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Abstract. This paper presents a system for marking or covering players
on an opposing soccer team so as to best prevent them from scoring. A
basis for the marking system is the introduction of prioritized role assign-
ment, an extension to SCRAM dynamic role assignment used by the UT
Austin Villa RoboCup 3D simulation team for formational positioning.
The marking system is designed to allow for decentralized coordination
among physically realistic simulated humanoid soccer playing robots in
the partially observable, non-deterministic, noisy, dynamic, and limited
communication setting of the RoboCup 3D simulation league simulator.
Although it is discussed in the context of the RoboCup 3D simulation
environment, the marking system is not domain specific and can readily
be employed in other RoboCup leagues as prioritized role assignment
generalizes well to many realistic and real-world multiagent systems.

1 Introduction

Coordinated movement among autonomous mobile robots is an important re-
search area with many applications such as search and rescue and warehouse op-
erations. The RoboCup 3D simulation soccer competition provides an excellent
testbed for this line of research as it requires coordination among autonomous
agents in a physically realistic environment that is partially observable, non-
deterministic, noisy, and dynamic. The presence of adversarial opponent agents
gives rise to the challenging coordination problem of how to cover or mark oppo-
nents so as to best prevent the opposing team from scoring. Agents must work
together as a team to counteract their opponents’ actions while maximizing their
own game performance.

A common paradigm for specifying where players on a soccer field should
move is the use of formations. Positioning players in a formation requires agents
to coordinate with each other and determine where each agent should position
itself on the field. The work in this paper focuses on role assignment—specifically
tackling the problem of assigning interchangeable mobile robots to move to a set
of target positions in a formation such that robots are present at their assigned
positions in as little time as possible. Previous work on role assignment, and
the basis for this work, is that of Scaleable Collision-avoiding Role Assignment
with Minimal-makespan (SCRAM) role assignment functions [12]. SCRAM role
assignment functions assign robots to target positions such that the makespan
(time for all robots to reach their target positions) is minimized while avoiding



collisions between robots. SCRAM only minimizes the completion time of the
entire formation however, and does not take into consideration the possibility
of some target positions being more important—and thus needing a robot to
arrive at them sooner—than other potentially less important positions. Within
the context of soccer we find it is often a high priority for a player to arrive
as quickly as possible at a position for marking an opponent in a dangerous
offensive location. Marking engenders the need for prioritized role assignment in
which higher priority positions in a formation (those for marking opponents) are
assigned to be reached by robots before lower priority positions.

Primary contributions of this paper are twofold. First, we introduce a new ex-
tension of SCRAM role assignment that allows for prioritization of roles. Second,
we provide a detailed description and analysis of a marking system, incorporating
prioritized role assignment, that we have implemented for use in the RoboCup
3D simulation domain.

The remainder of the paper is organized as follows. In Section 2 a description
of the 3D simulation domain is given. Section 3 provides background information
on SCRAM role assignment, while Section 4 introduces and motivates prioritized
SCRAM role assignment. Section 5 details a marking system using prioritized
role assignment, and analysis of the performance of the marking system is given
in Section 6. Related work is discussed in Section 7 and Section 8 concludes.

2 Domain Description

The RoboCup 3D simulation environment is based on SimSpark [1], a generic
physical multiagent system simulator. SimSpark uses the Open Dynamics En-
gine1 (ODE) library for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support for the modeling of
advanced motorized hinge joints used in the humanoid agents.

Games consist of 11 versus 11 agents playing on a 30 meters in length by 20
meters in width field. The robot agents in the simulation are modeled after the
Aldebaran Nao robot,2 which has a height of about 57 cm, and a mass of 4.5 kg.
Each robot has 22 degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge joints, an agent is
equipped with joint perceptors and effectors. Joint perceptors provide the agent
with noise-free angular measurements every simulation cycle (20ms), while joint
effectors allow the agent to specify the speed and direction in which to move a
joint.

Visual information about the environment is given to an agent every third
simulation cycle (60ms) through noisy measurements of the distance and angle to
objects within a restricted vision cone (120◦). Agents are also outfitted with noisy
accelerometer and gyroscope perceptors, as well as force resistance perceptors
on the sole of each foot. Additionally, agents can communicate with each other
every other simulation cycle (40ms) by sending 20 byte messages.

1 http://www.ode.org/
2 http://www.aldebaran-robotics.com/eng/



3 SCRAM Role Assignment

Fig. 1: Example formation where role positions are computed as offset positions from the ball.

Given a desired team formation, such as the formation used by UT Austin
Villa in Figure 1, we need to map players to roles (target positions on the field).
A näıve mapping having each player permanently mapped to one of the roles
performs poorly due to the dynamic nature of the game. With such static roles
an agent assigned to a defensive role may end up out of position and, without
being able to switch roles with a teammate in a better position to defend, allow
for the opponent to have a clear path to the goal.

A role assignment algorithm can be thought of as implementing a role as-
signment function, which takes as input the state of the world, and outputs a
one-to-one mapping of players to roles. SCRAM role assignment functions [12]
compute in polynomial time mappings from players to roles that both minimize
the longest distance any agent has to travel (thereby minimizing the makespan
or formation completion time) and avoid collisions between agents.

The SCRAMMinimumMaximal Distance Recursive (MMDR) function, which
is a basis for the work in this paper, finds a mapping of agents to target positions
which recursively minimizes the maximum distance that any agent travels. Let
M be the set of all one-to-one mappings between agents and roles. If there are n
agents and n target role positions, then there are n! possible mappings M ∈ M.
Let the cost of a mapping M be the n-tuple of distances from each agent to its
target, sorted in decreasing order. We can then sort all the n! possible mappings
based on their costs, where comparing two costs is done lexicographically. The
lowest cost mapping is the one returned by MMDR. Sorted costs of mappings
for a small example are shown in Figure 2.

Fig. 2: Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings from
agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a single mapping.

1:
√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√
2 (A3→P3), 1 (A2→P1)

3:
√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√
5 (A2→P3), 2 (A1→P2),

√
2 (A3→P1)

5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)



Proof that the MMDR role assignment function both minimizes the makespan
and avoids collisions among agents, as well as O(n5) and O(n4) algorithms for
computing MMDR, can be found in [12].

4 Prioritized SCRAM Role Assignment

It is not always the case that minimizing the makespan (completing a formation
as fast as possible) is what is best for a team of robots. There are cases where
it is preferable to have a subset of high priority role positions in a formation
be reached by agents as soon as possible. One example of this is soccer where
it is often desirable for players to arrive as fast as possible at positions for
marking opponents in dangerous offensive locations. This section introduces a
new extension to SCRAM role assignment allowing for subsets of role positions
to be given different priorities.

Fig. 3: Agents A1 and A2 being assigned and moving to the high priority (H) and low priority (L)
target positions using the MMDR SCRAM role assignment algorithm.

Figure 3 shows an example of two agents being assigned to both high pri-
ority (H) and low priority (L) target positions using the MMDR SCRAM role
assignment algorithm. As MMDR does not take into account priorities of differ-
ent positions, the high priority position H will not be reached by an agent until
time = 3 despite agent A2 starting only a distance of 1 from H.

To bias MMDR into producing an assignment that has agents reach all high
priority positions as fast as possible we can add a large priority value P to costs
for reaching all high priority positions. As long as P is greater than all possible
distances to lower priority positions, MMDR will assign the closest agents to high
priority positions before considering the assignment of agents to lower priority
positions. This bias of MMDR assigning closer agents to higher priority positions
is due to all costs to higher priority positions being greater and thus needing to
be minimized before that of costs to lower priority positions.

Figure 4 shows an example of two agents being assigned to both high priority
(H) and low priority (L) target positions using the MMDR SCRAM role assign-
ment algorithm, but with a large priority value P added to the costs of reaching



Fig. 4: Agents A1 and A2 being assigned and moving to the high priority (H) and low priority (L)
target positions using the MMDR SCRAM role assignment algorithm, but with a large priority value
P added to the costs of reaching H. At time = 2 agents A1 and A2 collide with each other.

H. This results in H being reached at time = 1 by agent A2, but unfortunately
later agent A1, on its way to its assigned position L, collides with A2. Assigning
the closest agents to high priority target positions, and thereby no longer neces-
sarily recursively minimizing the maximum distance that any agent must travel
to reach its assigned target, breaks the collision avoidance property of MMDR.

To preserve collision avoidance, but still prioritize a subset of targets being
reached as fast as possible, we can define a priority distance D around high
priority targets for which agents within D distance of a target will not have the
priority value P added to the cost of that target.

cost(agent,target) =

{

|agent,target|+ P if |agent,target| > D

|agent,target| otherwise

Fig. 5: Agents A1 and A2 being assigned and moving to the high priority (H) and low priority (L)
target positions using the MMDR SCRAM role assignment algorithm, but with a large priority value
P added to the costs of reaching H for any agents outside the priority distance of H (the purple circle).
At time = 2 agents A1 and A2 switch targets due to agent A1 being within the priority distance of
H.



Figure 5 shows an example of two agents being assigned to both high pri-
ority (H) and low priority (L) target positions using the MMDR SCRAM role
assignment algorithm, but with a large priority value P added to the costs of
reaching H when agents are outside a priority distance D of H. This results in
H being reached at time = 1 by agent A2, and then later when agent A1 gets
within D of H agents A1 and A2 switch targets and avoid colliding.

Defining a priority distance D causes agents to arrive within a distance D

of all high priority targets as fast as possible. Although agents might not arrive
exactly at the high priority targets in as little time as possible, this is often
fine for many applications including marking in soccer. When marking a player
does not need to be right next to an opponent, but just within a close enough
distance to the opponent to be able to react quickly and prevent the opponent
from receiving the ball. Assuming D is not too large, should a player come within
D distance of an opponent who is already being marked by a teammate, it should
then be safe for the players to switch who is marking the opponent.

Augmenting MMDR with a large P priority value and D priority distance
for high priority positions extends SCRAM role assignment to allow for prior-
itization of targets. The collision avoidance property of SCRAM, based on the
triangle inequality and fully explained in [12], is still preserved with prioritiza-
tion as any agents within D distance of a high priority target will switch targets
before they collide.

It is possible to have multiple subsets of targets with different priorities, or
a hierarchy of prioritization, by assigning different P values to different subsets
of targets. An example of this is given later in Section 5.3 for which a highest
priority target is given a priority value of Ps, and other high priority targets are
given a priority value of Pm, where Ps >> Pm.

5 Marking System

The marking system implemented by the UT Austin Villa team is a sequential
process encompassing the following steps:

1. Decide which players to mark
2. Select which roles to use for marking purposes
3. Use prioritized role assignment to assign players to positions

Each of these steps (shown in Figure 6), as well as additional details of the
marking system, are described in the following subsections.

5.1 Deciding Who to Mark

The first step in the marking system is to decide which if any opponents should
be marked (those opponents considered to be in dangerous offensive positions).
The decision on whether or not to mark an opponent is heuristic based and uses
the following rules:



Fig. 6: Steps of the marking system. The white dot is the ball.
Step 1 (Deciding Who to Mark): Opponent agents selected to be marked are circled in yellow.
Step 2 (Selecting Roles for Marking): Green dots represent target formation positions with purple
dots representing target formation positions that have been selected to be replaced by the orange
dot marking positions.
Step 3 (Assigning Roles): Orange lines represent agents assigned to marking positions, light blue lines
represent agents assigned to target formation positions, and the red line shows the agent assigned
to go to the ball.

1. Opponent is close enough to take a shot on goal
2. Opponent is not the closest opponent to the ball
3. Opponent is not too close to the ball
4. Opponent is not too far behind the ball

The first rule suggests that an opponent is in a dangerous scoring position.
As we always send one player to the ball (the onBall role in Figure 1), the
second and third rules prevent marking of opponents when we should already
have a player moving toward their positions. The fourth rule is due to very few
teams passing the ball backwards. Figure 6 shows opponent agents selected to
be marked circled in yellow.

5.2 Selecting Roles for Marking

The next step is to select which formation role positions should be given up in
favor of having agents who would otherwise be assigned to those roles instead
move to marking role positions. Marking role positions are calculated as the
position 1.5 meters from a marked opponent along the line from that opponent
to the center of our goal (shown in orange in Figure 6). The selection of formation
positions to replace with marking positions is determined by using the Hungarian
algorithm [4] to compute the minimum sum of distances matching between all
formation and marking positions in a bipartite graph. This matching results
in the closest formation positions to marking positions being replaced by the
marking positions that they are nearest. If there are ever more marking positions
than available formation positions then some marking positions will be matched
to dummy nodes in the bipartite graph and not be assigned to an agent.

Figure 6 shows the result after selecting formation positions to be used as
marking role positions with the formation positions selected drawn in purple,
and those not selected and still being used drawn in green.



5.3 Assigning Roles

Agents are assigned to marking positions and formation positions (Figure 6
shows these assignments in orange and light blue respectively) using prioritized
SCRAM role assignment discussed in Section 4. Marking positions are considered
higher priority than formation positions, and use a priority value Pm = 100 and
a priority distance Dm = 3. Additionally, when a teammate is kicking the ball,
a couple of players are assigned to high priority kick anticipation position roles
near the location where the ball is being kicked to [10]. Kick anticipation roles
are given the same priority value and distance as marking roles.

There are several roles in Figure 1 that are never reassigned to be marking
roles. The goalie role is always assigned to a single agent designated as the
goalie who is allowed to dive and block a ball when an opponent takes a shot
on goal. The onBall role is always assigned to the agent closest to the ball
as it is that agent’s job to gain possession of the ball. The supporter role is
also very important as the supporter is in a critical position right behind the
ball should the onBall role agent lose possession of the ball. The supporter is
considered a higher priority role than marking roles, and thus uses a priority
value Ps = 10000 along with a priority distance Ds = 1.5. All P and D values
were chosen experimentally.

5.4 Coordination

In order for agents on a team to assume correct positions on the field they all
must coordinate and agree on which mapping of agents to roles to use. If every
agent had perfect information of the locations of the ball and its teammates
this would not be a problem as each could independently calculate the optimal
mapping to use. Agents do not have perfect information, however, and are limited
to noisy measurements of the distance and angle to objects within a restricted
vision cone (120◦). To synchronize their assigned roles agents using a voting
coordination system as described in [9].

Coordination can become more difficult if an opponent is standing in a posi-
tion right on the borderline of whether or not the opponent should be marked.
To prevent thrashing between different role assignments in such a situation, op-
ponents who are currently being marked must move at least .25 meters outside
a mark-able position on the field before they will stop being marked. Also, to
prevent thrashing between different selections of formation positions to use for
marking, a selection is never changed (assuming the cardinality of matchings are
the same) unless the new selection’s matching’s sum of distances is at least one
meter less than the previous selection’s matching’s sum of distances.

6 Results and Analysis

After the 2015 RoboCup competition was over we played 1000 games of our
team’s released binary against all teams’ released binaries (this includes play-
ing against ourselves) and found that only the UTAustinVilla and FCPortugal



teams’ binaries were able to score over 100 goals against our released binary [11].
Both the UTAustinVilla and FCPortugal teams created set plays allowing them
to score quickly off kickoffs which empirically we found to be the source of the
majority of the goals that they scored against our released binary (74.5% of goals
for UTAustinVilla and 78.2% of goals for FCPortugal)

To test the effectiveness of our marking system using prioritized role assign-
ment we played 1000 games against both the UTAustinVilla and FCPortugal
teams’ released binaries using the marking system (Prioritized Marking). We
also played 1000 games against both teams without using marking (No Marking)
as well as with marking but using normal non-prioritized SCRAM role assign-
ment (Marking No Prioritization). Results of the number of goals against
scored by opponents can be seen in Table 1, and an analysis of the scoring
percentage of opponents’ set plays is shown in Table 2.

Table 1: Number of goals against when playing 1000 games against the released binaries of
UTAustinVilla and FCPortugal from RoboCup 2015.

Opponent No Marking Marking No Prioritization Prioritized Marking
UTAustinVilla 1525 336 319
FCPortugal 230 40 37

Table 2: Scoring percentage of opponents’ set plays when playing 1000 games against the released
binaries of UTAustinVilla and FCPortugal from RoboCup 2015.

Set Play No Marking Marking No Prioritization Prioritized Marking
UTAustinVilla Kickoff 48.31 0.16 0.16
FCPortugal Kickoff 6.22 0.06 0.06

UTAustinVilla Corner Kick 15.97 12.31 7.59

Table 1 shows a dramatic drop in the number of goals scored by opponents
when using marking. There is also a small decrease in the number of goals
against when using prioritized SCRAM instead of non-prioritized SCRAM for
marking. Table 2 reveals the source of the reduction in goals against as using
marking almost completely eliminates the opponents’ abilities to score on kickoff
set plays. FCPortugal’s kickoff (shown in Figures 7, 8, and 9) consists of a player
first passing the ball backwards on the kickoff to a waiting player who then passes
the ball forward to a teammate running forward to a dangerous offensive position
on the side of the field. UTAustinVilla’s kickoff and corner kick set plays are
described in [11]. Although the numbers in Table 2 do not show an advantage in
using prioritized SCRAM over non-prioritized SCRAM against kickoffs, we have
seen some instances such as in Figure 8 where not using prioritization is harmful.
Prioritized SCRAM does however show an advantage against UTAustinVilla’s
corner kick set plays. Videos of set plays and marking are available online.3

Overall using marking, and to a greater extent using marking with priori-
tized SCRAM role assignment, provides a considerable defensive advantage when

3 http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

AustinVilla3DSimulationFiles/2016/html/marking.html



Fig. 7: Not marking against FCPortugal kickoff. Dashed white line shows trajectory of ball during
pass. Not marking allows for an opponent to run forward and receive a pass in an open position to
score a goal (blue 10 is not marked).

Fig. 8: Marking, but not prioritized, against FCPortugal kickoff. Dashed white line shows trajectory
of ball during pass. Not using prioritization with marking results in a player assigned to mark an
opponent being too far away from that assigned opponent to prevent the opponent from scoring a
goal (red 10 instead of red 3 assigned to mark blue 10).

Fig. 9: Prioritized marking against FCPortugal kickoff. Dashed white line shows trajectory of ball
during pass. Prioritized marking prevents opponents from receiving a pass in an open position to
score a goal (red 3 marking blue 10).



playing soccer against opponents who use set plays. The average goal difference
across 1000 games when playing against UTAustinVilla with prioritized marking
improved to 0.657 (+/-0.028) from ∼0 without marking, and this same number
against FCPortugal improved to 2.530 (+/-0.040) with prioritized marking from
2.476 (+/-0.043) without marking. We also played 1000 games against the other
ten teams’ released binaries from RoboCup 2015, none of which we knew to use
passing for set plays, and found no measurable difference in goals against or
game performance when using marking versus those teams.

7 Related Work

While there has been considerable research focused on role assignment in the 2D
soccer simulation domain (for example by Stone et al. [15] and Reis et al. [14]),
relatively little outside of [2] has been published on this topic in the more phys-
ically realistic 3D soccer simulation environment. [2], as well as related work
in the RoboCup Middle Size League (MSL) [6], rank positions on the field in
order of importance and then iteratively assign the closest available agent to the
most important currently unassigned position until every agent is mapped to
a target location. Previous approaches to marking in 2D simulated soccer have
included using a fuzzy logic inference system [8], a pareto-optimal approach that
attempts to maximize the total prevented threat of opponents while minimizing
the total time needed to move to positions [5], and opponent modeling [3]. In
the RoboCup Small Size League (SSL) teams have computed threat levels of
opponents when deciding who to mark [7, 13]. The work presented in this paper
differs from the mentioned previous work as it takes into account real-world con-
cerns and movement dynamics, such as the need for avoiding collisions of robots,
when assigning players to mark opponents.

8 Conclusion

We have introduced a new extension of SCRAM role assignment that allows
for prioritization of roles. This prioritized role extension to SCRAM has been
incorporated into a marking system that is very effective in defending against
set plays used by teams within the RoboCup 3D simulation domain. Ongoing
work includes improving the heuristics in our marking system for identifying
who to mark, as well as possibly adding different priorities for different marking
positions. A promising direction for future work is to apply SCRAM prioritized
role assignment to applications outside of marking and RoboCup such as general
patrol and coverage tasks.
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