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Abstract. As machine learning is applied to increasingly complex tasks,
it is likely that the diverse challenges encountered can only be addressed
by combining the strengths of different learning algorithms. We exam-
ine this aspect of learning through a case study grounded in the robot
soccer context. The task we consider is Keepaway, a popular benchmark
for multiagent reinforcement learning from the simulation soccer domain.
Whereas previous successful results in Keepaway have limited learning to
an isolated, infrequent decision that amounts to a turn-taking behavior
(passing), we expand the agents’ learning capability to include a much
more ubiquitous action (moving without the ball, or getting open), such
that at any given time, multiple agents are executing learned behav-
iors simultaneously. We introduce a policy search method for learning
“GETOPEN” to complement the temporal difference learning approach
employed for learning “PAss”. Empirical results indicate that the learned
GETOPEN policy matches the best hand-coded policy for this task, and
outperforms the best policy found when PASS is learned. We demon-
strate that PAss and GETOPEN can be learned simultaneously to realize
tightly-coupled soccer team behavior.

1 Introduction

Learning to play soccer can be framed elegantly as a multiagent reinforcement
learning (RL) problem. However, the state-of-the-art in multiagent RL is yet to
cope with the demands of such a complex problem. In the context of multiagent
RL, a number of models have been proposed to exploit task-specific regulari-
ties such as coordination of actions [5], state abstraction [4], and information
sharing [12]. While such measures all pave the way towards learning increasingly
complex behavior, they still assume that the task being considered is simple
enough to be learned using a single learning algorithm. Yet complex tasks such
as soccer comprise multiple overlapping behaviors, whose diverse demands can
only be met by combining the strengths of qualitatively different learning ap-
proaches. Identifying this as a crucial direction for future research, we present
a detailed case study of one such task that is grounded in the RoboCup 2D
simulation soccer platform [2].

The task we consider is Keepaway [14], which has become a popular test-bed
for multiagent RL [8,9]. Keepaway is a realistic, continuous, high-dimensional,
stochastic task, and is significantly more complex than synthetic, discrete tasks
such as Predator-Prey [1] that have been used in the past for studying agent co-
operation [7] and games such as Tic-Tac-Toe for studying agent competition [12].
However, all the learning in Keepaway to date has addressed just one aspect of
the task, in which the learned decision is made on a turn-taking basis among



teammates. These studies have all focused on the “Pass” behavior of the player
with possession of the ball in deciding whether (and to which teammate) to pass.
They assume that its teammates, when moving to positions on the field likely
to induce successful passes, execute fixed, hand-coded “GetOpen” strategies.

In contrast, we formulate GETOPEN as a multiagent learning problem, thereby
extending learning in Keepaway from PAss to PASS+GETOPEN. Consequently,
Keepaway becomes an instance of a learning problem composed of highly in-
terdependent behaviors executing simultaneously. Each player executes multiple
behaviors (PAss and GETOPEN) that affect the outcome of its teammates’ be-
haviors, and in the long run, also interact with one another. Such a scenario
poses a significant challenge for designing a credit assignment scheme that both
reflects the intended objectives in the underlying task and guides learning in a
natural, incremental manner.

We present a novel solution for learning GETOPEN using policy search, which
contrasts with the temporal difference learning method used for PAss. Results
show that the learned GETOPEN policy matches the best performing hand-coded
policy for this task. Further experiments illustrate that learning these comple-
mentary behaviors results in a tight coupling between them, and indeed that
PAss and GETOPEN can be learned simultaneously. These results demonstrate
the effectiveness of applying separate learning algorithms to distinct components
of a significantly complex task. As a direct consequence of our formulation of
GETOPEN for learning, numerous opportunities arise for conducting research in
the Keepaway test-bed.

This paper is organized as follows. In Section 2, we review the standard PAsS
task and formalize GETOPEN similarly. In Section 3, we describe algorithms for
learning PAss and GETOPEN, both individually and together. Experimental
results are discussed in Section 4, which is followed by a presentation of related
and future work in Section 5. Our conclusions are summarized in Section 6.

2 Keepaway PASS and GETOPEN

The RoboCup 2D simulation soccer domain [2] models several difficulties that
agents must cope with in the real world. Soccer is necessarily a multiagent enter-
prise, in which agents have both teammates and opponents. In the simulation,
they are only provided partial and noisy perceptions, and have imperfect actua-
tors. Their sensing and acting routines are not synchronized, and in the interest
of keeping real time, do not admit extensive deliberation. The atomic actions
available to an agent are Turn, Turn-Neck, Dash, Kick, and Catch; skills such as
passing to a teammate or going to a point must be composed of a string of these
low-level actions executed sequentially. For all these reasons, simulated RoboCup
soccer becomes a challenging domain for machine learning.

Keepaway [14] is a subtask of soccer in which a team of 3 keepers aims to
keep possession of the ball! away from the opposing team of 2 takers. The game

1 A player is deemed to have possession of the ball if it is close enough to be kicked.
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Fig.1. (a) A snapshot of Keepaway. (b) Corresponding PASS state variables.

(¢) Target points for GETOPEN, among them P. (d) Corresponding GETOPEN
state variables. dist(K7, K}) and dist(K;, K]) (darkened) overlap.

is played within a square region of side 20m.? Each episode begins with some
keeper having the ball, and ends when some taker claims possession or the ball
overshoots the region of play. It is the objective of the keepers to maximize
the expected length of the episode, referred to as the episodic hold time. The
keepers must cooperate with each other in order to realize this objective; they
compete with the team of takers that seeks to minimize the hold time. Figure 1(a)
shows a snapshot of a Keepaway episode in progress.

In order to make the task amenable to learn-
Teammate is closest

ing, it becomes necessary to constrain the scope of to ball
decision making by the keepers. Figure 2 outlines . ) T

K A am closest GETOPEN
the policy followed by each keeper in the scheme to ball Thave,
employed by Stone et al. [14]. The keeper closest possessoR
to the ball intercepts the ball until it has posses- 1donot have PASS
sion. Once it has possession, it must execute the  Possession
PAss behavior (not to be confused with a pass Intercept ball

action), by way of which it may retain ball pos-
session or pass to a teammate. Keepers other than
the one closest to the ball move to a position con-
ducive for receiving a pass by executing GETOPEN behavior.

PAss and GETOPEN, by offering a choice of high-level actions based on the
keeper’s state, are candidates for the application of learning. Most prior work
assumes GETOPEN, and indeed the behavior followed by the takers, to follow
fixed, hand-coded strategies. In other words, the teammates and opponents of the
keeper with the ball do not adapt to the specific characteristics of that keeper, as
they do in real soccer. As a step in the direction of furthering team adaptation,
we extend the frontier of learning in Keepaway to include GETOPEN. Thus, we
treat Keepaway as a composite of two distinct behaviors to be learned: PASS and
GETOPEN. As in previous work [14], we restrict the takers to the fixed policy of
moving towards the ball. In recent work, Iscen and Erogul [8] explore learning
taker behavior, which complements the work in our paper (see Section 5).

Fig. 2. Policy followed by
each keeper.

2 Keepaway can be generalized to varying numbers of keepers and takers, as well as
field sizes [14].



2.1 Keepaway PASS

Here we revisit the problem of PaAss defined by Stone et al. [14]. The keepers
and takers assume roles that are indexed based on their distances to the ball: K;
is the ' closest keeper to the ball, and T} the j* closest taker. From Figure 2,
we see that the keeper executing PASS must be Kj.

The three high-level actions available to K; are HoldBall, which is composed
of a series of kicks close to itself, but away from any approaching takers; and
PassBall-i, i € 2,3, a direct pass to K;. Each player processes its low-level per-
ceptual information to construct a world model, which constitutes a continuous
state space. This space is represented through a vector of 13 state variables,
comprising distances and angles among the players and the center C of the field.
These are marked in Figure 1(b), and enumerated in Table 1.

A policy for PASs maps a
13-dimensional vector represent- Algorithm 1 PAsS:HAND-CODED

ing the state variables to one input Pass state variables (13)

sl . . _ output Action € {HoldBall, PassBall-2, PassBall-3}
of the high-level actions: Hold i dist(K1.T1) > Cy then

Ball, PassBall-2, and PassBall- Return HoldBall.

. B for i € 2,3 do
.3. An example of such a pol valAng, — minge1.s ang(Ki, Kv, ;).
icy is PAss:HAND-CODED (Algo- val Dist; — minje1 o dist(K;, T;).

: : : val; < Cy - valAng; + valDist;.
rithm 1), which implements a if maxcs s val; > Cy then
well-tuned manually programmed passIndex — argmax;cy 5 val;.
strategy [14]. Under this policy, elslzet“m PassBall-passindex.

K, executes HoldBall until the Return HoldBall.

{C1 =5.0,Cy = 0.25,C3 = 22.5; distances are taken

takers get within a certain range, to be in meters and angles in degrees.}

after which distances and angles
involving its teammates and opponents are used to decide whether (and to
which teammate) to pass. Yet another policy for Pass is PAss:RANDOM, un-
der which K7 chooses one of the three available actions with equal likelihood.
PAss:LEARNED denotes a learned PASS policy, which is described in Section 3.

2.2 Keepaway GETOPEN

Whereas learning the PASS behavior has been studied extensively in the litera-
ture [9, 10], to the best of our knowledge, all previous work has used the hand-
coded GETOPEN policy originally defined by Stone et al. [14], which we refer
to here as GETOPEN:HAND-CODED. Thus, while previous work on this task has
considered multiple agents learning, they have never been executing their learned
behaviors concurrently (only one player executes PASS at any given time). This
paper introduces a learned GETOPEN behavior, thereby expanding the scope of
multiagent learning in Keepaway significantly. Below we describe our formulation
of GETOPEN.

In principle, there are infinitely many positions that Ky and K3 can occupy
on the square playing field, However, they only get a small amount of time to
pick a target. Since nearby points are likely to be of similar value, an effective
strategy is to evaluate only a small, finite set of points spread out across the field
and choose the most promising. Figure 1(c¢) shows a uniform grid of 25 points



overlaid on the field, with a 15% margin on the sides. GETOPEN is implemented
by evaluating each grid point P, and moving to the one with the highest value.
Indeed, we define the GETOPEN learning problem to be learning an evaluation
function that assigns a value to every target point P, given the configuration of
the players.

As with PAss, it becomes necessary to define a set of state variables for learn-
ing GETOPEN. In Figure 1(d), K3 is shown seeking to evaluate the point P at
some time ¢. The distances and angles marked correspond to the GETOPEN state
variables used for the purpose, which we identify based on informal experimen-
tation. None of the state variables involve K3, as K3 is examining a situation at
time ¢’ in the future when it would itself be at P. At time ¢’, K3 expects to have
possession of the ball, and re-orders the other players based on their distances
to it. Thus K3 becomes K|, and in the state from Figure 1(d), K; becomes
K, Ty becomes T, and so on. Conceptually, the evaluation of the target point
P should consider both the likelihood of receiving a pass at P, and the value
of being at P with the ball afterwards. This leads to two logical groups within
the state variables. One group contains 2 variables that influence the success of
a pass from K; to K7, the latter being at P. These are the distance between
K, and K7, and the minimum angle between K, K| and any taker. The other
group of state variables bear direct correspondences with those used for learning
PAss, but computed under the re-ordering at ¢’. Of the 13 state variables used
for PAss, we leave out the 5 distances between the players and the center of the
field, as they do not seem to benefit the learning of GETOPEN. This results in
a total of 10 state variables for GETOPEN, which are listed in Table 1.

In defining the state variables Table 1. PAss, GETOPEN state variables.

for GETOPEN, it is implicitly as-  [Pass GETOPEN
sumed that players other than [dist(¥1, K2) dist(Ky, K3)
, . L. dist(Kq, K3) dist(K7y, K5)
K7 do not change their positions |gist (k. 1) dist(K], T}
between ¢ and t’. This clearly |dist(K2,T») dist(Ky, T;)

minje,2 dist(Ka,T;) minjeq 2 dist(Ké,T]{)

imperfect assumption does not mingey 2 ang(Kz, K1, Ty) |minjey 2 ang(KL, K}, T))
have too adverse an impact since |minjeyo dist(Ks,T;)  |minjer 2 dist(K}, T))
GETOPEN is executed every cy- |minjenzang(Ks, Ky, T;)|minjes 2 ang (K, K7, T))
cle, always with the current posi-  |aist(ky, C) dist(Ky, K1)

tions of all players. Revising the Zzig?g; minje1,2 ang(Ky, K1, Tj)
target point every cycle, however, digt(T:c)
has an interesting effect on a ran-  |dist(T2, C)
dom GETOPEN policy. In order to

get from point A to point B, a player must first turn towards B, which takes 1-2
cycles. When a random target point is chosen each cycle, K| constantly keeps
turning, achieving little or no net displacement. To redress this effect, our im-
plementation of GETOPEN:RANDOM only allows K} to revise its target point
when it reaches its current target. Such a measure is not necessary when the tar-
gets remain reasonably stable, as they do for GETOPEN:LEARNED, the learned
policy, and GETOPEN:HAND-CODED [14], which we describe below.




Under GETOPEN:HAND-
. Al ithm 2 GETOPEN:HAND-CODED
CODED (Algorithm 2), the value gorithm 2 GETO co
input Evaluation point P, World State

of a point P is inversely re- output Value at P

. . . " 1

lated to its congestion, a mea- teamCongestion < 37.c1 5 3 i 2myindes Tt P)"
) . 1 7

sure of its distances to the oppCongestion «— 37 ;e1 2 grseery, Py -

keepers and takers Assuming congestion «— teamCongestion + oppCongestion.

. value «+ —congestion.
that K1 will pass the ball from safety < minjc1 2 ang(P, predictedBallPos, Tj;).

predictedBallPos, P is deemed if SZ{; eetg{_<_Colo.then

an inadmissible target (given a Return value.

value of —OO) if any taker comes {C1 = 18.4; angles are taken to be in degrees.}
within a threshold angle of the line joining predictedBallPos and P. Thus,
GETOPEN:HAND-CODED is a sophisticated policy using complex entities such
as congestion and the ball’s predicted position, which are not captured by the
set of state variables we define for learning GETOPEN. In Section 4, we compare
GETOPEN:HAND-CODED with GETOPEN:LEARNED to verify if simple distances
and angles indeed suffice for describing competent GETOPEN behavior.

2.3 Keepaway PASS+GETOPEN

PAss and GETOPEN are separate behaviors of the keepers, which together may
be viewed as “distinct populations with coupled fitness landscapes” [12]. At any
instant, there are two keepers executing GETOPEN; their teammate, if it has
intercepted the ball, executes PASS. Specifically, each keeper executes GETOPEN
when it assumes the role of Ky or K3, and executes PASS when it has possession
of the ball, as K. The extended sequence of actions that results as a combination
each keeper’s PAss and GETOPEN policies determines the team’s performance.
Indeed, the episodic hold time is precisely the temporal length of that sequence.
PAss has been the subject of many previous studies, in which it is modeled as a
(semi) Markov Decision Problem (MDP) and solved through temporal difference
learning (TD learning) [9,10,14]. In PAss, each action (HoldBall, PassBall-1,
PassBall-2) is taken by exactly one keeper; hence only the keeper that takes an
action needs to get rewarded for it. Indeed, if this reward is the time elapsed
until the keeper takes its next action (or the episode ends), the episodic hold
time gets maximized if each keeper maximizes its own long-term reward.
Unfortunately, GETOPEN does not admit a similar credit assignment scheme,
because at any instant, two keepers (K and K3) take GETOPEN actions to move
to target points. If K7 executes the HoldBall action, none of them will reeceive a
pass; if K7 passes to Ky (K3), it is not clear how K3 (K3) should be rewarded. In
principle, the sequence of joint actions taken by Ko and K3 up to the successful
pass must be rewarded. Yet, such a joint action is taken every cycle (in contrast
with PASs actions, which last 4-5 cycles on average), and the large number of
atomic GETOPEN actions (25, compared to 3 for PAss) leads to a very large joint
action space. In short, GETOPEN induces a far more complex MDP than PAss.
An additional obstacle to be surmounted while learning PAss and GETOPEN
together is non-stationarity introduced by each into the other’s environment. All
these reasons, combined with the inherent complexity of RoboCup 2D simulation
soccer, make PASS+GETOPEN a demanding problem for machine learning.



3 Learning Framework

Each of the 3 keepers must learn one PASS and one GET-OPEN policy; an array
of choices exists in deciding whether the keepers learn separate policies or learn
them in common. Thus, the total number of policies learned may range from 2
(1 Pass, 1 GETOPEN) to 6 (3 Pass, 3 GETOPEN). Different configurations have
different advantages in terms of the size of the overall search space, constraints
for communication, the ability to learn specialized behaviors, etc. It falls beyond
the scope of this paper to systematically comb the space of solutions for learning
Pass and GETOPEN. As an exploratory study, our emphasis in this work is
rather on verifying the feasibility of learning these behaviors, guided by intuition,
trial and error. In the learning scheme we adopt, each keeper learns a unique
PAss policy, while all of them share a common GETOPEN policy. We proceed to
describe these. As in Section 2, we furnish pseudo-code and parameter settings
to ensure that our presentation is complete and our experiments reproducible.

3.1 Learning PASS

We apply the same algorithm and parameter values employed by Stone et al.
for learning PAsS [14], under which each keeper uses Sarsa to make TD learning
updates. Owing to space restrictions, we do not repeat the specifications of this
method here, which is described in detail in Section 4 of their paper [14].

3.2 Learning GETOPEN

The solution to be learned under GETOPEN is an evaluation function over its
10 state variables, by applying which the keepers maximize the hold time of
the episode. Whereas TD learning is a natural choice for learning PASs, the
difficulties outlined in Section 2.3 to solve GETOPEN as a sequential decision
making problem make direct policy search a more promising alternative. Thus,
we represent the evaluation function as a parameterized function and search for
parameter values that lead to the highest episodic hold time.

Our learned GETOPEN policy is implicitly represented through a neural net-
work that computes a value for a target location given the 10-dimensional input
state. The player executing GETOPEN compares the values at different target
points on the field, and moves to the point with the highest value. Note that
unlike with PAss, these values do not have the same semantics as action values
computed through TD learning; rather, they merely serve as action preferences,
whose relative order determines which action is chosen. We achieve the best re-
sults using a 10-5-5-1 network, with a total of 91 parameters (including biases
at each hidden node). The parameters are initialized to random values drawn
uniformly from [—0.5,0.5]; each hidden node implements the sigmoid function
f(x) = 1.7159 - tanh(3x), suggested by Haykin [6].

A variety of policy search methods are applicable for optimizing the 91-
dimensional policy. We verify informally that methods such as hill climbing,
genetic algorithms, and policy gradient methods all achieve qualitatively sim-
ilar results. The experiments reported in this paper are conducted using the
cross-entropy method [3], which evaluates a population of candidate solutions
drawn from a distribution, and progressively refines the distribution based on a



selection the fittest candidates. We use a population size of 20 drawn initially
from N(0,1)%, picking the fittest 5 after each evaluation of the population. Each
keeper follows a fixed, stationary PASS policy across all evaluations in a gener-
ation; within each evaluation, all keepers share the same GETOPEN policy (the
one being evaluated). The fitness function used is the average hold time over 125
episodes, which negates the high stochasticity of Keepaway.

3.3 Learning PASS+GETOPEN

Algorithm 3 outlines our
method for learning Pass+ Algorithm 3 Learning PAss+GETOPEN

GETOPEN. Learning is boot- ©utput Policies ey and maerorn
Trpass <— PASS:IRANDOM.

strapped by optimizing a TGeropey < GETOPEN:RANDOM.
GETOPEN policy for a ran- repeat

P . Y Tarrorey < learnGetOpen(mpass, TGrrOpmy)-
dom PASS pOhCY' The beSt TPass < learnPaSS(ﬂ'PA557 TrGETOPEN)'

GETOPEN policy found after until convergence

Return mpss, TGeropns -
two iterations (a total of 2 x
20 x 125 = 5000 episodes) is fixed, and followed while learning PASS using Sarsa
for the next 5000 episodes. The PASS policy is now frozen, and GETOPEN is
once again improved. Thus, inside the outermost loop, either PAss or GETOPEN
is fixed and stationary, while the other is improved, starting from its current
value. Note that mp,ss and mapropex are still ezecuted concurrently during each
Keepaway episode as part of learnPass() and learnGetOpen().

Whereas Algorithm 3 describes a general learning routine for each keeper
to follow, in our specific implementation, the keepers execute it in phase, and
indeed share the same wqgropen. Also, we obtain slightly better performance
in learning PASS+GETOPEN by spending more episodes on learning GETOPEN
than on learning PAsSs, which we report in the next section.

4 Results and Discussion

In this section, we report the results of a systematic study pairing three PASS
policies (PAss:RANDOM, PAss:HAND-CODED, and PASS:LEARNED) with three
GETOPEN policies (GETOPEN:RANDOM, GETOPEN:HAND-CODED, and GET-
OPEN:LEARNED). For the sake of notational convenience, we use abbreviations:
thus, PASS:RANDOM is denoted P:R, GETOPEN:LEARNED is denoted GO:L,
and their conjunction P:R-GO:L. Nine configurations arise in total. Figure 4
shows the performance of each PASS policy when paired with different GETOPEN
policies, and vice versa.? Policies in which both PAss and GETOPEN are either
random or hand-coded are static, while the others show learning.

Figure 3(c) shows the performance of P:L. P:L-GO:HC corresponds to the
experiment conducted by Stone et al. [14], and we see similar results. After
30,000 episodes of training, the hold time achieved is about 14.9 seconds, which
falls well short of the 16.7 seconds registered by the static P:HC-GO:HC policy
(Figure 3(b)). Although P:L-GO:HC is trained in these experiments with a

3 Videos of policies are posted on the following web page: http://www.cs.utexas.
edu/~AustinVilla/sim/keepaway-getopen/.
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Fig. 3. Learning curves corresponding to conjunctions of various PASsS and
GETOPEN policies. Each curve represents an average over at least 20 indepen-
dent trials. Each reported point corresponds to an evaluation (non-learning) for
500 episodes; points are reported every 2500 episodes. Note that each of the nine
experiments appears once in the left column, where experiments are grouped by
common PASS policies, and once in the right column, where they are grouped
by GETOPEN.
constant learning rate of a = 0.125, we posit that annealing a will improve
its performance by avoiding the gradual dip in hold time we observe between
episodes 12,500 and 30,000. In the absence of any guarantees about convergence
to optimality, we consider the well-tuned P:HC-GO:HC to serve as a near-
optimal benchmark for the learning methods. Interestingly, under the random
GETOPEN policy GO:R (Figure 3(d)), P:HC is overtaken by P:L at 30,000
episodes (p < 0.0001). This highlights the ability of learning methods to adapt
to different settings, for which hand-coded approaches demand manual attention.
Figure 3(f) confirms the viability of our policy search method for learning
GETOPEN, and its robustness in adapting to different PASs policies. Practical
considerations force us to terminate experiments after 30,000 episodes of learn-
ing, which corresponds roughly to one day of real training time. After 30,000
episodes, P:HC-GO:L achieves a hold time of 16.9 seconds, which indeed ex-
ceeds the hold time of P:HC-GO:HC (Figure 3(b)); yet despite running 20
independent trials of each, this result is not statistically significant. Thus, we
only conclude that when coupled with P:HC, learning GETOPEN, a novel con-
tribution of this work, matches the hand-coded GETOPEN policy that has been
used in all previous studies on the Keepaway task. This result also highlights that
well-crafted state variables such as congestion and predicted Ball Pos, which are
used by P:HC-GO:HC, are not necessary for describing good GETOPEN behav-
ior. Interestingly, the hold time of P:HC-GO:L is significantly higher than that
of P:L-GO:HC (p < 0.001). In other words, our GETOPEN learning approach
outperforms the previously studied PASS learning when each is paired with a
hand-coded counterpart, underscoring the relevance of learning GETOPEN.



An important result we observe from Figures 3(¢) and 3(f) is that not only
can PASS and GETOPEN be learned when paired with static policies, they can
indeed be learned in tandem. In our implementation of Algorithm 3, we achieve
the best results by first learning GETOPEN using policy search for 5000 episodes,
followed by 5000 episodes of learning PASS using Sarsa. Subsequently, we con-
duct 6 generations of learning GETOPEN (episodes 10,000 to 25,000), followed by
another 5000 episodes of Sarsa, as depicted along the x axis in Figure 3(f). The
hold time of P-L:GO-L (13.0 seconds after 30,000 episodes) is significantly lower
than P:L-GO:HC, P:HC-GO:L, and P:HC-GO:HC (p < 0.001), reflecting the
additional challenges encountered while learning PAss and GETOPEN simulta-
neously. Indeed, we notice several negative results with other variant methods
for learning PASS4+GETOPEN. In one approach, we represent both PASS and
GETOPEN as parameterized policies and evolve their weights concurrently to
maximize hold time. In another approach, GETOPEN uses the value function
being learned by PASS as the evaluation function for target points. In both these
cases, the performance never rises significantly above random.

We conduct a further experiment in order to ascertain the degree of special-
ization achieved by learned PAss and GETOPEN policies, i.e., whether it is ben-
eficial to learn PAss specifically for a given GETOPEN policy (and vice versa). In
Table 2, we summarize the performances of learned PAss and GETOPEN poli-
cies trained and tested with different counterparts. Each column corresponds
to a test pairing. We notice that the best performing PASS policy for a given
GETOPEN policy is one that was trained with the same GETOPEN policy (and
vice versa); the maximal sample mean in each column coincides with the diag-
onal. It must be noted, however, that despite conducting at least 20 trials of
each experiment, some comparisons are not statistically significant. A possible
reason for this is the high variance caused by the stochasticity of the domain.
Yet, it is predominantly the case that learned behaviors adapt to work best with
the counterpart behavior with which they are playing. Thus, although differ-
ent learning algorithms are applied to PAss and GETOPEN, the behaviors are
tightly-coupled in the composite solution learned.

Table 2. In the table on the left, PASS learned while trained with different
GETOPEN policies is tested against different GETOPEN policies. Each entry
shows the mean hold time and one standard error of at least 20 independent
runs, conducted for 500 episodes. Each column corresponds to a test GETOPEN
policy. The largest entry in each column is in boldface; entries in the same column
are marked with “-” if not significantly lower (p < 0.05). The cell GO:L-GO:L
shows two entries: when the learned PAsS policy is tested against the same (“s”)
learned GETOPEN policy as used in training, and when tested against a different
(“d”) learned GETOPEN policy. The table on the right is constructed similarly
for GETOPEN, and uses the same experiments as PASS for the cell P:L-P:L.

PASS:LEARNED GETOPEN:LEARNED
. Test . Test
Train oo JCOMC  [GOT Trainipg PC PL
GO:R [6.37£.05 |11.73+.25 [10.54+.26 P:R [5.894.05(10.40+.39 [11.15+.43
GO:HC|6.34+.06 |15.274+.26|12.25+.32 P:HC|5.48+.04 |16.894.39(|12.99+.43"
= - [13.08£.26 (s) . ~~ |13.08+£.26 (s)
GO:L |5.96£.07 |13.39+.35 12.324.32 (d)" P:L |5.57£.06 |11.78+£.56 12.322.32 (d)"




5 Related and Future Work

Multiple learning methods are used in the layered learning architecture devel-
oped by Stone [13] for simulated soccer. These include neural networks for learn-
ing to intercept the ball, decision trees for evaluating passes, and TPOT-RL, a
TD learning method for high-level strategy learning. This work shares our mo-
tivation that different sub-problems in a complex multiagent learning problem
can benefit from specialized solutions. Yet a key difference is that in Stone’s ar-
chitecture, skills learned using supervised learning are employed in higher-level
sequential decision making, to which RL is applied; in our work, the two learning
problems we consider are themselves both sequential decision making problems.

The policy search approach we use for GETOPEN is similar to one used by
Haynes et al. [7] for evolving cooperative behavior among four predators that
must collude to catch a prey. The predators share a common policy, represented
as a LISP S-expression, in contrast with the neural representation we engage
for computing a real-valued evaluation function. The Predator-Prey domain [1],
which is discrete and non-stochastic, is much simpler compared to Keepaway.

By decomposing Keepaway into PAss and GETOPEN, our work enriches the
multiagent nature of the problem and spawns numerous avenues for future work.
For example, a new promising dimension is agent communication. Consider K3
“yelling” to K5 where it is about to pass, as is common in real soccer. Ki’s
Pass and K3’s GETOPEN behaviors could conceivably exploit such information
to further team performance.

The Brainstormers team [11] has applied RL for learning attacking team
behavior. In their work, the actions available to the player with the ball are
several variants of passing and dribbling. Its teammates can move in different
directions or head to a home position. Assuming the availability of an environ-
mental model, TD learning is used to estimate a value function over the possible
states. The team attack is shown to increase its goal-scoring percentage. Iscen
and Erogul [8] consider applying TD learning to the behavior of the takers.
The actions available to the takers are ball interception and player marking.
Whereas PAss+GETOPEN models cooperation, extending Keepaway to include
taker behavior would also incorporate competition.

6 Conclusion

Through a concrete case study, we advance the case for applying different learn-
ing algorithms to qualitatively distinct behaviors present in a complex multia-
gent system. In particular, we introduce Keepaway GETOPEN as a multiagent
learning problem that complements Keepaway PAss, the well-studied reinforce-
ment learning test-bed problem from the robot soccer domain. We provide a
policy search method for learning GETOPEN, which compares on par with a
well-tuned hand-coded GETOPEN policy, and which can also be learned simul-
taneously with PASS to realize tightly-coupled behaviors. Learning GETOPEN
with a hand-coded PASS policy outperforms the earlier result in which PAss
is learned and GETOPEN is hand-coded. Our algorithm for learning both PAss
and GETOPEN in an interleaved manner confirms the feasibility of learning them
together, but also shows significant scope for improvement. This work widens



the scope for conducting research on the Keepaway test-bed. It puts together
distinct techniques that apply to sequential decision making, which is a crucial
element in scaling to more complex multiagent learning problems.
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