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Abstract. Traffic congestion is one of the leading causes of lost productivity
and decreased standard of living in urban settings. In previous work published at
AAMAS, we have proposed a novel reservation-based mechanism for increasing
throughput and decreasing delays at intersections [3]. In more recent work, we
have provided a detailed protocol by which two different classes of agents (in-
tersection managers and driver agents) can use this system [4]. We believe that
the domain created by this mechanism and protocol presents many opportunities
for multiagent learning on the parts of both classes of agents. In this paper, we
identify several of these opportunities and offer a first-cut approachto each.

1 Introduction

Traffic congestion is one of the leading causes of lost productivity and decreased stan-
dard of living in urban settings. According to a recent studyof 85 U.S. cities [18],
annual time spent waiting in traffic has increased from 16 hours per capita to 46 hours
per capita since 1982. In the same period, the annual financial cost of traffic congestion
has swollen from $14 billion to more than $63 billion (in 2002US dollars). Each year,
Americans burn approximately 5.6 billion gallons of fuel while idling in heavy traffic.
Recent advances in artificial intelligence suggest that autonomous vehicle navigation
will be possible in the near future. Individual cars can now be equipped with features of
autonomy such as cruise control, GPS-based route planning [14, 16], and autonomous
steering [10, 12]. It is inevitable that before long many of the cars on the road will have
such capabilities, thus opening up the possibility of autonomous interactions among
multiple vehicles.

Multiagent Systems (MAS) is the subfield of AI that aims to provide both principles
for construction of complex systems involving multiple agents and mechanisms for co-
ordination of independent agents’ behaviors [17]. In earlier work published at AAMAS,
we have proposed a MAS-based approach to alleviating trafficcongestion, specifically
at intersections [4].

Current methods for enabling traffic to flow through intersections include building
overpasses and installing traffic lights. However, the former is very expensive and for-
bids turning, while the latter can be quite inefficient, often requiring cars to remain
stopped even when no cars are present on the intersecting road.



At this time, it is possible to create a small-scale system inwhich all cars are piloted
by a central computer. Consider, for example, the task of controlling ten vehicles on an
open factory floor. However, scaling such a system to handle an intersection in which a
city’s worth of cars might turn up would involve prohibitively expensive and inefficient
communication and control infrastructure. Our goal is to maximize the efficiency of
moving cars through intersections with minimal centralized infrastructure. We assume
that intersections can be outfitted with a simple wireless communication system and a
protocol (which we introduced in a previous paper[2]) for communicating with oncom-
ing traffic and giving permission for cars to pass. In the system we developed, vehicles
must traverse intersections according to a set of parameters agreed upon by the vehicle
and the intersection manager (as they do today by obeying redand green lights), but
otherwise are free to decide for themselves how to drive. Each car is an autonomous
agent, and in particular need not surrender control to any centralized decision maker.

We have demonstrated that our novel reservation system dramatically outperforms
systems used in common practice, including traffic lights and stop signs. We began with
a model in which cars could only go straight and move at constant velocity through the
intersection [3]. In our latest results, we have extended the system to allow for turns and
acceleration in the intersection [4].

In all of this prior work, the behaviors of both the driver agents and the intersec-
tion control agent were all identical and fixed throughout the simulation. However, a
main feature of our research has been the definition of an agent-indepedent protocol for
car-intersection interaction. In particular, we expect that in general, intersections will
have different traffic control algorithms (perhaps depending on the topology of the in-
tersection and/or expected traffic flows), and that indeed each vehicle manufacturer will
create proprietary vehicle control algorithms. As long as they adhere to our pre-defined
protocol, there is no reason to prevent such diversity.

Once we open the possibility of varying behaviors on the partof the agents, the in-
tersection scenario becomes, in a sense, a multiagent game,admitting for the possibility
of strategic behavior on the part of the agents, and ultimately multiagent learning-based
approaches.

In this paper, we identify several possible directions for extending our current model
that will require such multiagent learning. For each direction, we discuss the strategic
issues and propose a first approach towards multiagent learning.

The remainder of this paper is organized as follows. In Section 2, we present a list
of properties we believe a multiagent intersection controlmechanism should have. In
Section 3 we describe the reservation-based system that we have created (in simula-
tion) which we believe has these properties. In Sections 5 and 6 we present several
opportunities for using machine learning in the intersection manager and driver agents,
respectively. In Section 7, we mention other work that has been done in this area. We
conclude in Section 8.

2 Desired Properties

In the process of developing our system we outlined several properties we believed
should hold in order for the system to be realistic and practical.



1. The agents should only communicate information which is necessary for the system
to function properly.

2. The agents should only have access to information that canbe reliably obtained
with current technology.

3. Communication failure (dropped messages) should not violate the system’s safety
properties.

4. The vehicles should be treated as individual agents, and no centralized controller
should have any more control over them than necessary.

5. The system should incorporate a simple communication protocol that allows agents
to know only a minimal amount about each other. As long as agents obey and
understand the protocol, no extra information exchange or other interaction should
be required.

6. Every vehicle should eventually make it through the intersection (i.e. no deadlocks
or starvation).

Many of these properties also ensure that the system will be amenable to machine
learning techniques. Specifically, the simple, reliable protocol ensures that agents are
more or less self-contained — the intersection manager isn’t extensively involved in
the driver agent’s decision making process (and vice versa). Furthermore, the require-
ment that every vehicle makes it through the intersection means that a machine learning
algorithm in its early stages will not bring the system to a halt as a result of risky explo-
ration.

3 The Reservation System

In our previous work, we proposed a novel reservation-basedmulti-agent approach to
alleviating traffic, specifically at intersections. This system consisted of two types of
agents:intersection managersanddriver agents. Each system consists of an intersec-
tion manager for each intersection and a driver agent for each vehicle. Intersection man-
agers are responsible for directing the vehicles through the intersection, while the driver
agents are responsible for controlling the vehicles to which they are assigned. To im-
prove the throughput and efficiency of the system, the driveragents “call ahead” to
the intersection manager and request space-time in the intersection. The intersection
manager then determines whether or not these requests can bemet. Depending on the
decision the intersection manager makes, the driver agent either records the parameters
of the request (thereservation) and attempts to meet them, or it makes another request
at a later time. We have described our implementation of a driver agent in previous
papers [4, 2]. Note that our implementations of the reservation system and the driver
agent are just two possibilities. As long as the agents adhere to the protocol, the system
will still work. In practice, each agent could run a different algorithm or use a different
heuristic to improve performance.

To determine whether or not a request can be met, the reservation manager simulates
the journey of the vehicle across the intersection, which itdivides into a grid ofn × n

tiles. The parametern is called thegranularityof the reservation manager. At each time
step of the simulation, it determines which tiles the vehicle occupies. If throughout this



simulation, no required tile is occupied by another vehicle(from a previous reservation),
the manager reserves the tiles for this vehicle.
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Fig. 1: A screenshot of our simulator in action.

In order to evaluate the performance of the reservation system, we created a cus-
tom simulator. A screenshot of the simulator in action can beseen in Figure 1. We
tested the reservation system against two otherintersection control policies- the over-
pass and the traffic light. An intersection control policy isa method the intersection
managers use to determine when specific vehicles are allowedin the intersection. Us-
ing the simulator, we showed that using the reservation-based policy, vehicles crossing
an intersection experience much lowerdelay (increase in travel time from the opti-
mal) versus the traffic light. Furthermore, we showed that the reservation-based policy
also drastically increases the throughput of the intersection. For any realistic intersec-
tion control policy, there exists an amount of traffic above which vehicles arrive at the
intersection more frequently than they can go through the intersection. At this point,
the average delay experienced by vehicles travelling through the intersection grows
without bound. Compared to the traffic light, this amount of traffic is much higher
for the reservation system. Videos of our most recent developments can be found at
http://www.cs.utexas.edu/users/kdresner/papers/2005aamas/.

4 Communication Protocol

In our latest work, we added the protocol by which the agents can communicate the bare
minimum of information necessary to function appropriately. The protocol consists of



several message types for each kind of agent, as well as some rules governing when
the messages should be sent and what sorts of guarantees accompany them. A detailed
specification of the protocol including full syntax and semantics is available in our
technical report [2]. We believe that this protocol will help facilitate the application of
machine learning techniques to the intersection domain. Here we give a brief overview
of the types of messages available to the agents using this protocol.

4.1 Vehicle→ Intersection

There are four types of messages that can be sent from vehicles to the intersection.

1. REQUEST— This is the message a vehicle sends when it does not have a reserva-
tion and wishes to make one. It contains the properties of thevehicle (ID number,
performance, size, etc.) as well as some properties of the proposed reservation (ar-
rival time, arrival velocity, type of turn, arrival lane, etc.).

2. CHANGE-REQUEST— This is the message a vehicle sends when it has a reserva-
tion, but would like to switch to a different set of parameters.

3. CANCEL — This is the message a vehicle sends when it no longer desiresits current
reservation.

4. RESERVATION-COMPLETED — This message is used when the vehicle has com-
pleted its traversal of the intersection. This message can be used to collect statistics
for each vehicle, which can be recorded in order to analyze and improve the perfor-
mace of the intersection manager.

4.2 Intersection→ Vehicle

There are three types of messages that can be sent from the intersection to the individual
vehicles.

1. CONFIRMATION — This message is a response to a vehicle’s REQUEST(or CHANGE-
REQUEST) message. It can contain a counter-offer by the intersection. The reser-
vation parameters in this message are implicitly accepted by the vehicle, and must
be explicitly cancelled if the driver agent of the vehicle does not approve. Note
that this is safe to faulty communication — the worst that canhappen is that the
intersection reserves space that does not get used.

2. REJECTION — By sending this message, an intersection can inform a vehicle
that the parameters sent in the latest REQUEST(or CHANGE-REQUEST) were not
acceptable, and that the intersection either could not or did not want to make a
counter-offer. This message also contains a field indicating whether or not the re-
jection was because the reservation manager requires the vehicle to stop at the in-
tersection before entering. This lets the driver agent knowthat it should not attempt
any more reservations until it reaches the intersection.

3. ACKNOWLEDGMENT — This message acknowledges the receipt of a CANCEL or
RESERVATION-COMPLETEDmessage.



5 Learning Opportunities For The Intersection Manager

At this point in the paper we have described the current stateof our implementation,
describing mainly the aspects required to motivate the multiagent learning opportunities
we see in the future. We now turn our attention to those opportunities. Our goal at the
outset of this project was to improve the efficiency of intersections. It seems natural,
then, to start with the agent controlling which vehicles have access to the intersection:
the intersection manager.

5.1 Delayed Response

Incorporating any nontrivial learning into the intersection manager may require a few
conceptual changes to the intersection manager. As it stands, all intersection managers
in the system respond immediately to requests made by vehicles. Given this constraint,
the current reservation system performs as well as it can — itcan’t tell what is going
to happen in the future. However, if we relax this constraintand allow the reservation
manager to respond to requests at a later time, the intersection manager would have time
to get a feel for the competing requests and can make a more well-informed decision.

This modification suggests a straightforward method for determining whether or not
to grant reservations. When the intersection manager receives a request, it can calculate
the last possible point at which it can respond without forcing the sending vehicle to
slow down for lack of having a reservation. The intersectionmanager holds on to the
reservation request until that time. In the meantime, it considers other vehicles’ requests
and can then grant reservations more efficiently.

Allowing this delayed response offers an immediate improvement over the current
system. Consider the following example in which three vehicles,A, B, andC all send
reservation requests to the intersection manager a short time after one another. Now
suppose that vehicleA’s request conflicts with bothB’s andC ’s (that is, they require
the same reservation tile at a specific time), but thatB’s request does not conflict with
C ’s. With our current system, the reservation manager would approveA’s request, but
reject bothB andC. With the new system, onlyA would be rejected.

In addition to improving the efficiency of the system, addinga delayed response
creates some opportunites to apply machine learning. In particular, as the number of
outstanding reservation requests increases, the number ofpossible responses scales ex-
ponentially. Since timeliness is an important constraint,the intersection manager will
need to intelligently search through set of possible responses in order to optimize the
overall performance. Learned search control knowledge based on off-line optimization
trials could play an important role in this regard.

Furthermore, projected incoming traffic can also play an important role. Once a
reservation is accepted, it can’t be cancelled. However, the parameters of reservations
made in the near future are going to be related to the parameters of the reservations made
now. For example, in heavy traffic, it may be best to reject a reservation request even
when it doesn’t conflict with many other requests in the same time frame — granting
that reservation may cause the system to perform much more poorly at a slightly later
time. In this sense, a learned model of incoming traffic as a function of time of day, day
of week, and/or recent history could improve performance byserving as an input to the
forward simulations of the impact of any given decision.



5.2 Vehicles With Priorities

In our current simulation, all vehicles are treated as equally important with regards to
the performance metric. However in practice, the intersection should be able to give
preferential treatment to a subset of vehicles, such as emergency vehicles. For example,
a normal commuter would have a low priority, a police car would have a high priority,
and an ambulance or fire truck en route to a fire would have yet a higher priority.

The first-cut solution to this problem is straightforward: whenever the reservation
manager receives a request that conflicts with a request which it is currently holding, it
rejects the lower priority request. This does enforce the constraint that higher priority
vehicles are given preference, but is not optimal by any stretch of the imagination. Con-
sider again three vehicles: a daily communter, a police car,and an ambulance racing a
heart-attack victim to the hospital. If the commuter is in front of the ambulance and it is
forced to yield to the police car, it will hold up the ambulance as well. If the intersection
manager instead just allowed the commuter through, the ambulance may have been able
to pass unhindered. The actual relationship between the times of a particular vehicle’s
reservation, that vehicle’s priority, the characteristics of other approaching vehicles, and
how much it is worth to the intersection to accept the reservation is very complicated.
However, a reinforcement learning algorithm may be able to capture this relationship.
When vehicles complete a trip across the intersection, the intersection manager could be
given a reward signal inversely proportional to the delay the vehicle experienced. The
manager could eventually learn to grant reservations basedon the vehicles’ priorities
and the current traffic patterns so as to maximize the system’s overall future reward.

5.3 The Intersection as a Market

Another consideration is that vehicles might have to pay to use the intersection. With
states in the U.S. such as Oregon and California already considering taxing motorists
by the mile, this is not far-fetched. Along with reservationrequests, vehicles would
transmit a bid. The reservation manager’s goal would be to collect the most revenue.
A first-cut solution would be analagous to the example with vehicle priorities: when a
reservation comes in, reject any currently pending reservations that conflict with it and
have a lower bid. This is obviously not optimal — consider anyset ofn vehicles such
that for all0 < i < n, vehiclei andi+1 conflict. As long as the bid for vehiclei+1 is
greater than that of vehiclei, the reservation manager will wind up only letting through
vehiclen. Instead, it might have been able to allow through vehicles1, 3, . . .. This is
approximatelyn

2
vehicles and would generate a lot more revenue.

In this context, the intersection can be framed as a continually clearing combina-
torial auction. The decision for any given grid cell must occur whenever the first car
that needs it is about to enter the intersection. There is a tradeoff between letting a car
through and retaining flexibility for later that the intersection manager must maintain.
That is, letting an individual car through is good for the intersection manager. However,
not letting that car through may lead to more positive benifits later on. Since even a
single combinatorial auction can be computationally costly to solve, continually clear-
ing, interacting combinatorial auctions are likely to be intractable. However, based on
off-line simulation, the intersection manager could learnexpected marginal values for
granting a request to a given driver and therefore more effectively balance the above
tradeoff.



6 Learning Opportunities for the Driver Agent

While there are many opportunities for the intersection manager to improve, they are
mostly of the form of a single agent learning how to interact with multiple fixed agents
(the drivers). The truemultiagentlearning opportunities lie in the vehicles.

6.1 Bidding in the Market System

In Section 5, we showed how a market could play an important role in the intersection
management problem. In the example we gave, it wasn’t clear how the agents should
determine what bid to place with their reservation requests. An agent could start with
a low bid and then continue raising it until one gets accepted, but this process takes
time and it could wind up severely delayed just because it wasn’t willing to commit to
the higher bid up front. This is a very challenging problem — to solve it effectively
would require a more detailed response from the intersection manager: the amount of
the bid that caused the request to be rejected, the average bid amount for this particular
intersection at this time of day, and so forth. Even with thistype of information, though,
it is unclear how to proceed. Learning the relationship between time of day, day of
week, recent traffic reports, and a reasonable price for a reservation is a task well-suited
to a neural network or other supervised learning algorithm.In off-line simulation, many
vehicles could be run through the intersection, and when onegets a reservation, it could
use the cost it eventually had to pay as a target value, weighted perhaps by how quickly
it got the reservation.

6.2 Lane Changing

One of the features of our reservation system is the completeautonomy of driver agents
while they are outside the intersection. Thus, when considering how to incorporate some
sort of lane changing behavior, ideally we’d like to avoid having the intersection man-
ager tell the vehicles which lane they should be in. However,as in the previous example,
having the reservation manager (or some other source) provide the vehicle with relevant
information could be extremely useful. For example, if an intersection manager realizes
that one lane has a lot of cancelled reservations (e.g. from astalled vehicle in that
lane preventing other vehicles from fulfilling their reservations), this information might
let vehicles know that they should switch to another lane instead of trying to make it
through in the lane with the stalled car. It would then be interesting to explore how much
and what kind of information the intersection manager is required to give the vehicles
such that they can best choose which lane to use. If the driveragents were able to learn a
better policy for lane choice, we could examine which information is useful for making
that decision without having to first determine precisely how they are using it.

6.3 Making Better Reservations

In the current implementation, driver agents must find a way to make reservations that
they can keep. To do this, they must be able to accurately predict when they will reach



the intersection, accounting for delays from other vehicles and road hazards. In a real-
life implementation, statistics and data the intersectionmanager has collected may be
useful and thus made available to the driver agent. For example, as in both the bidding
and lane-changing examples, the intersection manager may be able to provide vehicles
with statistics on recent reservations. Once again, how to use these data is not imme-
diately obvious and certainly depends on the algorithms (learning or otherwise) used
by the other drivers. While the sensors in our simulated vehicles do not do it currently,
they might be able to track the speed of the vehicle in front over the 10 seconds before
making a reservation, or determine that the vehicle in frontis a public bus and therefore
might stop before the intersection for a long period of time.Given these new inputs, the
driver agent could learn to better predict when and how it will arrive at the intersection.

7 Related Work

Rasche and Naumann have worked extensively on decentralized solutions to intersec-
tion collision avoidance problems [9, 11]. Many approachesfocus on improving current
technology (systems of traffic lights). For example, Roozemond allows intersections to
act autonomously, sharing the data they gather [15]. The intersections then use this in-
formation to make both short- and long-term predictions about the traffic and adjust
accordingly. This approach still assumes human-controlled vehicles. Bazzan has used
an approach using both MAS and evolutionary game theory which involves multiple in-
tersection managers (agents) that must focus not only on local goals, but also on global
goals [1].

Work is also being done with regard to the control of the individual vehicles. Halĺe
and Chaib-draa have taken a MAS approach to collaborative driving by allowing ve-
hicles to formplatoons, groups of varying degrees of autonomy, that then coordinate
using a hierarchical driving agent architecture [5]. While not focusing on intersections,
Moriarty and Langley have shown that reinforcement learning can train efficient driver
agents for lane, speed, and route selection during freeway driving [8].

On real autonomous vehicles, Kolodko and Vlacic have created a primitive system
for intersection control which is very similar to the granularity-1 reservation system [7].

Actual systems in practice (not MAS) for traffic light optimization include TRAN-
SYT [13], which is an off-line system requiring extensive data gathering and analysis,
and SCOOT [6], which is an advancement over TRANSYT, responding to changes in
traffic loads on-line. However, almost all of the methods in practice or discussed above
still rely on traditional signalling systems.

8 Conclusion

The intersection management problem presents a challenging yet promising domain
for multi-agent learning research. The intersection control mechanism we developed is
a vast improvement over current methods, but with a few extensions poses some chal-
lenging problems. We have provided several examples of suchproblems where machine
learning could be used to improve the performance of both intersection managers and
driver agents. These examples are at this point speculative. In ongoing research we are
investigating how to bring them and other learning opportunities into practice.
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