tion in many real-world applications [49,51]. Kono et al. [31] proposed the
construction of a web ontology to translate particularities of each robot
(e.g., low-level detail pertaining to sensors and actuators) into a common,
abstract description that could be understood by any agent with access
to the ontology. A similar idea could be applied for ATA query protocol
definition, though the task of manually building and maintaining such an
ontology would be challenging. Learning an inter-agent query construction
protocol may also be possible. The literature has only recently started ex-
ploring how agents can learn to communicate between themselves [19,23,
54], and these techniques could be adapted to specific ATA query construc-
tion protocols. Another area to be explored is the use of natural language
for such communication, facilitating communication mainly when there is
interaction of automated agents with humans.
Given the protocol, the second task of query construction is to define what
to transmit in the query. If the teacher is able to deduce all the information
it needs to give the instruction directly from observation of the learning
agent, then the query might simply be a message that, under the commu-
nication protocol, corresponds to an instruction request. Alternatively, the
learner can communicate additional information to help the teacher [35],
such as its current observations [50], its intended action for the current
state [60], its uncertainty in the current state [35], or more complex infor-
mation. For example, In Cui and Niekum’s work [13], the agent transfers
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a trajectory of actions to the teacher, and the teacher indicates which of
the chosen actions were bad.

4.3 Utility Evaluation

Under both the teacher-driven and learner-driven frameworks, an important
component of the interaction is the strategy that the teacher uses to decide
whether or not instructions should be provided to the learner, i.e., utility evalu-
ation. We outline here two fundamental concerns in utility evaluation: behavior
observation and instruction timing.

– Behavior observation – For teacher-driven approaches, deciding when
to observe the learner’s behavior is of utmost importance. While many
methods assume that the teacher will observe the learner during the entire
training process [41,60,65], constant observation is impractical in many
situations. When teachers are artificial agents, the communication costs
of making observations at every step might be prohibitive (e.g., excessive
power needed to operate visual sensors). When teachers are humans, con-
stant observation would require long periods of availability and alertness.
In addition to having limited attention spans [1], humans might also tire
of observing the learner, and the resulting lack of engagement can lead
to low-quality instruction [35]. One straightforward way to address some
of these problems is to do away with learner observation altogether (e.g.,
provide a preset number of instructions at the beginning of learning [3]).
However, adopting this strategy means that the teacher is not able to give
instructions tailored to the learner.

– Instruction timing – For both teacher-driven and learner-driven ap-
proaches, a second fundamental concern in utility evaluation deciding when
to send the instruction. However, it is not easy to decide when and what
kind of instruction might be useful to the learner. One possible solution
is to endow the learner with the ability to modify its behavior to indicate
when instructions are most needed, e.g., slowing down its actuation when
the confidence in its policy is low [41]. Another issue that is important to
consider is reaction time, i.e., the amount of time it takes for the teacher
to process the observation and provide instruction. This is especially im-
portant in situations where the teacher is a human [25,29,37].

4.4 Instruction Definition

After determining that the current state is appropriate for giving an instruc-
tion, the question now is how to define and represent the instruction to be
transferred. This is especially challenging if agents have different or unknown
representations, or different sensors and actuators, requiring some kind of in-
terface or translation to enable communicating the instruction successfully.
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– Instruction construction – Several types of instruction have been stud-
ied in the literature. Humans can provide action advice to automated learn-
ers, where the teacher suggests actions that the learner should take. One
form of action advice is communicated through rules that prescribe, in
particular scenarios, that either particular actions should be taken or that
certain actions should be preferred over others [38]. While this form of
instruction has proven successful for some domains and behaviors, deter-
mining precisely which rules will lead to the desired behavior can prove
challenging for a human teacher. A more flexible form of instruction that
could be interpreted as dense action advice is that of demonstration [3].
Using this paradigm, teachers typically provide instruction by attempting
to teleoperate the learner [44], applying external forces to the learner so
as to generate a kinesthetic demonstration [24], or by simply performing
an instructive behavior for the learner to observe [47]. While instructing
learners through demonstration has been successful for many tasks, it may
sometimes prove difficult or impossible for the teacher to provide a demon-
stration of the task. Moreover, in cases where the teacher performs the
instructive behavior for the learner to observe, it can be difficult for the
agent to overcome factors such as embodiment mismatch and lack of com-
plete observability [22]. Human teachers can also provide instruction to the
learner through natural language [32]. Providing language instructions is
far less burdensome to the teacher, but comes with the requirement that the
learner be able to map the language to portions of its state and action space,
and the ability to do so can come with significant training time. Providing
preferences [68] as instructions is also possible and is inter-operable with
preference-based RL algorithms. Finally, there has recently been interest in
the research community on allowing human teachers to communicate with
automated learners using feedback [29,37,66], i.e., scalar values or prefer-
ences communicated to the agent. This paradigm is the least burdensome
of those discussed here, requiring only that the teacher observe learner
behavior and provide a numerical score or an ordering of that behavior.
For situations in which the teacher is also an automated agent, the most
commonly applied instruction type is action advice [16,40,50,60,65]. In
principle, any kind of instruction given by humans would also be appli-
cable to be used between automated agents. However, if the agents have
a common understanding of the actions and access to state observation,
communicating actions is easier and more flexible than trying to translate
the internal models of an agent to other types of human-like feedback.
Importantly, there has been relatively little work that has studied simul-
taneously using multiple instruction types [49]. Given the strengths and
weaknesses of the instruction styles discussed above, studying paradigms
that allow teachers to utilize combinations of instruction types could pro-
vide a way to mitigate individual weaknesses and amplify the amount of
instructive signal that the learner can ultimately use to refine its behavior.
The impact of the learner actuation on the instruction to be later provided
is an important yet little studied aspect of this module. Although the
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learner’s policy does not normally affect instruction construction in inter-
agent relations between automated agents, humans might (consciously or
not) adapt their instructions to the observed behavior, and some work has
indeed shown it to be an advantage to explicitly model human feedback
as dependent upon the agent’s current behavior [37]. Further investiga-
tions could explore how to adapt instructions to correct undesired behav-
iors, possibly placing importance on the Behavior observation challenge for
learner-driven approaches as well.

– Interfacing and translating instruction – The interface by which the
teacher communicates its instructions is also an important factor to con-
sider in all teaching frameworks. Such interfaces consist of two critical com-
ponents: (a) the way in which observations of the learner are presented to
the teacher, and (b) the way in which instructions are presented to the
learner.
In most cases, provided that the agents have previously agreed on a commu-
nication protocol, the interface needed for instruction between automated
agents is a communication channel. Then, the teacher might be able to
directly observe the learner’s state through its own sensors or, if this is not
possible, the learner transfers its observations through the communication
channel.
Considering human teachers, observations of the learner are of course lim-
ited to the typical sensing capabilities of a human – there is as of yet no
truly direct way in which an automated agent can communicate low-level
state information to a human. In the case of physical automated agents
(e.g., robots), a human teacher may view the agent as they would any-
thing else in the world and is forced to infer the learner’s state information
from this experience. In the case of virtual automated agents, the virtual
learner’s state is typically communicated via visualization on a computer
monitor. For example, video-game playing agents often present a human
teacher with the same game visualization that humans would use to play
the game themselves [6], and physics-based simulators present the teacher
with video renderings of the environment from a particular vantage point
[63]. The interfaces by which human teachers communicate instruction to
learners are also varied. Rule-based instruction can be provided to the agent
by a computer programming interface. Instruction that comes in the form of
demonstration is typically communicated by joystick or keyboard, though,
in the case of kinesthetic demonstration, it can also be communicated by
physically interacting with the learner. Natural-language instruction can be
communicated from the human to the learner through a microphone (for
spoken language) or keyboard (for written language). Feedback instruc-
tions are typically communicated through button presses, i.e., the human
teacher presses one button to communicate that the learner’s current be-
havior is “good”, and another to communicate that the teacher thinks the
learner’s behavior is “bad”, though there has recently been work that has
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inferred feedback values by analyzing a video stream of the human’s facial
expression and trying to estimate emotional state [2].
While various interfaces have been used in the teacher-learner paradigm,
understanding the impact of interface design choices on the learning process
itself is an open problem. In the context of human teachers in particular,
poor interface choices have the potential to drastically reduce the quality
of instruction – if the human teacher cannot infer the relevant learner state
information, it may be impossible to know what instruction is appropriate.
With respect to robotic learners in particular, there recently has been work
on providing visualization of hidden internal state information through
means such as novel light displays [18,57] and augmented reality [43], but,
unfortunately, none of these visualization techniques has yet been studied
in the context of the inter-agent teaching.

4.5 Knowledge Update

Finally, after the teacher issues an instruction, the learner is faced with the
problem of updating its own knowledge using the information contained in
that instruction. Major components of this problem for both learner-driven
and teacher-driven approaches include receiving the instruction, determining
the reliability of the instruction, and merging the instruction with the learner’s
existing knowledge.

– Receiving instruction – The first step in the knowledge update process
is for the learner to successfully receive the instruction. Most of the ATA
literature assumes that all teachers will answer when queried, and also
that all instructions will be correctly received by the learner. In practical
applications, however, the query or the instruction might be corrupted
or lost due to, e.g., a faulty communication channel. No method in the
literature explicitly considers this problem, and doing so is a promising
research opportunity.

– Instruction reliability – After successfully receiving the instruction, the
learner should decide whether or not it is reliable. As with receiving in-
struction, most of the existing ATA literature simply assumes that all in-
structions are reliable, and proceeds immediately to the knowledge merging
step. However, estimating the reliability of an instruction is of utmost im-
portance in applications where teachers can be compromised, hacked, or
might have malicious intentions. Even when we can assume that all teach-
ers are benevolent, teachers might have a worse policy than the learner
in some situations, and therefore give bad instructions that should be dis-
carded. One possible solution is to place the burden on the design of a
reliable confidence function [1,50], which could allow agents to compare
expected performance. Other than this, to the best of our knowledge, no
other efficient solutions to this problem exist, and how to perform instruc-
tion reliability determination effectively is still an open problem. Possible
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solutions could be the development of a trust framework that would allow
learners to estimate the quality of instruction, or requiring instructions to
also come with explanations that the learner could examine for validity.

– Knowledge merging – The final step in the knowledge update compo-
nent is for the learner to merge the received instruction with its current
knowledge. This step is highly dependent on which kind of information was
made available in the instruction (Section 4.4), and it can range from per-
forming exploration according to what was suggested in the instruction [1,
50,60,65], to performing more classical knowledge update operations using
samples gathered according to the instruction, to learning entirely different
models using scalar feedback given as instructions [29].

5 Application Examples

Inter-agent teaching methods can potentially be applied to any RL domain
and have successfully been used to solve complex tasks such as video game
playing [60], robotics [11], and smart grid scenarios [59]. However, real-world
domains that have at least one of the following characteristics are most likely
to directly benefit from the techniques discussed in this article:

1. Exploring the environment is dangerous or expensive enough to make it
worthwhile to use a human instructor;

2. Learning the task alone is difficult due to the size of the state space and/or
reward sparsity;

3. The task itself is a multiagent problem in which the configuration of agents
might possibly change over time (or new agents might appear during learn-
ing) and internal details of other agents are not available;

4. Access to good baseline behavior is readily available from handcrafted
strategies or any other learning algorithms.

Robotics applications are the most present real-world application in the
inter-agent teaching literature [30], primarily because they exhibit a combi-
nation of characteristics 1 and 2. Robotic equipment is expensive and fragile,
hence it might be too dangerous to learn directly from exploration even in
controlled environments. Furthermore, usually the agent states are derived
from continuous state features, which makes the efficient exploration of the
state space very challenging. As robots start to become more integrated in our
daily lives, characteristic 3 will apply as well – robots from different manufac-
turers will be potentially sharing the same environment, and they could give
instructions to one other.

The ad hoc teamwork research area [52] focuses specifically on domains that
have characteristic 3. For this reason, domains from this area are also promis-
ing application areas for inter-agent teaching. Robot soccer is one prominent
domain that has been consistently explored by ad hoc teamwork methods [4].

Finally, domains that have been historically approached with fixed, hand-
coded policies and for which learning agents are starting to be employed are
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likely to benefit from inter-agent teaching methods because of characteristic
4. For example, hand-coded or rule-based medical treatment policies [27] have
been widely applied. In these domains, RL agents cannot perform random
exploration because each action corresponds to an effect – perhaps one that is
unsafe – on patient health. However, learning agents in these domains could
benefit from interaction with hand-coded or older systems that are known
to have a reasonably safe policy. Moreover, improving upon those policies
might help to alleviate some of the challenges that are currently hampering
the adoption of RL to this domain, such as the possible mismatch between
actions proposed by the RL algorithm and the actually performed procedure
when learning from historical data [20,21].

6 Conclusion

Inter-agent teaching methods have played an important role in trying to aug-
ment RL methods to increase task learning speed. However, existing literature
presents solutions for only some of the many challenges involved in designing
these inter-agent methods. In this article, we have provided a comprehensive
view of these challenges, and also outlined two broad categories in which to
organize them, i.e., learner-driven and teacher-driven methods. We have also
discussed the state-of-the-art options available to implement various modules
required in these frameworks, and we have highlighted open research questions
and promising application domains. We argue that inter-agent teaching meth-
ods should be designed with the global view we have provided in mind, and
we hope that our contributions will help to bridge the gap between the cur-
rent state-of-the-art inter-agent teaching methods and real-world applications
where RL agents have not yet been applied.
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