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Abstract
Temporal difference (TD) learning (Sutton and Barto, 1998) has become a popular reinforcement
learning technique in recent years. TD methods, relying on function approximators to generalize
learning to novel situations, have had some experimental successes and have been shown to exhibit
some desirable properties in theory, but the most basic algorithms have often been found slow in
practice. This empirical result has motivated the development of many methods that speed up re-
inforcement learning by modifying a task for the learner or helping the learner better generalize to
novel situations. This article focuses on generalizing across tasks, thereby speeding up learning,
via a novel form of transfer using handcoded task relationships. We compare learning on a com-
plex task with three function approximators, a cerebellar model arithmetic computer (CMAC), an
artificial neural network (ANN), and a radial basis function (RBF), and empirically demonstrate
that directly transferring the action-value function can lead to a dramatic speedup in learning with
all three. Using transfer via inter-task mapping (TVITM), agents are able to learn one task and
then markedly reduce the time it takes to learn a more complex task. Our algorithms are fully
implemented and tested in the RoboCup soccer Keepaway domain.

This article contains and extends material published in two conference papers (Taylor and
Stone, 2005; Taylor et al., 2005).

Keywords: transfer learning, reinforcement learning, temporal difference methods, value function
approximation, inter-task mapping

1. Introduction

Machine learning has traditionally been limited to training and testing on the same distribution
of problem instances. However, humans are able to learn to perform well in complex tasks by
utilizing principles learned in previous tasks. Few current machine learning methods are able to
transfer knowledge between pairs of tasks, and none are able to transfer between a broad range of
tasks to the extent that humans are. This article presents a new method for transfer learning in the
reinforcement learning (RL) framework using temporal difference (TD) learning methods (Sutton
and Barto, 1998), whereby an agent can learn faster in a target task after training on a different,
typically less complex, source task.

TD learning methods have shown some success in many reinforcement learning tasks because of
their ability to learn where there is limited prior knowledge and minimal environmental feedback.
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However, the basic unenhanced TD algorithms, such as Q-Learning (Watkins, 1989) and Sarsa
(Rummery and Niranjan, 1994; Singh and Sutton, 1996), have been found slow to produce near-
optimal behaviors in practice. Many techniques exist (Selfridge et al., 1985; Colombetti and Dorigo,
1993; Asada et al., 1994) which attempt, with more or less success, to speed up the learning process.
Section 9 will discuss in depth how our transfer learning method differs from other existing methods
and can potentially be combined with them if desired.

In this article we introduce transfer via inter-task mapping (TVITM), whereby a TD learner
trained on one task with action-value function RL can learn faster when training on another task with
related, but different, state and action spaces. TVITM thus enables faster TD learning in situations
where there are two or more similar tasks. This transfer formulation is analogous to a human
being told how a novel task is related to a known task, and then using this relation to decide how
to perform the novel task. The key technical challenge is mapping an action-value function—the
expected return or value of taking a particular action in a particular state—in one representation
to a meaningful action-value function in another, typically larger, representation. It is this transfer
functional which defines transfer in the TVITM framework.

In stochastic domains with continuous state spaces, agents will rarely (if ever) visit the same
state twice. It is therefore necessary for learning agents to use function approximation when esti-
mating the action-value function. Without some form of approximation, an agent would only be able
to predict a value for states that it had previously visited. In this work we are primarily concerned
with a different kind of generalization. Instead of finding similarities between different states, we
focus on exploiting similarities between different tasks.

The primary contribution of this article is an existence proof that there are domains in which it
is possible to construct a mapping between tasks and thereby speed up learning by transferring an
action-value function. This approach may seem counterintuitive initially: the action-value function
is the learned information which is directly tied to the particular task it was learned in. Neverthe-
less, we will demonstrate the efficacy of using TVITM to speed up learning in agents across tasks,
irrespective of the representation used by the function approximator. Three different function ap-
proximators (as defined in Section 4.3), a CMAC, an ANN, and an RBF, are used to learn a single
reinforcement learning problem. We will compare their effectiveness and demonstrate why TVITM

is promising for future transfer studies.
The remainder of this article is organized as follows. Section 2 formally defines TVITM. Sec-

tion 3 gives an overview of the tasks over which we quantitatively test our transfer method. Section 4
gives details of learning in our primary domain, robot soccer Keepaway. Section 5 describes how
we perform transfer in our selected tasks. Sections 6 and 7 present the results of our experiments.
Section 8 discusses some of their implications and future work. Section 9 details other related work
while contrasting our methods and Section 10 concludes.

2. Transfer via Inter-Task Mapping

TVITM is defined for value function reinforcement learners. Thus, to formally define how to use our
transfer method we first briefly review the general reinforcement learning framework that conforms
to the generally accepted notation for Markov decision processes (MDP) (Puterman, 1994).

In an MDP, there is some set of possible perceptions of the current state of the world, S, and a
learner has an initial starting state, sinitial . An agent’s knowledge of the current state of its environ-
ment from observation, s ∈ S is a vector of k state variables, so that s = 〈x1,x2, . . . ,xk〉. There is a
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Figure 1: ρ is a functional that transforms a state-action function Q from one task so that it is
applicable in a second task with different state and action spaces.

set of actions, A, which the agent can perform. The reward function, R : S 7→ R, maps each state
of the environment to a single number which is the instantaneous reward achieved for reaching the
state. The transition function, T : S×A 7→ S, takes a state and an action and returns the state of the
environment after the action is performed. If transitions are non-deterministic the transition function
is a probability distribution function. A learner is able to sense the current state, s, and typically
knows A and what state variables comprise S. However, it does not know R, how it is rewarded for
moving between states, or T , how actions move the agent between states.

A learner chooses which action to take in a given perceived environmental state by using a
policy, π : S 7→ A. π is modified by the learner over time to improve performance, the expected
total reward accumulated, and it completely defines the behavior of the learner in an environment.
In the general case the policy can be stochastic. The success of an agent is determined by how
well it maximizes the total reward it receives in the long run while acting under some policy π. An
optimal policy, π∗, is a policy that maximizes the expectation of this value. Any reasonable learning
algorithm attempts to modify π over time so that the agent’s performance approaches that of π∗ in
the limit. Value function reinforcement learning relies on learning a value function V : S 7→R so that
the learner is able to estimate the total discounted reward that would be accumulated from moving to
state s and then following the current policy π. In practice, the action-value function Q : S×A 7→ R

is often learned, which frees the learner from having to explicitly model the transition function.
If the action-value function is optimal (i.e., Q = Q∗), π∗ can be followed by always selecting the
optimal action a, which is the action with the largest value of Q(s,a) in the current state.

In this article we consider the general case where the state features in the source and target
tasks are different (Ssource 6= Starget), and/or the actions in the source and target tasks are different
(Asource 6= Atarget). To use the learned action-value function from the source task Q(source, f inal) as the
initial action-value function for a TD learner in a target task, we must transform the action-value
function so that it can be directly applied to the new state and action space. This transformed action-
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value function may not provide immediate improvement over acting randomly in the target task, but
it should bias the learner so that it is able to learn the target task faster than if it were learning
without transfer.

A transfer functional ρ(Q) will allow us to apply a policy in a new task (see Figure 1). The
policy transform functional ρ needs to modify the action-value function so that it accepts Starget as
inputs and allows for Atarget to be outputs. A policy generally selects the action which is believed
to accumulate the largest expected total reward; the problem of transforming a policy between two
tasks therefore reduces to transforming the action-value function. Defining ρ to do this correctly is
the key technical challenge to enable general TVITM.

2.1 Constructing a Transfer Functional

Given an arbitrary pair of unknown tasks and no experience in the pair of tasks, one could not hope
to correctly define ρ, the transfer functional (for example, there are certainly pairs of tasks which
have no relationship and thus mastery in one task would not lead to improved performance in the
other). For our transfer method to succeed, not only must the two tasks be related, but we should
be able to characterize how they are related. We represent these relations as a pair of inter-task
mappings, denoted χX and χA . State variables in the target task are mapped via χX to the most
similar state variable in the source task:

χX (xi,target) = x j,source.

Similarly, χA maps each action in the target task to the most similar action in the source tasks:

χA(ai,target) = a j,source.

χX and χA , mappings from the target task to the source task, are used to construct ρ, a transfer
functional from the source task to the target task (see Figure 2). Note that χX and χA are defined only
once for a pair of tasks, while multiple ρs (one for each type of function approximator employed by
our learning agents), are constructed from this single pair of inter-task mappings. In this article we
take χX and χA as given; learning them autonomously is an important goal of future work.

TargetSource

Q’

S’S

Q

A A’
ρ

χ

χ

A

X

Figure 2: χX and χA are mappings from a target to a source task; ρ maps an action-value function
from a source to a target task.

Thus, given χX , χA , and a learned action-value function Qsource, we can create an initial action-
value function Qtarget . The details of ρ depend on the particular function approximators used in the
source and target task. In Sections 5.3 and 5.4 we construct three different ρ functionals from χX

and χA for the RoboCup Soccer Keepaway domain.
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It may seem counterintuitive that low-level action-value function information is able to speed
up learning across different tasks. Often transfer techniques attempt to abstract knowledge so that
it is applicable to more general tasks. For instance, an agent could be trained to balance a pole on
a cart and then be asked to balance a pair of poles on a cart. An example of abstract knowledge
in this domain would be things like “avoid hitting the end of the track,” “it is better to have the
pole near vertical,” etc. Instead of trying to transfer higher level information about a source task
into a target task, we instead focus on information contained in individual weights within function
approximators. In this example, such weights which would contain specific information such as
how fast to move the cart to the left when a pole was at a particular angle. Weights that encode
this type of low level knowledge are the most task-specific part of the learner’s knowledge, but it
is exactly these domain-dependant details that allow us to achieve significant speedups on similar
tasks.

2.2 Evaluation of Transfer

There are many possible ways to measure the effectiveness of transfer, including:

1. Asymptotic Performance: Measure the performance after convergence in the target task.

2. Initial Performance: Measure the initial performance in the target task.

3. Total Reward: Measure the total accumulated reward during training in the target task.

4. Area Ratio: Measure the area between the transfer and non-transfer learning curves.

5. Time-to-Threshold: Measure the time needed to reach a performance threshold in the target
task.

This section discusses these five different testing criteria and argues that the time-to-threshold metric
is most appropriate for evaluating TVITM in our experimental domain.

One could examine the asymptotic performance of a learned policy. Such a metric would com-
pare the average reward achieved after learning both with and without transfer. Leveraging source
task knowledge may allow a learner to reach a higher asymptote, but it may be difficult to tell
when the learner has converged, and convergence may take prohibitively long. Additionally, in
applications of reinforcement learning we are often interested in the time required, not simply the
performance of a learner with infinite time. Lastly, it is not uncommon for different learners to con-
verge to the same asymptotic performance on a given task, making them indistinguishable in terms
of the asymptotic performance metric.

A second measure of transfer is to look at the initial performance in a target task. Learned
source task knowledge may be able to improve initial target task performance relative to learning
the target task without transfer. While such an initial performance boost is appealing, we argue
in Section 6 that this goal may often be infeasible to achieve in practice. Further, because we are
primarily interested in the learning process of agents in pairs of tasks, it makes sense to concentrate
on the rate of learning in the target task.

A third possible measure is that of the total reward accumulated during training. By measuring
the total reward over some amount of training, we are able to quantify how much reward the agent
accumulates in a certain amount of time. Transfer may allow an agent to accumulate more reward in
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the target task when compared to the non-transfer case; better initial performance and faster learn-
ing would help agents achieve more on-line reward. TD methods are not guaranteed to converge
with function approximation and even when they do, learners do not always converge to the same
performance levels. If the time considered is long enough, a learning method which achieves very
fast learning will “lose” to a learning method which learns very slowly but eventually plateaus at a
slightly higher performance level. Thus this metric is most appropriate for tasks that have a defined
time limit for learning. However, it is more common to think of learning until some performance is
reached (if ever), rather than specifying the amount of time, computational complexity, or sample
complexity a priori.

A fourth measure of transfer efficacy is that of the ratio of the areas defined by two learning
curves. Consider two learning curves: one that uses transfer, and one that does not. Assuming that
the transfer learner is able to learn faster or reach a higher performance, the area under the transfer
curve will be greater than the area under the non-transfer curve. The ratio

r =
area under curve with transfer - area under curve without transfer

area under curve without transfer

gives us a metric for how much transfer improves learning. This metric is most appropriate if the
same eventual performance is achieved, or there is a predetermined time for the task. Otherwise
the ratio will directly depend on the length of time considered for the two curves. In the tasks we
consider, the learners that use transfer and the learners that learn without transfer do not always
plateau to the same performance, nor is there a defined task length.
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Figure 3: In this article we evaluate transfer by both considering the training time in the target task
(left) and by considering the total time spent training in both tasks (right).

For these reasons we use the time-to-threshold metric. After preliminary experiments are con-
ducted, thresholds for analysis are chosen such that all trials must learn for some amount of time
before reaching the performance threshold, and most trials are able to eventually reach the thresh-
old. We will show in Section 6 that given a Q(source, f inal), the training time for the learner in the
target task to reach some performance threshold decreases when initializing Q(target,initial) with
ρ(Q(source, f inal)). This criterion is relevant when the source task is given and is of interest in its
own right or if Q(source, f inal) can be used repeatedly to speed up multiple related tasks (see Figure 3).
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A stronger measure of success that we will also use is that the training time for both tasks using
TVITM is shorter than the training time to learn just the target task without transfer. This criterion is
relevant when the source task is created for the sole purpose of speeding up learning with transfer
and Q(source, f inal) is not reused.

3. Testbed Domains

This section introduces the Keepaway task, the testbed domain where we empirically evaluate our
transfer method, and use as a running example throughout the rest of the article. We also introduce
the Knight Joust, a task which we will later use as a supplemental source task from which to transfer
into Keepaway.

3.1 The Keepaway Task

RoboCup simulated soccer is well understood, as it has been the basis of multiple international
competitions and research challenges. The multiagent domain incorporates noisy sensors and actu-
ators, as well as enforcing a hidden state so that agents only have a partial world view at any given
time. While previous work has attempted to use machine learning to learn the full simulated soccer
problem (Andre and Teller, 1999; Riedmiller et al., 2001), the complexity and size of the problem
have so far proven intractable. However, many of the RoboCup subproblems have been isolated and
solved using machine learning techniques, including the task of playing Keepaway. By focusing
on the smaller task of Keepaway we are able to use reinforcement learning to learn an action-value
function for a more complex task, establish that TVITM provides considerable benefit, and hold the
required computational resources to manageable levels.

Since late 2002, the Keepaway task has been part of the official release of the open source
RoboCup Soccer Server used at RoboCup (starting with version 9.1.0). Agents in the simulator
(Noda et al., 1998) receive visual perceptions every 150 msec indicating the relative distance and
angle to visible objects in the world, such as the ball and other agents. They may execute a primitive,
parameterized action such as turn(angle), dash(power), or kick(power,angle) every 100 msec.
Thus the agents must sense and act asynchronously. Random noise is injected into all sensations
and actions. Individual agents must be controlled by separate processes, with no inter-agent com-
munication permitted other than via the simulator itself, which enforces communication bandwidth
and range constraints. Full details of the simulator are presented in the server manual (Chen et al.,
2003).

When started in a special mode, the simulator enforces the rules of the Keepaway task, as
described below, instead of the rules of full soccer. In particular, the simulator places the players at
their initial positions at the start of each episode and ends an episode when the ball leaves the play
region or is taken away. In this mode, the simulator also informs the players when an episode has
ended and produces a log file with the duration of each episode.

Keepaway is a subproblem of RoboCup simulated soccer in which one team—the keepers—
attempts to maintain possession of the ball within a limited region while another team—the takers—
attempts to steal the ball or force it out of bounds, ending an episode. Whenever the takers take
possession or the ball leaves the region, the episode ends and the players are reset for another
episode (with the keepers being given possession of the ball again). Standard parameters of the task
include the size of the region, the number of keepers, and the number of takers. Other parameters
such as player speed, player kick speed, player vision capabilities, sensor noise, and actuator noise,
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are all adjustable. This paper will use standard settings with the exception of a set of experiments
in Section 7.1 that uses different kick speed actuators. Figure 4 shows a diagram of 3 keepers and 2
takers (3 vs. 2).1

b. dist(K1,K2)
c. dist(K1,K3)
d. dist(K1,T1)
e. dist(K1,T2)
f. dist(K2,C)
g. dist(K2.T1)
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i. dist(K3,C)
j. dist(K3,T1)
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Figure 4: This diagram depicts the distances and angles used to construct the 13 state variables used
for learning with 3 keepers and 2 takers. Relevant objects are the 5 players and the center
of the field, C. All 13 state variables are enumerated later in Table 1.

When Keepaway was introduced as a testbed (Stone and Sutton, 2002), a standard task was
defined. All our experiments are run on a code base derived from version 0.6 of the benchmark
Keepaway implementation2 (Stone et al., 2006) and the RoboCup Soccer Server version 9.4.5.

Our setup is similar to past research in Keepaway (Stone et al., 2005), which showed that Sarsa
with CMAC function approximation can learn well in this domain. On a 25m× 25m field, three
keepers are initially placed near three corners of the field and a ball is placed near one of the keepers.
The two takers are placed in the fourth corner. When the episode starts, the three keepers attempt
to keep control of the ball by passing among themselves and moving to open positions. The keeper
with the ball has the option to either pass the ball to one of its two teammates or to hold the ball.
In this task A = {hold, pass to closest teammate, pass to second closest teammate}. S is defined by
13 state variables, as shown in Figure 4. When a taker gains control of the ball or the ball is kicked
out of the field’s bounds the episode is finished. The reward to the learning algorithm is the number
of time steps the ball remains in play after an action is taken. After an episode ends, the next starts
with a random keeper placed near the ball.

3.2 Knight Joust

Knight Joust is a variation on a previously introduced task (Taylor and Stone, 2007) situated in the
grid world domain. In this task the player begins on one end of a 25m× 25m board, the opponent
begins on the other, and the players alternate moves. The player’s goal is to reach the opposite

1. Flash files illustrating the task are available at http://www.cs.utexas.edu/˜AustinVilla/sim/Keepaway/.
2. Released players are available at http://www.cs.utexas.edu/˜AustinVilla/sim/Keepaway/.
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Figure 5: Knight Joust: The player attempts to reach the goal end of a a 25 × 25 grid-world while
the opponent attempts to touch the player.

end of the board without being touched by the opponent (see Figure 5); the episode ends if the
player reaches the goal line or the opponent is on the same square as the player. The state space
is discretized into 1m squares and there is no noise in the perception. The player’s state variables
are composed of the distance from the player to the opponent, and two angles which describe how
much of the goal line is viewable by the player.

The player may deterministically move one square North or perform a knight’s jump where the
player moves one square North and two West or two East: A = {Forward, JumpW , JumpE}. The
opponent follows a fixed stochastic policy which allows it to move in any of the 8 directions. Given
the start state and size of the board, an opponent that acted optimally would always prevent the
player from reaching the goal line. In order to allow the player to reach the goal line with a learned
policy, we restrict the opponent’s motion so that 10% of the time, when it attempts to move East or
West, it fails. 20% of the time, when it attempts to move North, it fails (the opponent never fails
when it attempts to move South). These movement failure probabilities were selected after initial
experiments showed that this opponent policy generally prevented the player from reaching the goal
before training but allowed the player to reach the goal line with a high probability after learning
with Sarsa. The opponent’s policy is as follows:
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if opponent is E of player then
Move W with probability 0.9

else if opponent is W of player then
Move E with probability 0.9

if opponent is N of player then
Move S with probability 1.0

else if opponent is S of player then
Move N with probability 0.8

The player receives a reward of +20 every time it takes the forward action, 0 if either knight
jump action is taken, and an additional +20 upon reaching the goal line. The player uses Sarsa with
a Q-value table to learn in this task. While this task is quite different from Keepaway, there are some
similarities, such as favoring larger distances between player and opponent. This domain is much
simpler than Keepaway and an agent takes roughly 20 seconds of wall-clock time (roughly 50,000
episodes) to plateau in our Java-based simulation.

4. Learning Keepaway

TVITM aims to improve learning in the target task based on prior learning in the source, and therefore
a prerequisite is that both source and target tasks are learnable. In this section we outline how tasks
in the Keepaway domain are learned using Sarsa.

4.1 Sarsa

Sarsa is a TD method that learns to estimate the action-value function by backing up the received
rewards through time. Sarsa is an acronym for State Action Reward State Action, describing the
5-tuple needed to perform the update: (st ,at ,r,st+1,at+1), where st , at are the the agent’s current
state and action, r is the immediate reward the agent receives from the environment, and st+1, at+1

are the agent’s subsequent state and chosen action. After each action, action values are updated
according to the following rule:

Q(st ,at)← (1−α)Q(st ,at)+α(r +Q(st+1,at+1)) (1)

where α is the learning rate. Note that if the task is non-episodic we need to include an extra
discount factor to weigh immediate rewards more heavily than future rewards.

Like other TD methods, Sarsa estimates the value of a given state-action pair by bootstrapping
off the estimates of other such pairs. In particular, the value of a given state-action pair (st ,at) can be
estimated as r+Q(st+1,at+1), which is the value of the subsequent state-action pair (st+1,at+1) plus
the immediate reward received during the transition. Sarsa’s update rule takes the old action-value
estimate Q(st ,at), and moves it incrementally closer towards this new estimate. The learning rate
parameter α controls the size of these increments. Ideally, these action-value estimates will become
more accurate over time and the agent’s policy will steadily improve.

4.2 Framing the RL Problem

As described by Stone et al. (2005), the Keepaway problem maps fairly directly onto the discrete-
time, episodic, reinforcement-learning framework. As a way of incorporating domain knowledge,
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the learners choose not from the simulator’s primitive actions but from a set of higher-level macro-
actions implemented as part of the player. These macro-actions can last more than one time step and
the keepers have opportunities to make decisions only when an on-going macro-action terminates.
To handle such situations, it is convenient to treat the problem as a semi-Markov decision process,
or SMDP (Puterman, 1994; Bradtke and Duff, 1995). The agents make decisions at discrete SMDP
time steps (when macro-actions are initiated and terminated).

The keepers learn in a constrained policy space: they have the freedom to decide which action
to take only when in possession of the ball. A keeper in possession may either hold the ball or
pass to one of its teammates. Therefore the number of actions from which the keeper with the ball
may choose is equal to the number of keepers in the task. Keepers not in possession of the ball are
required to execute the Receive macro-action in which the player who can reach the ball the fastest
goes to the ball and the remaining players follow a handcoded strategy to try to get open for a pass.

When training the keepers, the behavior of the takers is “hard-wired” and relatively simple. The
two takers that are closest to the ball go directly toward it. Note that a single keeper can hold the
ball indefinitely from a single taker by constantly keeping its body between the ball and the taker.
The remaining takers, if present, try to block open passing lanes.

The keepers learn which action to take when in possession of the ball by using episodic SMDP
Sarsa(λ) (Sutton and Barto, 1998), to learn their task.3 The episode consists of a sequence of states,
macro-actions, and rewards. We choose episode duration as the performance measure for this task:
the keepers attempt to maximize it while the the takers try to minimize it. Since we want the keepers
to maintain possession of the ball for as long as possible, the reward in the Keepaway task is simply
the number of time steps the ball remains in play after a macro-action is initiated. Learning attempts
to discover an optimal action-value function that maps state-action pairs to expected time steps until
the episode will end.

As more players are added to the task, Keepaway becomes harder for the keepers because the
field becomes more crowded. As more takers are added there are more players to block passing
lanes and chase down any errant passes. As more keepers are added, the keeper with the ball has
more passing options but the average pass distance is shorter. This reduced distance forces more
passes and often leads to more errors because of the noisy actuators and sensors. For this reason,
keepers in 4 vs. 3 (i.e., 4 keepers and 3 takers) take longer to learn an optimal control policy than in
3 vs. 2. The average episode length of the best policy for a constant field size also decreases when
adding an equal number of keepers and takers. The time needed to learn a policy with performance
roughly equal to a handcoded solution roughly doubles as each additional keeper and taker is added
(Stone et al., 2005). In our experiments we set the agents to have a 360◦ field of view. Although
agents do also learn with a more realistic 90◦ field of view, allowing the agents to see 360◦ speeds
up the rate of learning, enabling more experiments. Additionally, 360◦ vision also increases the
learned hold times in comparison to learning with the limited 90◦ vision.

For the purposes of this article, it is particularly important to note the state variables and ac-
tion possibilities used by the learners. The keepers’ states consist of distances and angles of the
keepers K1−Kn, the takers T1−Tm, and the center of the playing region C (see Figure 4 and Ta-
ble 1). Keepers and takers are ordered by increasing distance from the ball, leading to an indexical
representation. Note that as the number of keepers n and the number of takers m increase, the num-
ber of state variables also increases so that the more complex state can be fully described. S must

3. In previous experiments we found that setting λ = 0 produced the best learning results and “Sarsa(0)” is synonymous
with “Sarsa.”

2135



TAYLOR, STONE AND LIU

3 vs. 2 State Variables
State Variable Description

dist(K1,C) Distance from keeper with ball to center of field
dist(K1,K2) Distance from keeper with ball to closest teammate
dist(K1,K3) Distance from keeper with ball to second closest teammate
dist(K1,T1) Distance from keeper with ball to closest taker
dist(K1,T2) Distance from keeper with ball to second closest taker
dist(K2,C) Distance from closest teammate to center of field
dist(K3,C) Distance from second closest teammate to center of field
dist(T1,C) Distance from closest taker to center of field
dist(T2,C) Distance from second closest taker to center of field

Min(dist(K2,T1), dist(K2,T2) Distance from nearest teammate to its nearest taker
Min(dist(K3,T1), dist(K3,T2) Distance from second nearest teammate to its nearest taker

Min(ang(K2,K1,T1), Angle of passing lane from keeper with ball to
ang(K2,K1,T2) closest teammate

Min(ang(K3,K1,T1), Angle of passing lane from keeper with ball to
ang(K3,K1,T2) second closest teammate

Table 1: This table lists all state variables used for representing the state of 3 vs. 2 Keepaway. Note
that the state is ego-centric for the keeper with the ball and rotationally invariant.

change (e.g., there are more distances to players to account for) and |A| increases as there are more
teammates for the keeper with possession of the ball to pass to.

4.3 Function Approximation

Continuous state variables combined with noise necessitate some form of function approximation
for the action-value function: an agent will rarely visit the same state twice, with the possible
exception of an initial start state. In this article we use three distinct function approximators and
show that all are able to learn Keepaway, as well as use our transfer methodology (see Figure 6).
In one implementation, we use linear tile-coding function approximation, also known as a CMAC
(cerebellar model arithmetic computer), which has been successfully used in many reinforcement
learning systems (Albus, 1981), including past Keepaway research (Stone et al., 2005). A second
uses radial basis function approximation (RBF) (Sutton and Barto, 1998). The third implementation
uses artificial neural networks (ANN), another method for function approximation that has had some
notable past successes (Tesauro, 1994; Crites and Barto, 1996).

A CMAC takes arbitrary groups of continuous state variables and lays infinite, axis-parallel
tilings over them. Using this method we are able to discretize the continuous state space by using
tilings while maintaining the capability to generalize via multiple overlapping tilings. Increasing the
tile widths allows better generalization while increasing the number of tilings allows more accurate
representations of smaller details. The number of tiles and width of the tilings are handcoded: this
sets the center, ci, of each tile and dictates which state values will activate which tiles. The function
approximation is learned by changing how much each tile contributes to the output of the function
approximator. Thus, the output from the CMAC is the computed sum:
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Figure 6: Function approximation is necessary for agents interacting with a continuous world. This
article examines three different function approximators for Keepaway but many different
methods could in principle be used by a transfer learner.

f̂ (x) = ∑
i

wi fi(x) (2)

but only tiles which are activated by the current state feature contribute to the sum:

fi(x) =

{

1, if tile i is activated
0, otherwise.

By default, all the CMAC’s weights are initialized to zero. This approach to function approx-
imation in the RoboCup soccer domain has been detailed previously (Stone et al., 2005). We use
one-dimensional tilings so that each state variable is tiled independently, but the principles apply in
the n-dimensional case. For each variable, 32 tilings were overlaid, each offset from the others by
by 1

32 of a tile width. For each tiling, the current state activates a single tile. In 3 vs. 2, there are
32 tiles active for each state variable and 13×32 = 416 tiles activated in total. The tile widths are
defined so that the distance state features have a width of roughly 3.0 meters and tiles for angle state
features are roughly 10.0 degrees. In this work we do not vary these settings but set them to agree
with past work.

RBF function approximation is a generalization of the tile coding idea to continuous functions
(Sutton and Barto, 1998) and their application in Keepaway have been introduced elsewhere (Stone
et al., 2006). When considering a single state variable, an RBF approximator is a linear function
approximator:

f̂ (x) = ∑
i

wi fi(x) (3)

where the basis functions have the form:

fi(x) = φ(|x− ci|) (4)

x is the value of the current state variable, ci is the center of feature i (which is unchanged from
the CMAC, Equation 2), and wi represents weights that can be modified over time by a learning
algorithm. Here we set the features to be evenly spaced Gaussian radial basis functions, where:

φ(x) = exp(−
x2

2σ2 ). (5)
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The σ parameter controls the width of the Gaussian function and therefore the amount of gener-
alization over the state space. We set σ to 0.25, which roughly spans the width of three CMAC
tiles, after running experiments with σ = 1.0,0.5,0.25 and observing that the learning rates were
not dramatically effected.

As we did with the CMAC, we again assume that the state variables are independent and thus
have one set of linearly tiled RBFs for each state variable. Similar to the CMAC implementation,
all state variables are tiled independently and there are 32 tilings for each state variable. The RBFs
in every tiling are spaced so that their centers correspond to the centers of CMAC tiles. We use
Equations 3-5 to calculate Q-values of a state s. Because σ specifies that the spread of a RBF is
roughly 3 CMAC tiles, each 3 vs. 2 state will thus be computed from approximately 3×13×32 =
1248 weights in total. All weights wi are initially set to zero, but over time learning updates changes
the values of the weights so that the resulting Q-values more closely predict the true returns, as
specified by Equation 1.

The ANN function approximator similarly allows a learner to approximate the action-value
function, given a set of continuous, real valued, state variables. Each input to the ANN is set to the
value of a state variable and the output corresponds to an action. Activations of the output nodes
correspond to Q values. We use a fully-connected feedforward network with a single hidden layer
of 20 sigmoid units for all our tasks. The output layer nodes are linear and return the currently
predicted Q(s,a) for each action. Weights were initialized with uniformly random numbers chosen
from [0,1.0]. We had also tried initializing the weights uniformly to 0 and from [0,0.01], with little
effect on learning rates. This network topology was selected after testing 7 different sizes of hidden
layers, from 5 to 30 hidden units. Again, the learning rate did not seem to be strongly affected by
this parameter. The network is trained using standard backpropagation where the error signal to
modify weights is generated by the Sarsa algorithm, as with the other function approximators.

4.4 Learning 3 vs. 2 Keepaway

To learn 3 vs. 2 Keepaway as a source task for transfer, all weights in the CMAC and RBF function
approximators are initially set to zero; every initial state-action value is thus zero and our action-
value function is uniform. All weights and biases in the 13-20-3 feedforward ANN are set to small
random numbers to encourage faster backprop training (Mehrotra et al., 1997) but the initial action-
value is still nearly uniform. As training progresses, the weights of the function approximators are
changed by Sarsa so that the average hold time of the keepers increases.

In our experiments we set the learning rate, α, to be 0.1 for the CMAC function approximator,
as in previous experiments. α was 0.05, and 0.125 for the RBF and ANN function approximators,
respectively. These values were determined after trying approximately five different learning rates
for each function approximator. The exploration rate, ε, was set to 0.01 (1%) in all experiments and
λ was set to 0, which we selected to be consistent with past work (Stone et al., 2005).

4.5 Learning 4 vs. 3 Keepaway and 5 vs. 4 Keepaway without Transfer

Holding the field size constant we now add an additional keeper and an additional taker to generate
the 4 vs. 3 task. All three takers still start in a single corner. Three keepers start in each of the
other three corners and the fourth keeper begins an episode at the center of the field. R and T are
effectively unchanged from 3 vs. 2 Keepaway, but now A = {hold, pass to closest teammate, pass
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to second closest teammate, pass to third closest teammate}, and S is made up of 19 state variables
due to the added players.

It is also important to point out that the addition of an extra taker and keeper in 4 vs. 3 results
in a qualitative change in the task. In 3 vs. 2 both takers must go towards the ball as two takers are
needed to capture the ball from the keeper. However, the third taker is now free to roam the field and
attempt to intercept passes. This necessarily changes the keeper behavior as one teammate is often
blocked from receiving a pass by this new taker. Furthermore, adding a keeper in the center of the
field changes the start state significantly as now the keeper that starts with the ball has a teammate
that is closer to itself, but is also closer to the takers.

In order to quantify how fast an agent in 4 vs. 3 learns, we set a target performance of 10.0
seconds for ANN learners, while CMAC and RBF learners have a target of 11.5 seconds. These
threshold times are chosen so that learners are able to consistently attain the performance level
without transfer, but players using TVITM must also learn and do not initially perform above the
threshold. CMAC and RBF learners are able to learn better policies than the ANN learners and thus
have higher threshold values. When a group of four CMAC keepers has learned to hold the ball
from the three takers for an average of 11.5 seconds over 1,000 episodes we say that the keepers
have sufficiently learned the 4 vs. 3 task. Thus agents learn until the on-line reward of the keepers,
averaged over 1,000 episodes, with exploration, passes a set threshold.4 In 4 vs. 3, it takes a set of
four keepers using CMAC function approximators 30.8 simulator hours (roughly 15 hours of wall-
clock time, or 12,000 episodes) on average to learn to hold the ball for 11.5 seconds when training
without transfer. By comparison, in 3 vs. 2, it takes a set of three keepers using CMAC function
approximators 5.5 hours on average to learn to hold the ball for 11.5 seconds when training without
transfer.

The ANN used in 4 vs. 3 is a 19-20-4 feedforward network.5 The ANN learners do not learn as
quickly nor achieve as high a performance before learning plateaus and therefore we use a threshold
of 10.0 seconds. (After training four keepers using ANN function approximation without transfer
in 4 vs. 3 for over 80 hours, the average hold time was only 10.3 seconds.)

5 vs. 4 is harder than 4 vs. 3 for the same reasons that 4 vs. 3 is more difficult than 3 vs. 2. In
5 vs. 4 three keepers are again placed in three corners and the two remaining keepers are placed in
the middle of the 25m× 25m field. All four takers are placed in the fourth corner. There are now
five actions: {hold, pass to closest teammate, pass to second closest teammate, pass to third closest
teammate, pass to fourth closest teammate}, and 25 state variables. In 5 vs. 4, it takes a set of five
keepers using CMAC function approximators 59.9 hours (roughly 24,000 episodes) on average to
learn to hold the ball for 11.5 seconds when training without transfer. In this paper we investigate
the 5 vs. 4 problem only with the CMAC function approximator.

5. Transfer via Inter-Task Mapping in Keepaway

Having introduced our testbed domain and baseline learning approaches, we can now show how
TVITM is performed in Keepaway, utilizing terminology described in Section 2. Recall that TVITM

4. We begin each trial by following the initial policy for 1,000 episodes without learning (and therefore without counting
this time towards the learning time). This enables us to assign a well-defined initial performance when we begin
learning because there already exist 1,000 episodes to average over.

5. Again, other networks with different numbers of hidden units were tried, but the differences in learning times were
not significant.
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relies on a functional ρ that is able to transfer an action-value function from a source task into a
target task with different state and action spaces. ρ is built from the inter-task mappings χX and χA ,
and thus this section begins by defining these two mappings and then describing how they are used
to generate different ρs.

In the Keepaway domain, A and S are determined by the current Keepaway task and thus differ
from instance to instance. sinitial , R, and T , though formally different, are effectively constant across
tasks. When S and A change, sinitial , R, and T change by definition because they are functions
defined over S and A, but in practice R is always defined as +1 for every time step that the keepers
maintain possession, and sinitial and T are always defined by the RoboCup soccer simulation.

5.1 Defining χX and χA for 4 vs. 3 Keepaway and 3 vs. 2 Keepaway

In the Keepaway domain we are able to intuit the inter-task mappings between states and actions
in the two tasks based on our knowledge of the domain. Our choice for the mappings is supported
by empirical evidence in Section 6 showing that using these mappings do allow us to construct
transfer functions that successfully reduce training time. In general, the transform may not be so
straightforward, but experimenting in a domain where it is easily defined allows us to focus on
showing the benefits of transfer. This article demonstrates that transfer can be successful when a
mapping is available, while we leave it to future work to show how to best construct (or learn) such
a transform.

We define χA , the inter-task mapping between actions in the two tasks, by identifying actions
that have similar effects on the world state in both tasks. For the 3 vs. 2 and 4 vs. 3 tasks, the
action “Hold ball” is equivalent because this action has a similar effect on the world in both tasks.
Likewise, the action “Pass to closest keeper” is analogous in both tasks, as is “Pass to second closest
keeper.” We map the novel target action “Pass to third closest keeper” to “Pass to second closest
keeper” in the source task.

The state variable mapping, χX , is handled with a similar strategy. Each of the 19 state variables
in the 4 vs. 3 task is mapped to a similar state variable in the 3 vs. 2 task. For instance, “Distance
to closest keeper” is the same in both tasks. “Distance to second closest keeper” in the target task is
similar to “Distance to second closest keeper” in the source task. “Distance to third closest keeper”
in the target task is also mapped to “Distance to second closest keeper” in the source task. See
Table 2 for a full description of χX .

Now that χA and χX are defined, relating the state variables and actions in a target task to the
state variables and actions in a source task, we can use them to construct ρs for different internal
representations. The functionals will transfer the learned action-value function from the source task
into the target task. We denote these functionals as ρCMAC, ρRBF , and ρANN for the CMAC, RBF,
and ANN function approximators, respectively.

5.2 Defining χX and χA for 4 vs. 3 Keepaway and Knight Joust

The Knight Joust task is less similar to 4 vs. 3 Keepaway than 3 vs. 2 Keepaway is. There are
many fewer state variables, a less similar transition function, and a very different reward struc-
ture. However, we will show later that information from Knight Joust can significantly improve
the performance of Keepaway players because very basic information, such as that it is desirable to
maximize the distance to the opponent, will initially cause the players to perform better than acting
randomly.
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Description of χX Mapping from 4 vs. 3 to 3 vs. 2
4 vs. 3 state variable 3 vs. 2 state variable

dist(K1,C) dist(K1,C)

dist(K1,K2) dist(K1,K2)
dist(K1,K3) dist(K1,K3)
dist(K1,K4) dist(K1,K3)

dist(K1,T1) dist(K1,T1)
dist(K1,T2) dist(K1,T2)
dist(K1,T3) dist(K1,T2)

dist(K2,C) dist(K2,C)
dist(K3,C) dist(K3,C)
dist(K4,C) dist(K3,C)

dist(T1,C) dist(T1,C)
dist(T2,C) dist(T2,C)
dist(T3,C) dist(T2,C)

Min(dist(K2,T1), dist(K2,T2), dist(K2,T3)) Min(dist(K2,T1), dist(K2,T2))
Min(dist(K3,T1), dist(K3,T2), dist(K3,T3)) Min(dist(K3,T1), dist(K3,T2))
Min(dist(K4,T1), dist(K4,T2), dist(K4,T3)) Min(dist(K3,T1), dist(K3,T2))
Min(ang(K2,K1,T1), ang(K2,K1,T2), Min(ang(K2,K1,T1), ang(K2,K1,T2))
ang(K2,K1,T3))
Min(ang(K3,K1,T1), ang(K3,K1,T2), Min(ang(K3,K1,T1), ang(K3,K1,T2))
ang(K3,K1,T3))
Min(ang(K4,K1,T1), ang(K4,K1,T2), Min(ang(K3,K1,T1), ang(K3,K1,T2))
ang(K4,K1,T3))

Table 2: This table describes the mapping between states in 4 vs. 3 to states in 3 vs. 2. The distance
between a and b is denoted as dist(a,b); the angle made by a, b, and c, where b is the
vertex, is denoted by ang(a,b,c); and values not present in 3 vs. 2 are in bold. Relevant
points are the center of the field C, keepers K1-K4, and takers T1-T3, where players are
ordered by increasing distance from the ball.

Table 3 describes the inter-task mappings used to transfer between Knight Joust and 4 vs. 3
Keepaway. Our hypothesis was that the Knight Joust player would learn to move North when pos-
sible and jump to the side when necessary, which could be similar to holding the ball in Keepaway
when possible and passing when necessary.

5.3 Constructing ρCMAC and ρRBF

The CMAC function approximator takes a state and an action and returns the expected long-term
reward. The learner can evaluate each possible action for the current state and then use π to choose
one. We construct a ρCMAC and use it so that when the learner considers a 4 vs. 3 action, the weights
for the activated tiles are not zero but instead are initialized by Q(3vs2, f inal). To accomplish this, we
copy weights learned in the source CMAC into weights in a newly initialized target CMAC, using
χX and χA . Algorithm 1 describes the process in detail.
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χX : 4 vs. 3 to Knight Joust

4 vs. 3 state variable Knight Joust state variable

dist(K1,T1) dist(P,O)
Min(ang(K2,K1,T1), ang(K2,K1,T2), ang(K2,K1,T3)) ang(West)
Min(ang(K3,K1,T1), ang(K3,K1,T2), ang(K3,K1,T3)) ang(East)
Min(ang(K4,K1,T1), ang(K4,K1,T2), ang(K4,K1,T3)) ang(East)
All other Keepaway variables ø

χA : 4 vs. 3 to Knight Joust
4 vs. 3 action Knight Joust action

Hold Ball Forward
Pass to closest teammate JumpW

Pass to second closest teammate JumpE

Pass to third closest teammate JumpE

Table 3: This table describes the mapping between state variables and actions from 4 vs. 3 to Knight
Joust. Note that the we have made Jump West in the Knight Joust correspond to passing
to K2 and Jump East correspond to passing to K3, but either is reasonable, as long as the
state variables and actions are consistent.

Note that this target CMAC will initially be unable to distinguish between some states and
actions because the inter-task mappings allow duplication of values. For instance, the weights
corresponding to the tiles that are activated for the “Pass to second closest teammate” in the source
task are copied into the weights for the tiles that are activated to evaluate the “Pass to second closest
teammate” action and the “Pass to third closest teammate” in the target task. The 4 vs. 3 agents are
initially unable to distinguish between these two actions. In other words, because the values for the
weights corresponding to the two 4 vs. 3 actions are the same, Q(4vs3,initial) will evaluate both actions
as having the same expected return. The 4 vs. 3 agents will therefore have to learn to differentiate
these two actions as they learn in the target task.

Algorithm 1 APPLICATION OF ρCMAC

1: for each non-zero weight, wi in the source CMAC do
2: xsource ← value of state variable corresponding to tile i
3: asource ← action corresponding to i
4: for each value xtarget such that χX (xtarget) = xsource do
5: for each value atarget such that χA(atarget) = asource do
6: j← the tile in the target CMAC activated by xtarget ,atarget

7: w j← wi

8: wAverage← average value of all non-zero weights in the target CMAC
9: for each weight w j in the target CMAC do

10: if w j = 0 then
11: w j← wAverage

2142



TRANSFER LEARNING VIA INTER-TASK MAPPINGS

As a final step (Algorithm 1, lines 8–11), any weights which have not been initialized by ρCMAC

are set to the average value of all initialized weights. The 3 vs. 2 training was likely not exhaustive
and therefore some weights which may be used in 4 vs. 3 would otherwise remain uninitialized.
Tiles which correspond to every value in the new 4 vs. 3 state vector have thus been initialized to
values determined via training in 3 vs. 2 and can therefore be considered in the computation. This
averaging effect is discussed further in Section 6 and has the effect of allowing agents in the target
task to learn faster.

ρRBF is constructed similarly to ρCMAC. The main difference between the RBF and CMAC
function approximators are how weights are summed together to produces values, but the weights
have similar structure in both function approximators. For a given state variable, a CMAC sums one
weight per tiling. An RBF differs in that it sums multiple weights for each tiling, where weights are
multiplied by the Gaussian function φ(x− ci). Thus when using ρRBF we copy weights following
the same schema as in ρCMAC in Algorithm 1.

5.4 Constructing ρANN

To construct a (fully connected, feedforward) neural network for the 4 vs. 3 target task, the 13-
20-3 network from 3 vs. 2 is first augmented by adding 6 inputs and 1 output node. The weights
connecting inputs 1–13 to the hidden nodes are copied over from the 13-20-3 network. Likewise,
the weights from hidden nodes to outputs 1–3 are copied over to the 19-20-4 network. Weights from
inputs 14-19 to the hidden nodes correspond to the new state variables and are copied over from the
analogous 3 vs. 2 state variable, according to χX . The weights from the hidden nodes to the novel
output are copied over from the analogous 3 vs. 2 action, according to χA . Every weight in the 19-
20-4 network is therefore set to an initial value based on the trained 13-20-3 network. Algorithm 2
describes this process in detail. We define the function ψ to map nodes in the two networks:

ψ(n) =







χX (n), if n is an input
χA(n), if n is an output
δ(n), if n is a hidden node

where a function δ represents the correspondence between these hidden nodes (δ(htarget) = hsource).
In our case the number of hidden nodes used are the same in both tasks. Therefore, in practice
ψ(“nth hidden node in the source network”) = “nth hidden node in the target network.”

Whereas ρCMAC and ρRBF copied many weights (hundreds or thousands, where increasing the
amount of 3 vs. 2 training will increase the number of learned non-zero weights), ρANN always
copies the same number of weights regardless of training. In fact, ρANN initializes only 140 new
weights (in addition to the 320 weights that existed in 3 vs. 2) in the 4 vs. 3 representation and is
therefore in some sense simpler than the other ρs.

Algorithm 2 APPLICATION OF ρANN

1: for each pair of nodes ni,n j in ANNtarget do
2: if link(ψ(ni),ψ(n j)) exists in ANNsource then
3: Set link(ni,n j) in ANNtarget to have weight of link(ψ(ni),ψ(n j)) in ANNsource

2143



TAYLOR, STONE AND LIU

5.5 Q-value Reuse

The three ρs previously introduced are specific to particular function approximators. In this section
we introduce a different approach, Q-value Reuse, to transfer between a source and target. Rather
than initialize a function approximator in the target task with values learned in the source task,
we instead reuse the entire learned source task’s Q-values. A copy of the source task’s function
approximator is retained so that it can calculate the source task’s Q-values for any state, action pair:
QsourceFA : S×A 7→ R. When computing Q-values for the target task, we first map the target task
state and action to the source task’s state and action via the inter-task mappings. The computed
Q-value is a combination of the output of the source task’s saved function approximator and the
target task’s current function approximator:

Q(s,a) = QsourceFA(χX (s),χA(a))+QtargetFA(s,a)

Sarsa updates in the target task are computed as normal, but only the target function approximator’s
weights are eligible for updates. Note that if χX (s) or χA(a) were undefined for a certain s,a pair in
the target task, Q(s,a) would equal QtargetFA(s,a).

Q-value Reuse may be considered a type of reward shaping (Colombetti and Dorigo, 1993;
Mataric, 1994): we are able to directly use the expected rewards from the source task to bias the
learner in the target task. This method has two advantages. First, it is not function-approximator
specific, and could, in theory, be used to transfer between different function approximators as well
as between different tasks. Second, there is no initialization step needed between learning the two
tasks. However, drawbacks include an increased lookup time and larger memory requirements.
Such requirements will grow linearly in the number of transfer steps; while they are not substantial
with a single source task, they may become prohibitive when using multiple source tasks or when
performing doing multi-step transfer (such as shown later in Section 7.2).

6. Experimental Results: 3 vs. 2 Keepaway to 4 vs. 3 Keepaway

This section discusses the results of our transfer experiments between the 3 vs. 2 and 4 vs. 3 Keep-
away tasks using our two metrics, training time reduction in the target task and total training time
reduction. Section 6.1 shows the success of transfer when the 3 vs. 2 is used as a source task to learn
4 vs. 3. Section 6.2 includes additional analysis of these results. Section 6.3 demonstrates transfer
between 3 vs. 2 and 4 vs. 3 CMAC players using Q-value Reuse.

6.1 Transferring via ρ from 3 vs. 2 Keepaway into 4 vs. 3 Keepaway

Having constructed three ρs that transform the learned action-value functions, we can now set
Q(4vs3,initial) = ρ(Q(3vs2, f inal)) between Keepaway agents with CMAC, RBF, or ANN function ap-
proximation. We do not claim that these initial action-value functions are correct (and empirically
they are not), but instead that the constructed action-value functions allow the learners to more
quickly discover a better-performing policy.

In this section we show the results of learning 4 vs. 3 Keepaway, both without transfer and after
using TVITM with varying amounts of 3 vs. 2 training. Analyses of learning times required to reach
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CMAC Learning Results

# 3 vs. 2 Episodes Ave. 3 vs. 2 Time Ave. 4 vs. 3 Time Ave. Total Time Std. Dev.

0 0 30.84 30.84 4.72
10 0.03 24.99 25.02 4.23
50 0.12 19.51 19.63 3.65
100 0.25 17.71 17.96 4.70
250 0.67 16.98 17.65 4.82
500 1.44 17.74 19.18 4.16
1000 2.75 16.95 19.70 5.5
3000 9.67 9.12 18.79 2.73
6000 21.65 8.56 30.21 2.98

Table 4: Results showing that learning Keepaway with a CMAC and applying transfer via inter-
task mapping reduces training time (in simulator hours) for CMAC players. Minimum
learning times for reaching the 11.5 second threshold are bold. As source task training
time increases, the required target task training time decreases. The total training time is
minimized with a moderate amount of source task training.

threshold performance levels6 show that agents utilizing CMAC, RBF, and ANN function approxi-
mation are all able to learn faster in the target task by using ρCMAC, ρRBF , and ρANN , respectively.

Tables 4 and 5 show learning times to reach a threshold performance and verify that a CMAC, an
RBF, and an ANN successfully allow independent players to learn to hold the ball from opponents
when learning without transfer; agents utilizing these three function approximation methods are
able to successfully attain the 4 vs. 3 threshold performance.7

This result shows that a CMAC is more efficient than an ANN trained with backprop, another
obvious choice. We posit that this difference is due to the CMAC’s property of locality. When
a particular CMAC weight for one state variable is updated during training, the update affects the
output value of the CMAC for other nearby state variable values. The width of the CMAC tiles
determines the generalization effect and outside of this tile width, the change has no effect. Contrast
this with the non-locality of an ANN. Every weight is used for the calculation of an action-value
function, regardless of how close two inputs are in state space. Any update to a weight in the ANN
must necessarily change the final output of the network for every set of inputs. Therefore it may
take the ANN longer to settle into an effective configuration. Furthermore, the ANNs use many
fewer weights than the CMAC and RBF learners, which may have allowed for faster learning at the
cost of reduced performance of the final policy.

The RBF function approximator had the best performance of the three when learning without
transfer (i.e., the top row of each table). The RBF shares the CMAC’s locality benefits, but is also
able to generalize more smoothly due to the Gaussian summation of weights.

To test the effect of using transfer with a learned 3 vs. 2 action-value function, we train a set
of keepers for a number of 3 vs. 2 episodes, save the function approximator’s weights (Q(3vs2, f inal))

6. Our results hold for other threshold times as well, provided that the threshold is not initially reached without training
and that learning will enable the keepers’ performance to eventually cross the threshold.

7. All times reported in this article refer to simulator time, which is roughly twice that of the wall clock time. We only
report sample complexity and not computational complexity; the running time for our learning methods is negligible
compared to that of the RoboCup Soccer Server.
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Figure 7: A graph of Table 4 where the x-axis uses a logarithmic scale. The thin bars show the
amount of time spent training in the source task, the thick bars show the amount of time
spent training in the target task, and their sum represents the total time. The target task
training time is reduced as more time is spent training in the source task. The total time
is minimized when using a moderate amount of source task training.

from a random 3 vs. 2 keeper, and use the weights to initialize all four keepers8 in 4 vs. 3 so that
Q(4vs3,initial)← ρ(Q(3vs2, f inal)). Then we train on the 4 vs. 3 Keepaway task until the average hold
time for 1,000 episodes is greater than some performance threshold. Recall that in section 4.5 we
specify a threshold of 11.5 seconds in the case of CMAC and RBF function approximators and 10.0
seconds for ANNs as neural network agents were unable to learn as effectively.

To determine if Keepaway players using CMAC function approximation can benefit from trans-
fer, we compare the time it takes agents to learn the target task after transferring from the source
task with the time it takes to learn the target task without transfer. The result tables show different
amounts of source task training time, where the minimal learning times are in bold. The top row
of each table represents learning the task without transfer and thus any column with transfer times
lower than the top row shows beneficial transfer. Our second goal of transfer would be met if the
total training time in both tasks with transfer was less than learning without transfer in the target
task. Table 4 reports the average time spent training in 4 vs. 3 with CMAC function approximation
to achieve an 11.5 second average hold time after different amounts of 3 vs. 2 training. Column two
reports the time spent training on 4 vs. 3 while the third column shows the total time to train 3 vs.
2 and 4 vs. 3. As can be seen from the table, spending time training in the simpler 3 vs. 2 domain
can cause the learning time for 4 vs. 3 to decrease. To overcome the high amounts of noise in our
evaluation we run at least 25 independent trials for each data point reported.

8. We do so under the hypothesis that the policy of a single keeper represents all of the keepers’ learned knowledge.
Though in theory the keepers could be learning different policies that interact well with one another, so far there is
no evidence that they do. One pressure against such specialization is that the keepers’ start positions are randomized.
There appears to be specialization when each keeper starts in the same location every episode.
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RBF and ANN Learning Results
# of 3 vs. 2 Ave. RBF Ave. RBF Standard Ave. ANN Ave. ANN Standard
Episodes 4 vs. 3 Time Total Time Deviation 4 vs. 3 Time Total Time Deviation

0 19.52 19.52 6.03 33.08 33.08 16.14
10 18.99 19.01 6.88 19.28 19.31 9.37
50 19.22 19.36 5.27 22.24 22.39 11.13
100 18.00 18.27 5.59 23.73 24.04 9.47
250 18.00 18.72 7.57 22.80 23.60 12.42
500 16.56 18.12 5.94 19.12 20.73 8.81

1,000 14.30 17.63 3.34 16.99 20.19 9.53
3,000 14.48 26.34 5.71 17.18 27.19 10.68

Table 5: Results from learning Keepaway with different amounts of 3 vs. 2 training time (in simu-
lator hours) indicates that ρRBF and ρANN can reduce training time for RBF players (11.5
second threshold) and ANN players (10.0 second threshold). Minimum learning times for
each method are in bold.

The potential of TVITM is evident in Table 4 and Figure 7. To analyze these results, we conduct a
number of Student’s t-tests to determine if the differences between the distributions of learning times
for the different settings are significant. These tests confirm that the differences in the distributions
of 4 vs. 3 training times when using TVITM are statistically significant (p < 0.05) when compared
to training 4 vs. 3 without transfer. Not only is the time to train the 4 vs. 3 task decreased when
we first train on 3 vs. 2, but the total training time is less than the time to train 4 vs. 3 without
transfer. We can therefore conclude that in the Keepaway domain, training first on a simpler source
task can increase the rate of learning enough that the total training time is decreased when using a
CMAC function approximator. It is not obvious how to choose the amount of time to spend learning
the source task to minimize the total time and this an optimization will be left for future work (see
Section 8).

Analogous experiments for Keepaway players using RBF and neural network function approx-
imation are presented in Table 5. Again, successful transfer is demonstrated as both the transfer
agents’ target task training time and the transfer agent’s total training time are less than the time
required to learn the target task without transfer. All numbers reported are averaged over at least 25
independent trials; both 4 vs. 3 time and total time can be reduced with TVITM. For the RBF players,
all TVITM 4 vs. 3 results using at least 500 3 vs. 2 episodes show a statistically significant difference
from those that learn without transfer (p < 0.05), while the learning trials that used less than 500
source task episodes did not significantly reduce the target task training time. The difference in all
4 vs. 3 training times for the ANN players between using TVITM and training without transfer is
statistically significant (p < 0.05).

The RBF function approximator yielded the best learning rates for 3 vs. 2 Keepaway, followed
by the CMAC function approximator, and lastly the ANN trained with backpropagation. However,
TVITM provided the least percentage speedup to the RBF agents. One possible hypothesis is that
transfer is less useful to the best learners. One explanation is that if a particular representation is
poorly suited for a task, transfer may be able to provide proportionally more speedup because it is
that much further from an “optimal learner.” Nonetheless, while some function approximators get
more or less benefit from TVITM, it is clear that all three are able learn the target task faster with the
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Ablation Studies with ρCMAC

Transfer # of 3 vs. 2 Ave. 4 Standard
Functional Episodes vs. 3 Time Deviation

No Transfer 0 30.84 4.72
ρCMAC 100 17.71 4.70
ρCMAC 1000 16.95 5.5
ρCMAC 3000 9.12 2.73

ρCMAC, No Averaging 100 25.68 4.21
ρCMAC, No Averaging 3000 9.53 2.28

only averaging 100 19.06 6.85
only averaging 3000 10.26 2.42
ρCMAC, Ave Source 1000 15.67 4.31

Table 6: Results showing that transfer with the full ρCMAC outperforms using ρCMAC without the
final averaging step, using only the averaging step of ρCMAC, and when averaging weights
in the source task before transferring the weights.

technique, and that more training in the source task generally reduces the time needed to learn the
target task.

6.2 Understanding ρCMAC’s Benefit

To better understand how TVITM uses ρCMAC to reduce the required training time in the target task,
and to isolate the effects of its various components, this section details a number of supplemental
experiments.9

To help understand how ρCMAC enables transfer we isolate its two components. We first ablate
the functional so that the final averaging step (Algorithm 1, lines 8–11), which places the average
weight into all zero weights, is removed. We anticipated that the benefit from transfer would be
increasingly degraded, relative to using the actual ρCMAC, as fewer numbers of training episodes
in the source task were used. The resulting 4 vs. 3 training times were all shorter than training
without transfer, but longer than when the averaging step was incorporated. The relative benefit
of our ablated ρCMAC is greater after greater numbers of source task episodes; the averaging step
appears to have given initial values to weights in the state/action space that have never been visited
with low numbers of source episodes and thus imparts some bias in the target task even with very
little 3 vs. 2 training. Over time more of the state space in the source task is explored and thus our
ablated functional performs quite well. This result shows that the averaging step is most useful with
less source task training, but becomes less so as more source experience is accumulated (see Table 6
for result details).

If we perform only the averaging step from ρCMAC on learners trained in the target task, we can
determine how important this step is to our method’s effectiveness. Applying the averaging step

9. Informal experiments showed that the CMAC and RBF transfer results were qualitatively similar, which is reasonable
given the two function approximator’s many similarities. Thus we expect that the supplemental experiments in this
section would yield qualitatively similar results if we used RBFs rather than CMACs. While our results demonstrate
that all three function approximators can successfully transfer knowledge, we focus our supplementary experiments
on CMAC function approximation so that our transfer work can be directly comparable to previous work in Keep-
away, which also used CMACs (Stone et al., 2005).
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Time required for CMAC 4 vs. 3 players to reach 11.5 sec. hold time
Initial CMAC weight Ave. Learning Time Standard Deviation

0 30.84 4.72
0.5 35.03 8.68
1.0 N/A N/A

Each weight randomly selected from
the uniform distribution from [0,1.0] 28.01 6.93

Table 7: 10 independent trials are averaged for different values for initial CMAC weights. None of
the trials with initial weights of 1.0 were able to reach the 11.5 threshold within 45 hours,
and thus are shown as N/A above.

causes the total training time to decrease below that of training 4 vs. 3 without transfer, but again
the training times are longer than running ρCMAC on weights trained in 3 vs. 2. This result confirms
that both parts of ρCMAC contribute to reducing 4 vs. 3 training time and that training on 3 vs. 2 is
more beneficial for reducing the required 4 vs. 3 training time than training on 4 vs. 3 and applying
ρCMAC (see Table 6 for result details).

The averaging step in ρCMAC is defined so that the average weight in the target CMAC overwrites
all zero-weights. We also conducted a set of 30 trials which modified ρCMAC so that the average
weight in the source CMAC is put into all zero-weights in the target CMAC, which is possible
when agents in the source task know that their saved weights will be used for TVITM. Table 6
shows that when the weights are averaged in the source task (ρCMAC, Ave Source) the performance is
not statistically different (p < 0.05 from TVITM when averaging in the target task (See Table 4).

To verify that the 4 vs. 3 CMAC players were benefiting from TVITM and not from having
non-zero initial weights, we initialized CMAC weights uniformly to 0.5 in one set of experiments,
1.0 uniformly in a second set of experiments, and then to random numbers uniformly distributed
from 0.0-1.0 in a third set of experiments. We do so under the assumption that 0.0, 0.5, and 1.0 are
all reasonable initial values for weights (although in practice 0.0 is most common). The learning
time was never statistically better than learning with weights initialized to zero, and in some experi-
ments the non-zero initial weights decreased the speed of learning. Haphazardly initializing CMAC
weights may hurt the learner but systematically setting them through TVITM is beneficial. Thus we
conclude that the benefit of transfer is not a byproduct of our initial setting of weights in the CMAC
(see Table 7 for result details).

To further test the sensitivity of the ρCMAC function, we change it in two different ways. We first
defined ρmodi f ied by modifying χA so that instead of mapping the novel target task action “Pass to
second third keeper” into the action “Pass to second closest keeper,” we instead map the novel action
into “Hold ball.” Now Q4vs3,initial will initially evaluate “pass to third closest keeper” and “hold
ball” as equivalent for all states. Second, we modify χA and χX so that state variables and actions
not present in 3 vs. 2 are not initialized in the target task. Using these new inter-task mappings, we
construct ρ3vs2, a functional which copies over information learned in 3 vs. 2 exactly but assigns the
average weight to all novel state variables and actions in 4 vs. 3.

When using this ρmodi f ied to initialize weights in 4 vs. 3, the total training time increased rel-
ative to the normal ρCMAC but still outperformed training without transfer. Similarly, ρ3vs2 is able
to outperform learning without transfer, but underperforms the full ρCMAC, particularly for higher
amounts of training in the source task.
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Testing Sub-optimal Inter-task Mappings
Transfer # of 3 vs. 2 Ave. 4 vs. 3 Standard

Functional Episodes Time Deviation

ρCMAC 100 17.71 4.70
ρCMAC 3000 9.12 2.73

ρmodi f ied 100 21.74 6.91
ρmodi f ied 3000 10.33 3.21

ρ3vs2 100 18.90 3.73
ρ3vs2 3000 12.00 5.38

Table 8: Results showing that transfer with the full ρCMAC outperforms using sub-optimal or incom-
plete inter-task mappings.

Choosing non-optimal inter-task mappings when constructing ρ seems to have a detrimental,
but not necessarily disastrous, effect on the training time. This result shows that the structure of ρ
is indeed important to the success of transfer (see Table 8 for result details).
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Figure 8: Representative learning curves, showing that transfer via inter-task mapping does not
significantly increase the performance of the initial policy in 4 vs. 3, but enables faster
learning by biasing the learner towards a productive part of the function approximator’s
weight space. Eight 4 vs. 3 learning curves without transfer are compared to eight learning
curves in 4 vs. 3 after transferring from 250 episodes of 3 vs. 2.

Interestingly, when the CMACs’ weights are loaded into the keepers in 4 vs. 3, the initial hold
times of the keepers do not differ significantly from those of keepers with uninitialized CMACs
(i.e., CMACs where all weights are initially set to zero). The information contained in the func-
tion approximators’ weights prime the 4 vs. 3 keepers to more quickly learn their task by biasing
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Figure 9: The average performance from the learners in Figure 8 shows a clear benefit from using
transfer.

Initial Performance in 4 vs. 3 with CMAC Function Approximation
# of 3 vs. 2 Episodes Ave. Performance (sec.) Standard Deviation

0 8.46 0.17
1000 8.92 1.48
6000 9.24 1.15

Table 9: This graph shows the difference in initial performance between 4 vs. 3 players with and
without transfer. 40 independent trials are averaged for each setting and the differences in
initial performance (i.e., initial episode lengths) are small. A Student’s t-test shows that
8.46 and 8.92 are not statistically different while 8.46 and 9.24 are (p < 0.05).

their search, even though the knowledge we transfer is of limited initial value. See Figure 8 for
representative learning curves and Table 9 for result details.10

TVITM relies on effectively reusing learned data in the target task. We hypothesized that suc-
cessfully leveraging this data may be effected by ε, Sarsa’s exploration parameter, which balances
exploration with exploitation. Recall that we had initially chosen an exploration rate of 0.01 (1%)
to be consistent with past research. Table 10 shows the results of learning 3 vs. 2 Keepaway with
ε = 0.01 for 1,000 episodes, utilizing ρCMAC, and then learning 4 vs. 3 Keepaway with various set-
tings for ε. The results show that of these 4 additional settings for ε, only ε = 0.05 is statistically
better than the default rate of 0.01. To further explore this last result we ran a series of 30 trials
of learning 4 vs. 3 from scratch with the value of ε = 0.05 and found that there was a significant
difference from learning 4 vs. 3 from scratch with ε = 0.01. Thus the speedup for this particular
setting of ε in transfer, relative to the default value, is explained by the increased learning speed

10. The more similar the source and target tasks are, the more of an immediate performance improvement we would ex-
pect to see. For example, in the degenerate case where the source and target task are identical, the initial performance
in the target task will be equivalent to the final performance in the source task. However, in such a situation, reducing
the total time—our more difficult transfer goal—would prove impossible.
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Varying the Exploration in 4 vs. 3
ε in 4 vs. 3 # 3 vs. 2 Episodes Ave. 4 vs. 3 Time Standard Deviation

0.001 1000 22.06 10.52
0.005 1000 19.22 8.31

0.01 (default) 1000 16.95 5.5
0.05 1000 12.84 2.55
0.1 1000 18.40 5.70

0.01 (default) 0 30.84 4.72
0.05 0 17.57 2.59

Table 10: The first five rows detail experiments where 3 vs. 2 is first learned with ε = 0.01 and then
transfer is used to speed up learning in 4 vs. 3. 30 independent trials are averaged for
each setting of ε in the target task. The last two rows show the results of learning 4 vs. 3
without transfer for two settings of ε. These results show that the amount of exploration
in the target task affects learning speed both with and without transfer.

without transfer. This experiment does suggest, however, that the previously determined value of
ε = 0.01 is not optimal for Sarsa with CMAC function approximation in the Keepaway domain.

From these supplemental results we conclude:

1. Both parts of ρCMAC—copying weights based on χX and χA , and the final averaging step—
contribute to the success of TVITM. The former gives more benefit after more training is
completed in the source task and the second helps when less knowledge is gained in the
source task before transfer.

2. Using ρCMAC is superior to weights initialized to zero (training without transfer), as well as
weights initialized to 0.5, 1.0 and [0,1.0], three other reasonable initial settings.

3. A suboptimal or incomplete transfer functional, such as ρmodi f ied and ρ3vs2, allows TVITM to
speed up learning, but not as much as the more correct ρCMAC.

4. Players initialized by TVITM in the source task do not initially outperform uninitialized play-
ers in the target task, but are able to learn faster.

6.3 Transferring via Q-value Reuse from 3 vs. 2 Keepaway into 4 vs. 3 Keepaway

In the previous sections we showed that TVITM was capable of transferring from 3 vs. 2 into 4 vs.
3 by using ρCMAC, ρRBF , and ρANN . In this section we use TVITM with Q-value Reuse (Section 5.5)
between CMAC players in 3 vs. 2 and 4 vs. 3. Recall that Q-value Reuse directly uses a learned
function approximator from the source task when calculating Q-values in the target task.

Table 11 shows the results of using Q-value Reuse. Each transfer experiment shows the average
of 30 independent trials. Both the 4 vs. 3 and total times are statistically different from learning
without transfer (p < 0.05, via Student’s t-tests). As when using ρCMAC for transfer (Table 4), more
3 vs. 2 episodes correspond to a decrease in the time required for 4 vs. 3 players to reach the 11.5
second threshold performance.

The reduction in transfer efficacy, relative to using ρCMAC, is due to the averaging step in ρCMAC.
As we showed in the previous section, this averaging step has an impact on the target task learning
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Q-value Reuse between CMAC players
# of 3 vs. 2 Ave. Ave. Standard
Episodes 4 vs. 3 Time Total Time Deviation

0 30.84 30.84 4.72
10 28.18 28.21 5.04
50 28.0 28.13 5.18
100 26.8 27.06 5.88
250 24.02 24.69 6.53
500 22.94 24.39 4.36

1,000 22.21 24.05 4.52
3,000 17.82 27.39 3.67

Table 11: Results from learning 3 vs. 2 with CMAC players for different numbers of episodes
and then utilizing the learned 3 vs. 2 CMAC directly while learning 4 vs. 3. Minimum
learning times for reaching the 11.5 second threshold are bold.

times. However, in Q-value Reuse we treat the source task function approximator as a “black
box” and thus do not permute its values, nor use it to set the initial values of the target task’s
function approximator. These results suggest that if the source and target function approximators
are different, Q-value Reuse may be appropriate. However, if memory is limited, running time is
critical, and/or multiple transfer steps are involved (such as transferring from 3 vs. 2 to 4 vs. 3, and
then from 4 vs. 3 to 5 vs. 4), then using a ρ is preferable.

7. Experimental Results: Different Transfer Tasks

In this section of the article we show that TVITM can work between a variety of different source/target
task pairs. Section 7.1 presents results of transfer between 3 vs. 2 and 4 vs. 3 agents with different
abilities. Section 7.2 demonstrates that transfer can also be used to reduce both target and total train-
ing time for 5 vs. 4 Keepaway, and gives some initial results for 6 vs. 5 Keepaway, demonstrating
that TVITM can scale to more complex tasks. Section 7.3 shows the results of transferring from two
variants of 3 vs. 2 into 4 vs. 3 to demonstrate how the relatedness of source and target tasks effect
the efficacy of TVITM. Lastly, Section 7.4 shows that TVITM can successfully transfer between the
Knight Joust task and 4 vs. 3, two tasks with very different characteristics.

7.1 3 vs. 2 Keepaway and 4 vs. 3 Keepaway with Differing Player Abilities

The results in Section 6.1 show that Q-values learned in 3 vs. 2 can be successfully used to speed
up learning in 4 vs. 3. In this section we test how robust TVITM is to changes in the agent’s abilities.
In addition to changing the number of players between the source and target tasks, other variations
such as the size of the field, wind, and player ability can be modified. It is a qualitatively different
challenge to use TVITM to speed up learning between two tasks where the agents’ actions have
different effects (i.e., T has been modified so that the actions are qualitatively different) in addition to
different state and action spaces. We choose to test the robustness of TVITM by changing the passing
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Learning Results with Different Actuators
# of 3 vs. 2 3 vs. 2 3 vs. 2 Actuator Ave. 4 vs. 3 Standard 4 vs. 3 Actuator
Episodes Time Accurate? Time Deviation Accurate?

0 0 N/A 30.84 16.14 Yes
500 1.44 Yes 17.74 4.16 Yes
3000 9.67 Yes 9.12 2.73 Yes

0 0 N/A 54.15 6.13 No
500 1.23 No 37.3 9.24 No
3000 8.36 No 29.86 9.20 No
500 1.37 Yes 37.54 7.48 No
3000 9.45 Yes 24.17 5.54 No
500 1.3 No 18.46 3.93 Yes
3000 8.21 No 13.57 3.64 Yes

Table 12: Results showing transfer via inter-task mapping benefits CMAC players utilizing ρCMAC

with two kinds of actuators. These results demonstrate that transfer can succeed even
when actions in the source and target tasks are qualitatively different. The results in rows
1–3 are from Table 4.

actuators on some sets of agents so that the passes are less accurate.11 We show in this section that
TVITM speeds up learning, relative to learning without transfer, in the following scenarios:

1. Learning 4 vs. 3 with damaged passing actuators after transferring from 3 vs. 2 players with
damaged passing actuators.

2. Learning 4 vs. 3 with a normal passing actuators after transferring from 3 vs. 2 players with
damaged passing actuators.

3. Learning 4 vs. 3 with damaged passing actuators after transferring from 3 vs. 2 players with
normal passing actuators.

Accurate CMAC players learning without transfer in 4 vs. 3 take only 30.1 hours to reach the
threshold performance level (row 1 of Table 12). When we allow sets of CMAC keepers to learn 4
vs. 3 without transfer while using the less accurate pass mechanism, the average time to reach an
average performance of 11.5 seconds is 54.2 hours (row 4 of Table 12). We are also able to use
the same ρCMAC to speed up learning in the target task when both the target and source tasks have
inaccurate actuators (rows 5 and 6). These two results, as well as all other 4 vs. 3 transfer learning
times in this table, are statistically significant when compared to learning the relevant 4 vs. 3 task
without transfer (p < 0.05).

Now consider that we would like to learn the 4 vs. 3 target task with inaccurate passing, but that
we have already trained some 3 vs. 2 keepers that learned using an accurate pass action in the source
task. As we can see in the third group (i.e., rows 7 and 8) of Table 12, even though the players in
the source task have different actuators than in the target task, transfer is able to significantly speed
up learning compared to not using transfer.

11. Actuators are changed in the benchmark players by changing the pass action from the default “PassNormal” to
“PassFast” which increases the speed of the pass by 50%, reducing accuracy.
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This result confirms that the same ρ will allow TVITM to transfer between tasks where not only
have S and A changed, but the effect of the actions have also changed qualitatively. This situation is
of practical import as well, as many robotic systems experience gradual degradation in performance
over time due to wear and tear. If a set of robots with worn down actuators are available, they may
still be able to benefit from action-value function transfer of Q-values from learners that have fresh
actuators. Alternately, if a set of agents have learned a task and then later want to learn another task
but have damaged their actuators since learning the source task, transfer may still increase the speed
of learning.

We also perform the inverse experiment where agents in the source task have inaccurate actu-
ators and agents in the target task have normal actuators. We perform TVITM after 500 and 3,000
episodes of 3 vs. 2 with inaccurate passing to initialize the Q-values of agents in 4 vs. 3 with accurate
passing. The final two rows in Table 12 again shows using this transfer is a significant improvement
over learning without transfer. Thus a fielded agent with worn down actuators would be able to
successfully transfer its learned action-value function to agents whose actuators were undamaged.
Interestingly, transferring from source keepers that have accurate actuators is more effective than
transferring from source keepers that have inaccurate actuators both when the target task has accu-
rate actuators and when it has inaccurate actuators. We posit that this is because it is easier to learn
with accurate actuators, which means that more useful information exists to be transfered.

We first showed in Section 6 that transfer from 3 vs. 2 keepers with accurate pass actuators
to 4 vs. 3 keepers with accurate pass actuators was successful. In this subsection we demonstrate
that transfer works when actuators are inaccurate in both the source and target tasks. It also speeds
learning in the target task when transferring from inaccurate 3 vs. 2 players to accurate 4 vs. 3
players or from accurate 3 vs. 2 players to inaccurate 4 vs. 3 players.

Combined, our results show that TVITM is able to speed up learning in multiple target tasks with
different state and action spaces, and even when the agents have somewhat different actuators in the
two tasks.

7.2 Scaling up to Larger Keepaway Tasks

In this section we show that our method can also be used to speed up the 5 vs. 4 Keepaway task,
which provides evidence for scalability to larger tasks. The 5 vs. 4 task is more difficult than the 4
vs. 3 task, as discussed in Section 4.5. In addition to using 4 vs. 3 to speed up learning in 5 vs. 4,
we show that TVITM can be used twice to learn the 3 vs. 2, 4 vs. 3, and 5 vs. 4 tasks in succession.

Results in Table 13 show that TVITM scales to the 5 vs. 4 Keepaway task. In 5 vs. 4 we say that
the task has been learned when the 5 keepers are able to hold the ball for an average of 9.0 seconds
over 1,000 episodes. ρCMAC can be formulated by extending χX and χA so that they can transfer the
action-value function from 4 vs. 3 to 5 vs. 4, analogous to the way it transfers values from 3 vs. 2 to
4 vs. 3. These results are shown in rows 2 and 3 of Table 13.

χX and χA can also be formulated so that we can use TVITM to speed up 5 vs. 4 after learning 3
vs. 2. For instance, the the target task actions “Pass to Second Closest Teammate”, “Pass to Third
Closest Teammate”, and “Pass to Fourth Closest Teammate” are mapped to the source task action
“Pass to Second Closest Teammate.” Table 13, rows 4 and 5, show that this mapping formulation
is successful. In fact, there is more benefit than transferring from 4 vs. 3. We posit that this is due
to the fact that it is easier to learn more in the simpler target task and this outweighs the fact that it
is less related to 5 vs. 4 than to 4 vs. 3. Another way to understand this is that in a fixed amount of
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CMAC Learning Results in 5 vs. 4
# of 3 vs. 2 # of 4 vs. 3 Ave. 5 vs. 4 Ave. Total Standard
Episodes Episodes Time Time Deviation

0 0 22.58 22.58 3.46
0 500 13.44 14.60 7.82
0 1000 9.66 12.02 4.50

500 0 6.76 8.18 1.90
1000 0 6.70 9.66 2.12
500 500 6.19 8.86 1.26

Table 13: Results showing that learning Keepaway with a CMAC and applying transfer via inter-
task mapping can reduce training time (in simulator hours) for CMAC in 5 vs. 4 with a
target performance of 9.0 seconds. All numbers are averaged over at least 25 independent
trials.

experience, players in 3 vs. 2 are able to update more weights than 4 vs. 3, measured as a percentage
of the total possible number of weights used in the task.

A final refinement is to use a two-step application of TVITM so that 3 vs. 2 runs first. This
learned action-value function is used as the initial action-value function in 4 vs. 3 after applying
ρCMAC, and after training the final 4 vs. 3 action-value function is used as the initial action-value
function for 5 vs. 4. Using this procedure (Table 13, bottom row) we find that the time to learn 5
vs. 4 is reduced to roughly 27% of learning without transfer. A t-test confirms that the differences
between all 5 vs. 4 training times shown are statistically significant (p < 0.05) when compared to
learning without transfer.

These results clearly show that TVITM allows 5 vs. 4 Keepaway to be learned faster after training
on 4 vs. 3 and/or 3 vs. 2. They also suggest that a multi-step process where tasks are made incre-
mentally more challenging may produce faster learning times than a single application of TVITM.
As a final result, a similar χX , χA , and ρCMAC can be constructed to significantly speed up learning
in 6 vs. 5 as well (which also takes place on a 25m×25m field), as shown in Table 14.

Transfer in 6 vs. 5 with CMAC Function Approximation
# of 5 vs. 4 Episodes Ave. 6 vs. 5 Time Ave Total Time Standard Deviation

0 22.85 22.85 1.71
1000 9.38 11.53 2.38

Table 14: 10 independent trials are averaged for learning 6 vs. 5 with and without transfer from 5
vs. 4. The threshold performance time is 8.0 seconds. A Student’s t-test confirms that the
difference is statistically significant (p < 0.05).

7.3 Variants of 3 vs. 2 Keepaway for Transfer into 4 vs. 3 Keepaway

In this section we introduce two novel variants of the 3 vs. 2 Keepaway task to show how TVITM

with ρCMAC can fail to improve performance relative to learning without transfer.
We first modify 3 vs. 2 so that the reward is defined as +1 for each action, rather than +1 for

each timestep. Players in the 3 vs. 2 Flat Reward task can still learn to increase the average episode
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time. We hypothesized that the changes in reward structure would prevent TVITM from successfully
improving performance in the standard 4 vs. 3 task because of the different reward structure.

We next modify 3 vs. 2 so that the reward is defined to be -1 for each timestep. The task of
3 vs. 2 Giveaway is thus very different from Keepaway. Given the available actions, the optimal
action for players is for the player closest to the takers to hold the ball until the takers captures it.
We hypothesized that using TVITM from Giveaway to 4 vs. 3 Keepaway would produce negative
transfer, where the required target task training time is increased by using transfer.

Table 15 shows the results of using these two 3 vs. 2 source task variants and compares them to
using Keepaway as a source task and to learning without transfer. Transfer from the Flat Reward
tasks gives a benefit relative to learning without transfer, but not nearly as much as transferring
from 3 vs. 2 Keepaway. Students t-tests determine that transfer after 3,000 episodes of Giveaway is
significantly slower than learning without transfer.

Transfer into 4 vs. 3 with ρCMAC: different source tasks
Source Task # of 3 vs. 2 Episodes Ave. 4 vs. 3 Time Ave. Total Time Std. Dev.

none 0 30.84 30.84 4.72
Keepaway 1000 16.95 19.70 5.5
Keepaway 3000 9.12 18.79 2.73

Flat Reward 1000 25.11 27.62 6.31
Flat Reward 3000 19.42 28.03 8.62
Giveaway 1000 27.05 28.58 10.71
Giveaway 3000 32.94 37.10 8.96

Table 15: Results compare transferring from three different source tasks. Each line is an average
of 30 independent trials. The 3 vs. 2 Flat Reward task improves performance relative to
learning without transfer, but less than when transferring from Keepaway. The 3 vs. 2
Giveaway task can decrease 4 vs. 3 performance when it is used as a source task.

7.4 Transferring from Knight Joust to 4 vs. 3 Keepaway

In this section we show that TVITM can successfully transfer between the gridworld Knight Joust
task and 4 vs. 3 Keepaway. We use a variant of ρCMAC to transfer the learned weights, because
Knight Joust is learned with a tabular function approximator rather than a CMAC. This represen-
tation choice results in changes to the syntax of ρCMAC, as described in Algorithm 3. Note that
this new variant of the transfer functional is not necessitated by the novel target task and that if we
learned Knight Joust with a CMAC, the original ρCMAC would be sufficient for transfer between
Knight Joust and 4 vs. 3.

The results in Table 16 report the average of 30 independent trials. The 4 vs. 3 transfer times (in
simulator hours) are statistically different from learning without transfer (determined via Student’s
t-tests). Recall that the wall-clock time of the Knight Joust simulator is negligible and thus, in
practice, the 4 vs. 3 time is the same as the total time.

The reader will notice that the number of source task episodes used in these experiments is much
larger than other experiments in this paper. The reason for this is two-fold. First, we learn Knight
Joust with tabular function approximation, which is significantly slower to learn than a CMAC, for
instance, because there is no generalization. Secondly, because the wall-clock time requirements
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Algorithm 3 APPLICATION OF ρCMAC FROM TABULAR FUNCTION APPROXIMATION

1: nsource ← number of variables in source task
2: for each non-zero Q-value, qi in the source task’s Q-table do
3: asource ← action corresponding to qi

4: for each state variable, xsource, in source task do
5: for each value xtarget such that χX (xtarget) = xsource do
6: for each value atarget such that χA(atarget) = asource do
7: j← the tile in the target CMAC activated by xtarget ,atarget

8: w j← (qi/nsource)
9: wAverage = average value of all non-zero weights in the target CMAC

10: for each weight w j in the target CMAC do
11: if w j = 0 then
12: w j← wAverage

Transfer from Knight Joust into 4 vs. 3
# of Knight Joust Episodes Ave. 4 vs. 3 Time Standard Deviation

0 30.84 4.72
25,000 24.24 16.18
50,000 18.90 13.20

Table 16: Results from using Knight Joust to speed up learning in 4 vs. 3 Keepaway. Knight Joust
is learned with Q-learning and tabular function approximation and Keepaway players
are learned using Sarsa with CMAC function approximation. Both transfer times are
significantly less than learning without transfer, as determined via Student’s t-tests (p <
0.05).

for this domain were so small, we felt justified in allowing the source task learners run until learning
plateaued (which takes roughly 50,000 episodes).

The main importance of these results is showing that TVITM can successfully transfer between
different tasks with very different dynamics. Keepaway has stochastic actions, is partially observ-
able, and uses a continuous state space. In contrast, Knight Joust has no stochasticity in the player’s
actions, is fully observable, and has a discrete state space.

8. Discussion and Future Work

We consider the research reported in this article to be a first step towards autonomous transfer
learning. In particular, the results presented in this article serve mainly as an existence proof that
TVITM can be effective for speeding up learning in a target task after training in a source task.
As such, it opens up the door for future research that is necessary to build it into a fully general
autonomous transfer method. Specifically,

1. Can χX and χA be learned?

2. When concerned with the total training time of both tasks, what is the optimal amount of
training time to spend in the source task?
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3. How can an agent determine if two tasks are related so that transfer will be able to impart
some advantage?

In this work we construct ρs for learners from a pair of χX , χA inter-task mappings for a given
pair of tasks. There has been initial progress in learning such mappings, as discussed in the next
section. In the future we intend to make this process more automatic or completely autonomous.

Another question that arises from this work is: if the ultimate goal is to learn the target task in
the minimal amount of time, how can one determine the optimal amount of training in the source
task automatically based on task characteristics? While it is clear from our results that spending
more time learning 3 vs. 2 often decreases the amount of time it takes to learn 4 vs. 3 Keepaway,
it is unclear how to determine the number of 3 vs. 2 episodes to use a priori when the goal is to
minimize overall training time. It is likely that such a calculation or heuristic will have to consider
the structure of the two tasks, how they are related, and the specifics of the ρ used.

A fundamental difficulty of transfer learning is determining whether and how two tasks are
similar. Here we only consider the case where the agents are directed to use previous experience to
speed up learning in a new task. In practice, it may be the case that the agent has no experience that
is relevant and the optimal approach is to simply learn the target task without transfer.

Consider the problem of learners that have trained in multiple tasks and have built up different
action-value functions for each of those tasks. When a new task is presented to the learners, they
must now decide from which task to perform the transfer. This situation is analogous to presenting
a human a solution to a problem and then ask how to solve a related problem. Research has shown
(Gick and Holyoak, 1980) that humans are not good at this type of analogy problem. For instance,
Gick and Holyoak presented subjects with a source task and a solution. When they later presented
a similar target task, most people were initially unable to solve the target problem. However, told
to use a strategy similar to that used for a past problem, 90% of the subjects were able to discover
the analogy and solve the target problem. It is likely that computerized learners will have similar
problems deciding if two tasks are related at all, particularly when agents have built up experience
on many different kinds of problems.

Our TVITM methodology relies on being able to find an inter-task mapping between similar
states and actions. The mapping should identify state variables and actions that have similar effects
on the long-term discounted reward. If, for instance, the Keepaway task were changed so that
instead of receiving a reward of +1 at every time step, you received a +10, the ρ could be trivially
modified so that all the weights were multiplied by 10. However, if the reward structure is more
significantly changed, to that of Giveaway for instance, ρ would need to be dramatically changed,
if it could be formulated at all.12

We hypothesize that the main requirement for TVITM to successfully transfer is that, on average,
at least one of the following is true:

1. The best learned actions in the source task, for a given state, be mapped to the best action in
the target task via the inter-task mappings.

2. The average Q-values learned for states are of the correct magnitude in the trained target
task’s function approximator.

12. The “obvious” solution of multiplying all weights by −1 would not work, for instance. In Keepaway a keeper
typically learns to hold the ball until a taker comes within roughly 6m. Thus, if all weights from this policy were
multiplied by−1, the keepers would continually pass the ball until a taker came within 6m. These Giveaway episodes
would last much longer than simply forcing the first keeper to the ball to always hold, which is very easily learned.
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The first condition will work to bias the learner so that the best actions in the target task are chosen
more often, even if these actions’ Q-values are incorrect. The second condition will make learning
faster because smaller adjustments to the function approximators’ weights will be needed to reach
their optimal values, even if the optimal actions are not initially chosen. In this work, an example of
the first condition being met is that a keeper learns to hold the ball in the source task until forced to
pass. Hold is often the correct action in both 3 vs. 2 and 4 vs. 3 when the takers are far away from
the ball. The second condition is also met between 3 vs. 2 and 4 vs. 3 by virtue of similar reward
structures and roughly similar episode lengths. If either of these conditions were not true, the
transfer functional we employed would have to account for the differences (or suffer from reduced
transfer efficacy).

It is important to recognize that domain knowledge contained in χX and χA is required to generate
an effective ρ. As our experiments show, simply copying weights without respecting the inter-task
mapping is not a viable method of transfer, as our function approximator representations necessarily
differ between the two tasks due to changes in S and A. Simply putting the average value of the 3
vs. 2 weights into the 4 vs. 3 function approximator does not give nearly as much benefit as using
a ρ which explicitly handles the different state and action values. Likewise, when we used ρmodi f ied

(introduced in Section 6.2), which copied the values for the weights corresponding to the some of
the state variables incorrectly, learning in 4 vs. 3 was significantly slower. These results suggest that
a ρ which is able to leverage inter-task similarities will outperform more simpleminded ρs.

In this work we have defined χX and χA so that the state variables and actions are mapped inde-
pendently. This formulation was sufficient for all the source task and target task pairs considered in
this work. However, there are likely tasks where these two mappings are intertwined. For instance,
it could be that the actions map differently depending on the agent’s current location in state space.
We would like to investigate how often such an interdependence would be beneficial, and how our
formulation could be enhanced to account for such added complexity.

It is almost certainly possible to find pairs of tasks for which no ρ exists, where transfer would
provide no benefit or even hinder learning. It is also possible to think of a pair of tasks for which
transferring knowledge should be able to provide a benefit but that an intuitive ρ that allows speedup
in learning cannot be found due to the complexity of the domain. This article focuses on providing
an existence proof: we show that we are able to construct ρs for the Keepaway domain and that
they provide significant benefits to learning. A main goal for our future research is to allow ρ to be
constructed automatically between a given pair of tasks, potentially by learning χX and χA .

9. Related Work

The concept of seeding a learned behavior with some initial simple behavior is not new. The psycho-
logical concept of shaping (Skinner, 1953) is well understood and many researchers have applied
the idea to machine learning as well as animal training. There have been approaches to simplifying
reinforcement learning by manipulating the transition function, the agent’s initial state, and/or the
reward function, as reviewed in the following paragraphs.

Past research confirms that if two tasks are closely related the learned policy from a source task
can be used to provide a good initial policy for a target task. For example, Selfridge et al. (1985)
showed that the 1-D pole balancing task could be made harder over time by shortening the length
of the pole and increasing its mass; when the learner was first trained on a longer and lighter pole
it learned to succeed faster in the harder task with different dynamics and transition function. This
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method thus changes the transition function T between pairs of tasks but leaves S, the velocity and
angle of the pole, and A, move right or move left, unmodified.

Learning from easy missions (Asada et al., 1994) allows a human to change the start state of the
learner, sinitial , making the task incrementally harder. Starting the learner near the exit of a maze and
gradually allowing the learner to start further and further from the goal is a demonstration of this.
This kind of direction allows the learner to spend less total time learning to perform the final task.
Our work differs from these two methods because we allow the modification of S and A between
tasks, rather than only T or sinitial .

Transfer of learning (Singh, 1992) applies specifically to temporally sequential subtasks. Using
compositional learning, a large task may be broken down into subtasks that are easier to learn and
have distinct beginning and termination conditions. However, the subtasks must all be very similar
in that they have the same state spaces, action spaces, and environment dynamics. The reward
functions R are allowed to differ. TVITM does not have the restriction that tasks must be divided
into subtasks with these characteristics and, again, we have the additional flexibility of changing S
and A between the source and target tasks.

Another successful idea, reward shaping (Colombetti and Dorigo, 1993; Mataric, 1994), also
contrasts with TVITM. In reward shaping, learners are given an artificial problem which will allow
the learner to train faster than if they had trained on the actual problem with different environmental
rewards, R. However, the policy that is learned is designed to work on the original task as well as
the artificial one. TVITM differs in intent in that we aim to transfer behaviors from existing, rele-
vant tasks which can have different state and action spaces, rather than creating artificial problems
which are easier for the agent to learn. In the RoboCup soccer domain, all the different Keepaway
tasks may occur during the full task of simulated soccer. For instance, there may be times when
three teammates on defense must keep the ball from two opponent forwards until another player
comes into passing range. We therefore argue that we train on useful tasks rather than just simpler
variations of a real task. Using TVITM, learners are able to take previously learned behaviors from
related tasks and apply that behavior to harder tasks that can have different state and action spaces.

While these four methods allow the learner to spend less total time training, they rely on mod-
ification of the transition function, the initial start state, or the reward function to create artificial
problems to train on. We contrast this with TVITM where we allow the state and/or action spaces to
change between actual tasks. This added flexibility permits TVITM to be applied to a wider range of
domains and tasks than the other aforementioned methods. Furthermore, TVITM does not preclude
the modification of the transition function, the start state, or the reward function and can therefore
be combined with other methods if desired.

In some problems where subtasks are clearly defined by state features, the subtasks can be
automatically identified (Drummond, 2002) and leveraged to increase learning rates. This method
is only directly applicable to tasks in which features clearly define subtasks. Furthermore, if the
shape of the various regions in the value function are too complex and the smoothness assumption
is violated too often, the algorithm to automatically detect subtasks will fail.

Learned subroutines have been successfully transfered in a hierarchical reinforcement learning
framework (Andre and Russell, 2002). By analyzing two tasks, subroutines may be identified which
can be directly reused in a target task that has a slightly modified state space. The learning rate for
the target task can be substantially increased by duplicating the local sub-policy. This work can be
thought of as another example in which ρ has been successfully constructed, but in a very different
way.
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Imitation is another technique which may transfer knowledge from one learner to another (Price
and Boutilier, 2003). However, there is the assumption that “the mentor and observer have similar
abilities” and thus may not be directly applicable when the number of dimensions of the state space
changes or the agents have a qualitatively different action set. Other research (Fern et al., 2004)
has shown that it is possible to learn policies for large-scale planning tasks that generalize across
different tasks in the same domain. Using this method, researchers are able to speed up learning
in different tasks without explicitly transferring any knowledge, as the policy is defined for the
planning domain rather than a specific task.

Another related approach (Guestrin et al., 2003) uses linear programming to determine value
functions for classes of similar agents. Rather than treating the different agents independently, all
agents in the same class use a single value function. The target task is assumed to have similar
transition functions and rewards for each class of agent. Thus the authors can directly insert the
class-based value subfunctions into agents in the new task, even though there are a different number
of objects (and thus different state and action spaces). Although no learning is performed in the
new world, the previously learned value functions may still perform better than a baseline hand-
coded strategy. However, as the authors themselves state, the technique will not perform well in
heterogeneous environments or domains with “strong and constant interactions between many ob-
jects (e.g., RoboCup).” Our work is further differentiated as we continue learning in the target task
after performing transfer. While the initial performance in the new domain may be increased after
loading learned action-value functions compared to learning without transfer, we have found that
the primary benefit is an increased learning rate.

The technique of autonomous shaping (Konidaris and Barto, 2006) may prove to be useful for
transfer learning, particularly in agents that have many sensors. In this work the authors show that
reward shaping may be learned on-line by the agent. If a later task has a similar reward structure and
actions, the learned reward shaping will help the agent initially have a much higher performance than
if it were learning without transfer. For instance, if a signal device (a beacon) is near the goal state,
the agent may learn a shaping reward that gives an internal reward for approaching the beacon even
if the environmental reward is zero. This work does not directly address how to handle novel actions
(specifically, actions which are not in the source task’s agent space). Additionally, while the authors
limit themselves to transfer between “reward-linked” tasks, no method is given for determining if a
sequence of tasks are reward-linked and a learned shaping function will not necessarily be useful in
a given target task.

Policies from different tasks can also be learned and then used to speed up the current task
(Fernandez and Veloso, 2006). This technique relies on having a set of tasks where S, A, and T are
constant, but the goal state moves. When the agent is placed in a new task, it can learn to either
exploit a past policy, exploit the policy that it is currently learning, or explore. This technique is
currently restrictive in that it requires S, A, and T to be unchanged between the set of tasks, that
there be one goal state, and that all rewards other than the goal state be zero. However, the idea of
building a library of policies may be a critical one for transfer learning. For instance, once an agent
has trained in multiple Keepaway tasks it would ideally be able to recall any of these policies if it
were placed in the same task or use the most similar of them to speed up the current task.

Automatically generated advice can also be used to speed up learning in transfer (Torrey et al.,
2005). This method allows a RL learner to build up a model for the source task and then extract
general advice. A human then provides a translation for this advice into the new task, similar to our
ρ. The modified advice is then used as constraints in a knowledge-based support vector regression
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method. Instead of setting the initial Q-values as in our work, the advice sets relative preferences for
different actions in different states and thus may work when the reward structure of the tasks change.
One apparent shortcoming of this work is that the initial performance and learning rate of the agents
is only slightly improved relative to learning without transfer, but the results suggest that advice
from one task may be able to help learn a second, related, task. It is also worth noting that while
we cannot directly compare the performance of our two methods because we have not implemented
the “Breakaway” domain, the relative speedup in learning from TVITM is much greater than that
obtained from automatically generating advice.

Wilson et al. (2007) take a different approach by showing that a prior may be transferred in a
hierarchical Bayesian reinforcement learning setting. In this work, the authors consider a multitask
setting where the goal is to be able to learn quickly on an MDP drawn from a fixed but unknown
distribution of MDPs. Learning on subsequent tasks shows a clear performance on a novel task
drawn from this distribution but no attempt is made to reduce the total training time.

This work has demonstrated that inter-task mappings can be used to transfer action-value func-
tions. Taylor et al. (2007) demonstrates that the same mappings can be used to transfer policies,
learned with a genetic algorithm, between tasks. Rules have also been successfully used (Taylor
and Stone, 2007) in conjunction with inter-task mappings as a way of transferring between tasks
that used different RL learning methods. Using such a translation mechanism allows, for instance,
transfer between a source task policy search learner and a value function target task learner.

There have also been recent advances in learning relationships between related RL tasks, a topic
beyond the scope of the current article. Liu and Stone (2006) define qualitative dynamic Bayes
networks which summarize the effect of actions on different state variables. After networks for the
source and target tasks are defined by hand, a graph mapping technique can be used to automatically
find inter-task mappings between the two tasks. Taylor et al. (2007) show that it is also possible to
learn both χA and χX by using a classification technique. To enable such a method, the method
must be provided task-independent objects which describe an object in a task with a set number of
state variables. This assumption is also leveraged in other work (Soni and Singh, 2006), but only
the state-feature mapping is learned (the action mapping χA is hand-coded). AtEase (Talvitie and
Singh, 2007) is an algorithm that generates a number of possible state-feature mappings and then
uses a multi-armed bandit approach to select the best mapping. However, the action mapping (χA)
is assumed, and learning is not allowed in the target task after an appropriate mapping is selected.

10. Conclusions

This article describes the implementation and results from learning Keepaway with Sarsa, a stan-
dard TD method, and three different function approximators. We introduce the transfer via inter-task
mapping method for speeding up reinforcement learning and give empirical evidence in the Keep-
away domain of its usefulness. Rather than utilizing abstract knowledge, this transfer method is
able to leverage the weights from function approximators specifying action-value functions, a very
task-specific form of knowledge. We first give formulations of how to define transfer functionals
for the different function approximators, or re-use learned weights via Q-value Reuse, from a single
pair of inter-task mappings. We proceed to show that agents using all three function approximation
methods can learn to reach a target performance faster in the target task. Additionally, we show that
the total training time can be reduced using TVITM when compared to simply learning the final task
without transfer.
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We give further evidence that TVITM is useful for speeding up learning by utilizing the 5 vs.
4 Keepaway task, which suggests that this method will scale up to even more complex problems.
We have shown that the TVITM method is robust to some changes in the transition function, such as
when the effectiveness of actuators in the two tasks differ. This flexibility may prove critical when
transferring behavior between agents situated in the real world, where environmental conditions
may cause sensors and actuators to have different behaviors at different times.

We introduce a novel variant of Knight Joust, a gridworld task, and demonstrate that transfer
between it and Keepaway is effective despite substantial qualitative differences in the two tasks. We
also show how transfer efficacy is reduced when the source task and target task are less related, such
as when using 3 vs. 2 Flat Reward or 3 vs. 2 Giveaway as source tasks.

When considered as a whole, the experiments presented in this article establish that TVITM can
be used successfully for transferring action-value functions between tasks and reducing training
time. This article therefore constitutes a first step towards a fully general and autonomous transfer
method within the RL framework.
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