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Abstract. Even with improvements in machine learning enabling robots
to quickly optimize and perfect their skills, developing a seed skill from
which to begin an optimization remains a necessary challenge for large
action spaces. This paper proposes a method for creating and using such
a seed by i) observing the effects of the actions of another robot, ii)
further optimizing the skill starting from this seed, and iii) embedding
the optimized skill in a full behavior. Called KSOBI, this method is fully
implemented and tested in the complex RoboCup 3D simulation domain.
To the best of our knowledge, the resulting skill kicks the ball farther in
this simulator than has been previously documented.

1 Introduction

Every optimization needs a starting point. If the starting point is not in a region
of the search space with a meaningful gradient, optimization is unlikely to be
fruitful. For example, if trying to maximize the speed of a robot’s walk, the
robot has a much greater chance of success if given a stable walk to begin with.
We refer to the starting point of an optimization for skill learning as a seed

skill. Even with improvements in optimization processes, developing seed skills
remains a challenge.

Currently most seed skills are written by hand and then tuned by a human
until they resemble the desired skill enough to begin an optimization. Some seeds
can also be acquired by having a robot mimic a human in a motion capture
suit [1, 2]. We propose a third way of creating a seed, called keyframe sampling,
which uses learning by observation. In this case, a robot observes the effects of
actions of another object, and does its best to reproduce those effects. In our
work robots observe another robot with the same model, although in principle
this methodology could be applied to robots with different models or to humans
using transfer learning ([3]) and different body mappings as described in [1, 2].

This paper considers a 3-step methodology of keyframe sampling, optimiza-
tion, and behavior integration (KSOBI ), which guides the development of a skill
from watching a teacher to using the skill as part of an existing behavior. First,
we describe KSOBI in Section 2, focusing on the keyframe sampling (KS) step.



We introduce the robot soccer domain in Section 3, and apply keyframe sam-
pling and optimization (O) to kicking in robot soccer in Section 4. The robot
soccer domain has the added complication that a skill is only useful if it can be
incorporated into the robot’s existing behavior. We describe behavior integration
(BI) for our application, in Sections 4.5 and 4.6, and conclude with a summary
and future work in Section 6.

2 KSOBI Overview and Keyframe Sampling

The goal of KSOBI’s KS step is to use observations of another robot to quickly
create an imitation skill. This imitation will later be used as the seed for an
optimization, the O step, to create an optimized skill, which hopefully matches
or improves upon the observed skill. Finally, that skill will be incorporated into
the robot’s existing behavior during the BI step. KSOBI is outlined in Figure 1.

Fig. 1. An outline of KSOBI

Keyframe sampling assumes that the actions of the observed robot have
observable effects. In the case of a physical robot, the robot’s actions could be
the torque applied to each motor while the effects are the change in rotation of
joints. From the observed effects, a keyframe skill can be created directly.

A keyframe is defined to be a complete description of joint angles, either
in absolute values or relative to the previous keyframe, with a scale for each
joint indicating the percentage of the motor’s maximum torque allowed to be
used to reach the target angle. (The torque applied at any point in time is
determined by a controller - often a PID controller, as in this work - but is
multiplied by this value to affect how quickly a target angle is achieved.) A
keyframe k ∈ K := R

n ×R
n ×{0, 1} where n is the number of joints, 0 indicates

absolute angles, and 1 indicates relative angles.1 The first n-vector gives target
angles for each joint, while the second n-vector gives their scales. For example,
the 3 joint keyframe k1 = ((0, 0, 0), (0.5, 0.5, 0.5), 0) indicates all joints should

1 Note that in many robotic domains, including robot soccer, the distinction between
relative and absolute joint positions is unnecessary since the joints have a specified
non-overlapping range of possible values. This fact simplifies the above process since
all keyframes may be unambiguously absolute.



be set to 0o using half maximum torque, while k2 = ((180, 180, 0), (1, 1, 1), 1)
indicates that the first and second motors should be rotated 180o with maximum
torque.

A keyframe skill (or skill unless otherwise noted) is defined as a list of
keyframe-time pairs, where the time indicates how long to hold the paired
keyframe. A skill s ∈ (K × R)m where m is the number of keyframes in the
skill, and each of the m (k, t) pairs indicates that keyframe k should be the tar-
get for the next t seconds. For example, using k1 and k2 as defined above, the
skill s1 = ((k1, 1.0), (k2, 1.0)) would indicate that the robot should take 1 second
to get all its joints to 0o (using at most half their torque) if possible, remaining
there until 1 second has expired if time remains, then take another second to
rotate joints 1 and 2 by 180o as quickly as possible.

If the joint angles of an observed robot are directly observable, then a skill
can be generated by recording each joint angle at specified time steps. This idea
is the heart of keyframe sampling, which is made rigorous in the pseudocode
below, where n is the number of joints in the robot model and T is the total
time required by the skill divided by the time step:
define angle θj,t for j ∈ [1, n] ∩ Z and t ∈ [0, T ) ∩ Z

define keyframe kt for the same values of t

skill observeSkill(robot teacher, duration timeStep):

int t = 0

repeat:

sampleKeyframe(teacher, t++)

wait(timeStep)

until teacher.skill.isDone()

skill s = ((k0,timeStep), (k1,timeStep), ...(kT−timeStep,timeStep))
return skill

void sampleKeyframe(robot teacher, int t):

for joint j in teacher:

θj,t = j.angle

if t == 0:
kt = ((θ1,t, θ2,t, ..., θn,t), (1, 1, ..., 1), 0)

else:

kt = ((θ1,t − θ1,t−1, θ2,t − θ2,t−1, ..., θn,t − θn,t−1), (1, 1, ..., 1), 1)
Using this method, the skill s will assume the observed starting position and,
at each time step, attempt to assume the next set of observed joint angles as
quickly as possible, imitating the observed object.

The generated skill s likely will not replicate the observed skill exactly, since
it is just a sampling of several points in a presumably continuous motion, as
described in more detail in [4]. However, as will be seen in Section 4, it may
be close enough to use as the seed for an optimization. The hope is that the
optimization will overcome the discontinuities in the seed skill s and create a
skill which replicates or improves upon the observed motion.

Prior to optimization, it is necessary to parametrize the generated skill, al-
lowing each value set by keyframe sampling to be varied by the optimization.



Often it will then be necessary to freeze a subset of the parameters, preventing
them from changing during the optimization and reducing the dimension of the
parameter space. Parameter reduction is addressed in Section 4.2. Having chosen
which values may vary, a fitness function should be chosen and the optimization
may begin. The optimization process is described in Section 4.3. Finally, once
the new skill has been optimized in isolation, it must be incorporated into exist-
ing behavior. We illustrate the behavior integration (BI) process as applied to
our application in Sections 4.5 and 4.6.

3 Application Domain: RoboCup 3D Simulation League

The target application for this work is the 3D Simulation RoboCup domain. In
the 3D Simulation League simulated Nao robot agents play 11 vs 11 soccer in a
physically realistic environment. The field is a 30m x 20m scale model of a full
sized human field, and the robots are about 0.5 meters tall. Every 0.02 seconds,
agents respond to information given from a game server with the torque to apply
to each of their 22 motors.

In recent years, the RoboCup 3D Simulation League has been won primarily
by creating fast and robust walks ([5], [6]). However, teams are now developing
their own kicks ([7], [8], [9]). Kicking is difficult for three main reasons. First,
robust kicking requires a smooth transition from walking and most walks involve
some noise in reaching a target point. Second, kicking requires high precision in
that a difference of a couple degrees on any joint in any keyframe will likely
result in a failed kick. Third, there are many joints involved in a long distance
kick and there are many keyframes between planting the foot and kicking the
ball. This complexity results in a large search space for optimal kicks. Existing
machine learning techniques help alleviate some of these problems, but there
remains a need for finding reasonable starting seeds to guide the search through
such a large parameter space, as well as a methodology for incorporating the
resulting optimized skill into a full behavior, as is provided by KSOBI.

4 Learning to Kick from a Fixed Point

Fig. 2. The observed kick. Video available at: http://www.cs.utexas.edu/

~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2014/videos/

FCPKick.ogv

We begin learning a kick under the assumption of a chosen starting location.
In the RoboCup domain, an agent can expect this situation for its own kickoff. To
learn a kick skill for a fixed starting location, we observe the previously furthest



documented kick, belonging to FC Portugal [10] (see Figure 2). Using keyframe
sampling, we create an approximation of this kick, which we use as a seed for
optimization. The result of this optimization is the new longest known kick in
the RoboCup 3D simulation environment.

4.1 Observing a Seed: Keyframe Sampling

The RoboCup server currently only provides the location of the head, torso,
each leg, and each arm of robots to observers. This is not enough information
to mimic another robot since there are multiple sets of joint angles that give
the same locations for each body part. To solve this problem, we modify the
server such that observers receive all of the joint angles of the observed robot, as
required for keyframe sampling. The joint angles could reasonably be estimated
by a real robot watching another real robot, so it seems like a reasonable level
of detail to request. With this added information, we apply keyframe sampling
at 16.67Hz (every 3 server cycles). Higher sampling rates give a seed skill more
similar to the observed skill, but also result in more parameters to optimize. The
16.67Hz rate gave a sufficiently similar skill while keeping the parameter space
reasonable in this case. As expected, the result is not an exact match of the
observed skill. The imitation skill results in the robot kicking the ground behind
the ball and falling over (Figure 3). However, the imitation is close enough to
use as a seed for the optimization.

Fig. 3. The seed after observation. Video available at: http://www.cs.utexas.edu/
~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2014/videos/

InitialKick.ogv

4.2 Fixed Point Training

The observed seed in Section 4.1 results in a skill with 89 key frames, each with
every joint included, giving a total of 1958 parameters to train. Although this
search space is prohibitively large, many of the parameters can be safely ignored.
In fact, there is a need for parameter reduction before optimization in general
when the seed is created by keyframe sampling. The goal in parameter reduction
is to freeze parameters whose values will not affect the skill, removing them from
the optimization and reducing the dimension of the search space. In addition to
domain heuristics, seeds from keyframe sampling offer some general heuristics.
First, any joint that does not change significantly between two keyframes can be
fused between frames. Second, beginning and ending keyframes can sometimes
be removed entirely. In this case, it is important to be careful not to disrupt the
transition in and out of the skill (e.g. you would not want to remove keyframes
responsible for setting the plant foot from a kicking skill).



In the case of our kicking seed, removing the head joints (a domain heuristic),
any joint that does not change by more than 0.5 degrees between two frames, and
the keyframes before the plant foot is set limits the skill to only 59 parameters.
Adding 3 parameters for the starting location (x, y, and angle), results in 62
parameters to optimize. This is still a large state space, but it is manageable.

With the optimization parameters chosen, the next step is to define a fitness
function. We use the distance traveled by the ball

fitnessinitial =

{

−1 : Failure
finalBallLocation.x : Otherwise

where a “Failure” is any run in which the robot falls over, kicks backward, or
runs into the ball before kicking it.

4.3 Optimizing with CMA-ES

Optimizing a set of parameters is the same as finding the global maximum of a
fitness function g(x) : R

n → R where n is the number of parameters being tuned.
For optimization we use Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) [11] as we have had previous success using CMA-ES for optimizing
a walk, as documented in [12].

4.4 Fixed Point Results

Fig. 4. CMA-ES Learning Curve for Initial Kick

After 400 iterations of
CMA-ES with a popu-
lation size of 200, the
resulting skill is able
to kick the ball 20 me-
ters on average (see
Figure 4). In addition
to solving the prob-
lem of the robot kick-
ing the ground behind
the ball and helplessly
falling over, the opti-
mization produced a
kick which exceeded
the length of the orig-
inal observed kick by
more than 5 meters
(Figure 5)!

We also consider two other fitness functions, producing slightly different re-
sulting kicks. The first is a fitness function centered around accuracy. This func-
tion uses the same ball distance fitness as before except with a Gaussian penalty



Fig. 5. The first learned kick. Video available at: http://www.cs.utexas.edu/

~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2014/videos/

LearnedKick.ogv

for the difference between the desired and actual angles. Optimization with this
function gives the powerful and predictable kick seen in Figure 6.

faccuracy =

{

−1 : Failure

finalBallLoc.x ∗ e−angleOffset2/180 : Otherwise

Fig. 6. Improved accuracy. Video available at: http://www.cs.utexas.edu/

~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2014/videos/

AccuracyKick.ogv

The second is a fitness function centered around distance in the air. As the
idea is to kick the ball long distances above opponents’ heads, the fitness function
heavily rewards the distance traveled by the ball before descending to 0.5m above
the ground. It also rewards total distance and heavily penalizes missing the goal
(ignoring any other tests of accuracy). Optimization with this function results
in a noisy kick, but one that travels over 11m in the air (see Figure 7).

fair =







−1 : Failure
0 : Missed goal

100 + finalBallLoc.x + 2 ∗ airDist : Otherwise

Fig. 7. Increased air distance. Video available at: http://www.cs.utexas.edu/

~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2014/videos/

AirDistKick.ogv

These results are summarized in Table 1. All kicks are executed by the original
NAO model used in the RoboCup 3D simulation for ease of comparison. In
addition to being the longest documented kicks to our knowledge, these kicks
are also the first ones able to score from any point in the offensive half of the
field.



Table 1. Kick distances

Kick Avg Distance (m) Notes

Observed seed About 15
FCPortugal About 17 Based on empirical data and verbal confirmation

Learned Kick 20.0(±0.12)
Accuracy Kick 18.8(±0.29) With placement 1.3o(±1.78o) from target angle

Air Distance Kick 19.2(±0.38) With 11.4m(±0.25m) higher than 0.5m

4.5 Multi-Agent Training

With the kick optimized in isolation, we continue now to the behavior integration
(BI) step. As the kick was optimized from a fixed point, integration into a legal
kickoff is a natural first integration.

Unfortunately, scoring from the kickoff is illegal unless someone else touches
the ball first in soccer. To rectify this, we introduce another agent with another
skill which moves the ball as little as possible then gets out of the way. After
optimizing this skill alone, using the server’s play mode and the distance of the
ball’s movement to determine fitness, we optimize the touch and kick together,
using the same fitness function as used for the kicker with an added penalty for
either agent missing the ball or the kicker hitting the ball before the toucher.

ftouch =

{

−1 : Failure
10 − finalBallLoc.magnitude : Otherwise

where for this single case, a ”Failure” is when the robot falls over, fails to touch
the ball, or touches the ball more than once.

fkickoff =















−1 : Failure
−1 : Wrong touch order
−1 : Either agent missed

100 + finalBallLoc.x + 2∗airDist : Otherwise

4.6 Multi-Agent Results

After a successful 400 iteration optimization with population size of 150 (see
figure 8), two agents are able to legally and reliably score within 8 seconds of the
game starting and within 3 seconds of the ball first being touched (see figure 9).
Adding this kickoff behavior and changing nothing else dramatically improves
the team’s overall performance (see Table 2). If in addition we alter the agent to
improve the accuracy resulting from the server’s beam command before kickoffs
(and re-run the multi-agent optimization with this improvement), we get the
scoring percentages presented in Table 3.

The percentage of kickoffs which score varies with the opponent team. Most
kickoffs which fail to score are a result of opponent player formation. We have
not found a kick that makes it all the way to the goal in the air, so a player



Fig. 8. CMA-ES Learning Curve for Multiagent Kickoff

Fig. 9. Multiagent Kickoff. Video available at: http://www.cs.utexas.edu/

~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2014/videos/

Kickoff.ogv

located where the ball bounces on its path to the goal effectively stops kickoff
goals. That said, the location at which the ball bounces is not always the same.
In the future, the kicking agent could have multiple kickoff kicks and trajectory
information for each and could use that information at run-time to choose a kick
that misses opponents.

5 Related Works

Other forms of learning from observation have been explored, and are described
in [13]. In the context of that review, keyframe sampling has several qualities.
First, we may use either a human or a robot for teaching, whereas most ap-
proaches require a human teacher. Secondly, the data set from which we learn is
limited to a single sequential series of observed actions, rather than a larger set
covering more initial state spaces and possibly providing repetition. It should also

Table 2. Game statistics

Using Kickoff Opponent Average Goal Differential W-L-T

No FCPortugal 0.335 (+/-0.023) 368-85-547
Yes FCPortugal 1.017 (+/-0.029) 775-6-219
Yes WithoutKickoff 0.385 (+/-0.022) 416-44-540



Table 3. Percentage of scored kickoffs against the top 4 finishers from RoboCup 2013

Opponent Beginning of Half During Half

FCPortugal 92.19% 77.15%
UTAustinVilla 76.70% 54.15%

SeuJolly 77.00% 77.66%
Apollo3D 89.30% 65.60%

be noted that our methodology is assuming a continuous state space (discrete
time, continuous space) and our policy derivation is completed by a mapping
function (the identity map in this case since the observed robot has the same
model as the learning robot). Finally, it is important to note that the policy we
derive is intended only as the seed for further optimization. While initially the
policy developed from observation may not perform as well as the observed policy
from which it is derived, in general we expect the learned policy’s performance
after optimization to surpass that of the original observed policy.

Another approach which uses learning by observation to begin an optimiza-
tion is described in [2]. In that work, a human’s motions are captured via a
Microsoft Kinect, converted to a robot model, and optimized to achieve balance
despite differences in joints and mass distributions. This is similar to the KS and
O steps of KSOBI, with some important differences in the sampling rate and the
parameter reduction steps. In this work, the authors sample at 50Hz then model
the motion of each joint as a function in order to hopefully reduce the search
space of the optimization. In our application of KSOBI, we use a smaller sam-
pling rate (5-17Hz) and use several heuristics to further reduce the parameter
search space. Additionally, this work requires a human teacher, whereas KSOBI
can use either a robot or a human teacher.

In [14], the authors describe two methods of having humans teach robots by
demonstration. One way is to record the robots motion as a human moves it
(trajectory-based). The other (keyframe-based) involves inferring the trajectory
between two points set by a human. The authors try to make the interaction
as easy as possible for humans by allowing a hybrid approach, in which either
trajectory-based or keyframe-based methods may be recorded. This methodol-
ogy is similar to our keyframe-sampling approach, except that our approach
does not require a human teacher, and instead records keyframes at a certain
rate instead of at important points. Depending on the sampling rate, keyframe-
sampling could be more similar to the trajectory-based approach described in
this article. Moreover, this article expects to create a new behavior by learning
from demonstration alone, while in KSOBI, demonstration is only the first step.

6 Summary and Future Work

This paper introduced the KSOBI process, guiding the development of a skill
from watching another robot (keyframe sampling - KS), to optimizing the re-
sulting sampled skill (optimization - O), to integrating the optimized skill into



an existing behavior (behavior integration - BI). The full KSOBI process was
applied in a complex simulated domain. Along the way, we showed the success
of this method with a set of new kicks which raise the bar for how far agents
can kick in the RoboCup 3D simulation league.

Future work includes another desirable behavior integration, which requires
being able to approach the ball before kicking it. Such an integration would allow
the kick to be used for shooting and passing during regular gameplay. Both the
approach and the kick would need to be quick for the kick to be useful during a
game. Although we’ve made progress on this front ([4]), it remains an important
area for future work.

It may be possible to make more robust kicks by defining them using tra-
jectories relative to the ball instead of fixed joint angles. The UTAustinVilla
codebase already has a set of kicks parametrized by trajectories relative to the
ball [9], however they seldom exceed a distance of 5 meters. Future work may
also include finding a happy medium between the flexibility of those kicks and
the distance achieved by fixed joint angle kicks.
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Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011: A champion
agent in the RoboCup 3D soccer simulation competition. In: Proc. of 11th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS). (2012)

10. Lau, N., Reis, L.P., Shafii, N., Ferreira, R.: Fc portugal 3d simulation team: Team
description paper. In: RoboCup 2013. (2013)

11. Hansen, N.: The CMA Evolution Strategy: A Tutorial. (2009) http://www.lri.

fr/~hansen/cmatutorial.pdf.
12. MacAlpine, P., Barrett, S., Urieli, D., Vu, V., Stone, P.: Design and optimization

of an omnidirectional humanoid walk: A winning approach at the RoboCup 2011
3D simulation competition. In: Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence (AAAI). (2012)

13. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and autonomous systems 57 (2009) 469–483

14. Akgun, B., Cakmak, M., Jiang, K., Thomaz, A.: Keyframe-based learning from
demonstration. International Journal of Social Robotics 4 (2012) 343–355


