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Abstract. The UT Austin Villa RoboCup 2003 Four-Legged Team was
a new entry in the ongoing series of RoboCup legged league competitions.
The team development began in mid-January of 2003, at which time none
of the team members had any familiarity with the Aibos. Without using
any RoboCup-related code from other teams, we entered a team in the
American Open competition at the end of April, and met with some
success at the annual RoboCup competition that took place in Padova,
Italy at the beginning of July. In this paper, we describe aspects of (i)
our development process and (ii) the technical details of its end result,
the UT Austin Villa team. Complete details in both regards are available
in our team technical report [1].

1 Introduction

The UT Austin Villa RoboCup 2003 Four-Legged Team was a new entry in the
ongoing series of RoboCup legged league competitions. For the purposes of this
paper, we assume familiarity with the speci�cations of the robots as well as the
rules of the RoboCup games. For full details see the legged league1 and Open-
R2 websites. Here we describe both our development process and the technical
details of its end result, the UT Austin Villa team. The main contribution of
this paper is a roadmap for new teams entering the competition who are starting
from scratch. Full documentation of the algorithms behind our approach can be
found in our team technical report [1].

Our team development began in mid-January of 2003, at which time none
of the team members had any familiarity with the Aibos. Without using any
RoboCup-related code from any other teams, we entered a team in the American
Open competition at the end of April, and met with some success at the annual
RoboCup competition that took place in Padova, Italy at the beginning of July.

1 http://www.openr.org/robocup/index.html
2 http://openr.aibo.com/



Although our team was not one of the top few at the competition, we view it as
a great accomplishment that we were able to develop a competitive team in such
a short time. The primary goal of this paper is to document our development
process as a guide for new teams in the future.

Our e�ort began as a graduate research seminar o�ered as a class during
the Spring semester of 2003. The following section outlines the structure of the
class. At the end of that section we outline the structure of the remainder of the
paper.

2 The Class

The UT Austin Villa 2003 legged robot team began as a focused class e�ort
during the Spring semester of 2003 at the University of Texas at Austin. Nineteen
graduate students and one undergraduate were enrolled in the course CS395T:
Multi-Robot Systems: Robotic Soccer with Legged Robots.3 All of the authors on
this paper participated in the class.

Students in the class studied past approaches, both as described in the liter-
ature and as reected in publicly available source code. However, we developed
the entire code base from scratch with the goals of learning about all aspects of
robot control and of introducing a completely new code base to the community.

Class sessions were devoted to students educating each other about their
�ndings and progress, as well as coordinating the integration of everybody's
code. Just nine weeks after their initial introduction to the robots, the students
already had preliminary working solutions to vision, localization, fast walking,
kicking, and communication.

The concrete goal of the course was to have a completely new working so-
lution by the end of April so that we could participate in the American Open
competition, which happened to fall during the last week of the class. After that
point, a subset of the students continued working towards RoboCup 2003 in
Padova.

The class was organized into three phases. Initially, the students created
simple behaviors with the sole aim of becoming familiar with Open-R.

Then, about two weeks into the class we shifted to phase two by identifying
key subtasks that were important for creating a complete team. Those subtasks
were: vision; movement; fall detection; kicking; localization; communication; gen-
eral Architecture; and coordination. During this phase, students chose one or
more of these subtasks and worked in subgroups on generating initial solutions
to these tasks in isolation.

By about the middle of March, we were ready to switch to phase three, during
which we emphasized \closing the loop," or creating a single uni�ed code-base
that was capable of playing a full game of soccer. We completed this integration
process in time to enter a team in the RoboCup American Open competition at
the end of April.

3 http://www.cs.utexas.edu/~pstone/Courses/395Tspring03



The remainder of the paper is organized as follows. In Section 3 we docu-
ment some of the initial behaviors that were generated during phase one of the
class. Next we document the output of some of the subgroups that were formed
in phase two of the class in Sections 4{7. Next, we document the tasks that
occupied phase three of the class, namely those that allowed us to put together
the above modules into a cohesive code base (Sections 8{11. Section 12 intro-
duces our debugging and development tool. Then in Section 13 we summarize
our experiences at the RoboCup 2003 competition, and Section 14 concludes.

3 Initial Behaviors

The �rst task for the students in the class was to learn enough about the Aibo
to be able to compile and run any simple program on the Aibo.

The open source release of Open-R came with several sample programs that
could be compiled and loaded onto the Aibo right away. These programs could
do simple tasks such as:

L-Master-R-Slave: Cause the right legs to mirror manual movements of the
left legs.

Ball-Tracking-Head: Cause the head to turn such that the pink ball is always
in the center of the visual image (if possible).

PIDcontrol: Move a joint to a position speci�ed by the user by typing in a
telnet window.

The students were to pick any program and modify it, or combine two pro-
grams in any way. The main objective was to make sure that everyone was
familiar with the process for compiling and running programs on the Aibos.
Some of the resulting programs included:

{ Variations on L-Master-R-Slave in which di�erent joints were used to control
each other. For example, one student used the tail as the master to control
all 4 legs, which resulted in a swimming type motion. Doing so required
scaling the range of the tail joints to those of the leg joints appropriately.

{ Variations on Ball-Tracking-Head in which a di�erent color was tracked. Two
students teamed up to cause the robot to play di�erent sounds when it found
or lost the ball.

{ Variations on PIDcontrol such that more than one joint could be controlled
by the same input string.

After becoming familiar with the compiling and uploading process, the next
task for the students was to become more familiar with the Aibo's operating
system and the Open-R interface. To that end, they were required to create a
program that added at least one new subject-observer connection to the code.4

4 A subject-observer connection is a pipe by which di�erent Open-R objects can com-
municate and be made interdependent. For example, one Open-R object could send
a message to a second object whenever the back sensor is pressed, causing the sec-
ond object to, for example, suspend its current task or change to a new mode of
operation.



The students were encouraged to create a new Open-R object from scratch.
Pattern-matching from the sample code was encouraged, but creating an object
as di�erent as possible from the sample code was preferred.

Some of the responses to this assignment included:

{ The ability to turn on and o� LEDs by pressing one of the robots' sensors.
{ A primitive walking program that walks forward when it sees the ball.
{ A program that alternates blinking the LEDs and apping the ears.

After this assignment, which was due after just the second week of the class,
the students were familiar enough with the robots and the coding environment to
move on to their more directed tasks with the aim of creating useful functionality.

4 Vision

The ability of the robot to sense its environment is a prerequisite for any decision
making on the Aibo. As such, we placed a strong emphasis on the vision compo-
nent of our team. The vision module processes the images taken by the CMOS
camera located on the Aibo. The module identi�es colors in order to recognize
objects, which are then used to localize the robot and to plan its operation.

Our visual processing is done using the established procedure of color seg-
mentation followed by object recognition. Color segmentation is the process of
classifying each pixel in an input image as belonging to one of a number of prede-
�ned color classes based on the knowledge of the ground truth on a few training
images. Though the fundamental methods employed in this module have been
applied previously (both in RoboCup and in other domains), it has been built
from scratch like all the other modules in our team. Hence, the implementa-
tion details [1] provide our own solutions to the problems we faced along the
way. We have drawn some of the ideas from the previous technical reports of
CMU [2] and UNSW [3]. This module can be broadly divided into two stages:
(i) low-level vision, where the color segmentation and region building operations
are performed, and (ii) high-level vision, wherein object recognition is accom-
plished and the position and bearing of the various objects in the visual �eld are
determined.

5 Movement

Enabling the Aibos to move precisely and quickly is equally as essential to the
overall RoboCup task as the vision task. In this section, we introduce our ap-
proach to Aibo movement, including walking and the interfaces from walking to
the higher level control modules.

The Aibo comes with a stable but slow walk. From watching the videos of
past RoboCups, and from reading the available technical reports, it became clear
that a fast walk is an essential part of any RoboCup team. The walk is perhaps
the most feasible component to borrow from another team's code base, since



it can be separated out into its own module. Nonetheless, we decided to create
our own walk in the hopes of ending up with something at least as good, if not
better, than that of other teams, while retaining the ability to �ne tune it on
our own.

The movement component of our team can be separated into two parts.
First, the walking motion itself, and second, an interface module between the
low level control of the joints (including both walking and kicking) and the
decision-making components.

5.1 Walking

At the lowest level, walking is e�ected on the Aibo by controlling the joint angles
of the legs. Each of the four legs has three joints known as the rotator, abductor,
and knee. The rotator is a shoulder joint that rotates the entire leg (including
the other two joints) around an axis that runs horizontally from left to right. The
abductor is the shoulder joint responsible for rotating the leg out from the body.
Finally, the knee allows the lower link of the leg to bend forwards or backwards,
although the knees on the front legs primarily bend the feet forwards while the
ones on the back legs bend primarily backwards. Each joint is controlled by a
PID mechanism [5].

The problem of compelling the robot to walk is greatly simpli�ed by a tech-
nique called inverse kinematics. This technique allows the trajectory of a leg
to be speci�ed in terms of a three-dimensional trajectory for the foot. The in-
verse kinematics converts the location of the foot into the corresponding settings
for the three joint angles. A precursor to deriving inverse kinematics formulas is
having a model of the forward kinematics, the function that takes the three joint
angles to a three-dimensional foot position. This is e�ectively our mathematical
model of the leg.

Our walk uses a trot-like gait in which diagonally opposite legs step together.
That is, �rst one pair of diagonally opposite legs steps forward while the other
pair is stationary on the ground. Then the pairs reverse roles so that the �rst
pair of legs is planted while the other one steps forward. As the Aibo walks
forward, the two pairs of diagonally opposite legs continue to alternate between
being on the ground and being in the air. For a brief period of time at the start
of our developmental process, we explored the possibility of other gait patterns,
such as a walking gait where the legs step one at a time. We settled on the trot
gait after watching video of RoboCup teams from previous years.

While the Aibo is walking forwards, if two feet are to be stationary on the
ground, that means that they have to move backwards with respect to the Aibo.
In order for the Aibo's body to move forwards in a straight line, each foot
should move backwards in a straight line for this portion of its trajectory. For
the remainder of its trajectory, the foot must move forward in a curve through
the air. We opted to use a half ellipse for the shape of this curve.



5.2 General Movement

Control of the Aibo's movements occurs at three levels of abstraction.

1. The lowest level, the \movement module," resides in a separate Open-R
object from the rest of our code (as described in the context of our general
architecture in Section 8) and is responsible for sending the joint values to
OVirtualRobotComm, the provided Open-R object that serves as an interface
to the Aibo's motors.

2. One level above the movement module is the \movement interface," which
handles the work of calculating many of the parameters particular to the
current internal state and sensor values. It also manages the inter-object
communication between the movement module and the rest of the code.

3. The highest level occurs in the behavior module itself (Section 10), where
the decisions to initiate or continue entire types of movement are made.

Details of all three of these levels can be found in our technical report [1].

6 Kicking

The robot's kick is speci�ed by a sequence of poses. A Pose = (j1; : : : ; jn), ji 2 <,
where j represents the positions of the n joints of the robot. The robot uses its
PID mechanism to move joints 1 through n from one Pose to another over a time
interval t. We specify each kick as a series of moves fMove1; : : : ;Movemg where a
Move = (Posei; P osef ; �t) and MovejPosef =Move(j+1)Posei , 8j 2 [1;m� 1].
All of our kicks only used 16 of the robot's joints (leg, head, and mouth).

We soon realized that we would need to create several di�erent kicks for dif-
ferent purposes. To that end, we started thinking of the kick-generation process
in more general terms. In this section we formalize that process.

The kick is an example of a �ne-motor control motion where small errors
matter. Creation of a kick requires special attention to each Pose. A few angles'
di�erence could a�ect whether the robot makes contact with the ball. Even a
small di�erence in �t in a Move could a�ect the success of a kick. To make
matters more complicated, our team needed the kick to transition from and to
a walk. More consideration had to be taken to ensure that neither the walk nor
the kick disrupted the operation of the other.

We devised a two-step technique for kick-generation:

1. Creating the kick in isolation from the walk.

2. Integrating the kick into the walk.

Details of these steps as well as how this process was used to create more
than a half-dozen kicks can be found in our technical report [1].



7 Localization

Since it requires at least vision and preferably locomotion to already be in place,
localization was a relatively late emphasis in our e�orts. In fact, it did not truly
come into place until after the American Open Competition at the end of April.
Before that time, we had been working on a preliminary approach that was
eventually discarded and replaced by the current one.

For self-localization, the Austin Villa team implemented a Monte-Carlo local-
ization approach similar to the one used by the German Team [4]. This approach
uses a collection of particles to estimate the global position and orientation of the
robot. These estimates are updated by visual percepts of �xed landmarks and
odometry data from the robot's movement module. The particles are averaged
to �nd a best guess of the robot's pose.

We have extended the approach of the German Team to improve the accuracy
of the observation updates. Rather than using only the most current landmark
observations, our approach maintains a history of recent observations that are
averaged according to their estimated accuracy. Because it is rare for the robot to
gather suÆcient information in a single camera frame to triangulate its position,
it is important to incorporate visual information from the recent past. At the
same time, if visual data is inaccurate, reusing it again and again can aggravate
the problem. Our approach is able to leverage past data while, in most situations,
robustly tolerating occasional bad inputs.

8 General Architecture

Brain MovementModule

OVirtualRobotComm

wireless network

Fig. 1. A high level view of the main Open-R objects in our agent. The robot sends
visual data to the Brain object, which sends movement commands to the Movement-
Module object, which sends set points to the PID controllers in the robot. The Brain
object also has network connections to teammates' Brain objects, the Robocup game
controller, and our UT Assist client (Section 12). Note that this �gure omits sensor
readings obtained via direct Open-R API calls.

Due to our bottom-up approach, we did not address the issue of general ar-
chitecture until some important modules had already taken shape. We had some
code that cobbled together our vision and movement components to produce a
rudimentary but functional goal-scoring behavior. Although this agent worked,



we realized that we would need a more structured architecture to develop a more
sophisticated agent, particularly with the number of programmers working con-
currently on the project. The decision to adopt the architecture described below
did not come easily, since we already had something that worked. Implementing
a cleaner approach stopped our momentum in the short term and required some
team members to rewrite their code, but we feel the e�ort proved worthwhile as
we continued to combine more independently-developed modules.

We designed a framework for the modules with the aim of facilitating further
development. We considered taking advantage of the operating system's inherent
distributed nature and giving each module its own process. However, we decided
that the task did not require such a high degree of concurrent computation, so
we organized our code into just two separate concurrent objects (Figure 1).

9 Global Map

Early in the development of our soccer playing agent, particularly before we
had functioning localization and communication, we chose our actions using a
simple �nite state machine. Our sensory input and feedback from the Movement
Module dictated state transitions, so sensations had a relatively direct inuence
on behavior. However, once we developed the capability to locate our agents
and the ball on the �eld and to communicate this information, such a direct
mapping became impossible. We created the global map to satisfy the need for
an intermediate level of reasoning. The global map combines the outputs of
Localization from Vision and from Communication into a coherent picture of
what is happening in the game, and it provides methods that interpret this map
in meaningful ways to the code that governs behavior.

10 Behaviors

In this section we describe the robot's soccer-playing behaviors. In our develop-
ment, we had relatively little time to focus on behaviors, spending much more of
our time building up the low-level modules such as walking, vision, and localiza-
tion. As such, the behaviors we describe here are far from ideal. We anticipate
overhauling this component of our code base should we participate in future
competitions.

One of the most important skills for a soccer-playing robot is the ability to
score, at least on an empty goal. Our behaviors are implemented by a Finite
State Machine (FSM), wherein at any time the Aibo is in one of a �nite number
of states. The states correspond roughly to primitive behaviors, and the transi-
tions between states depend on input from vision, localization, the global map,
and joint angles. A pictorial overview of the FSM is given in Figure 2. As we
developed our strategy more fully, this became the behavior of the attacker (see
Section 11).
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Fig. 2. The �nite state machine that governs the behavior of the attacking robot.

11 Coordination

In this section we describe our initial and eventual solutions to coordinating
multiple soccer-playing robots.

Our �rst e�orts to make the players cooperate resulted directly from our
attempts to play games with 8 players. Every game would wind up with six
robots crowded around the ball, wrestling for control. At this point, we only had
2 weeks before our �rst competition, and thus needed a solution that did not
depend on localization, which was not yet functional. Our solution was a process
we called Dibs, which used local communication among the robots to determine
which is closest to the ball, and thus which should go after it.

During the last week or so before RoboCup 2003, we developed a new, more
sophisticated coordination strategy. In particular, it takes advantage of both
localization and global maps. This strategy uses a dynamic system of roles to
coordinate the robots. In this system, each robot has one of three roles: attacker,
supporter, and defender. The goalie does not participate in the role system. For
full details on the player's behaviors, see our technical report [1].

12 UT Assist

During the course of our development, we developed a valuable tool to help us
debug our robot behaviors and modules. This tool, which we called UT Assist,
allowed us to experience the world from the perspective of our Aibos and monitor
their internal states in real-time. One use of UT Assist is to extract debugging
data from the Aibos, including visual output, localization output, and behavior
output. We also use it for vision calibration.



13 The Competition

The Seventh International RoboCup Competition was held in Padova, Italy from
July 2nd to 9th, 2003. 24 teams competed in the four-legged league, eight of
which, including us, were teams competing at the international event for the �rst
time. The 24 teams were divided into four groups of six for a round robin compe-
tition to determine the top two teams which would advance to the quarter-�nals.
The teams in our group were the German Team from University of Bremen, TU
Darmstadt, Humboldt University, and University of Dortmund, all in Germany;
ASURA from Kyushu Institute of Technology and Fukuoka Institute of Technol-
ogy in Japan; UPennalizers from the University of Pennsylvania; Essex Rovers
from the University of Essex in the UK; and UTS Unleashed! from the University
of Technology at Sydney. Essex ended up being unable to compete and dropped
out of the competition. The results of our four games are shown in Table 3.

Meanwhile, we made sure to arrange some practice games in Italy. The results
are shown in Table 4.

Opponent Score (us-them)

UTS Unleashed! 1{7

German Team 0{9

UPennalizers 0-6

ASURA 1-4

Fig. 3. The scores of our four oÆcial
games at RoboCup.

Opponent Score (us-them)

CMU 2{2

U. Washington 0{1

Team Sweden 3{0

U. Washington 0{4

Metrobots 3{1

Team Upsalla 4{0

Fig. 4. The scores of our six unoÆcial
games at RoboCup.

Based on all of our practice matches, we seemed to be one of the better new
teams at the competition. We were in a particularly hard group, but we were
able to compete at a reasonable level with even the best teams (despite the
lopsided scores).

The Challenge Events

In addition to the actual games, there was a parallel \challenge event" compe-
tition in which teams programmed robots to do three special-purpose tasks:

1. Locating and shooting a black and white (instead of an orange) ball;
2. Localizing without the aid of the standard 6 colored �eld markers; and
3. Navigating from one end of the �eld to the other as quickly as possible

without running into any obstacles.

Given how much e�ort we needed to put in just to create an operational
team in time for the competition, we did not focus very much attention on the



challenges until we arrived in Italy. Nonetheless, we were able to do quite well,
which we take as a testament to the strengths of our overall team design.

On the �rst challenge, we �nished in the middle of the pack. Our robot did
not succeed at getting all the way to the black and white ball (only eight teams
succeeded at that), but of all the teams that did not get to the ball, our robot
was one of the closest to it, which was the tie-breaking scoring criterion. Our
rank in this event was 12th.

In the localization challenge, the robot was given �ve previously unknown
points on the �eld and had to navigate precisely to them without the help of the
beacons. Our robot used the goals to localize initially, and then relied largely
on odometry to �nd the points. Our robot successfully navigated to only one
of the �ve points, but the large majority of teams failed to do even that. Our
score was suÆcient to rank us 5th place on this event. Unfortunately we were
disquali�ed on a technicality. We had initially programmed the robot with the
wrong coordinate system (a mere sign change). Rather than running the robot
toward mirror images of the actual target points, we decided to �x the code and
accept the disquali�cation.

Finally, on challenge 3, the robot was to move from one side of the �eld
to the other as quickly as possible without touching any of seven stationary
robots placed in previously unknown positions. Our robot used an attraction and
repulsion approach which pulled it toward the target location but repelled it from
any observed obstacle. The resulting vector forces were added to determine the
instantaneous direction of motion for the robot. Since speed was of the essence,
our robot would switch to our fastest gait (ParamWalk) when no obstacles were
in sight. A slower gait that allowed omnidirectional movement (SplineWalk) was
used for all other movement.

Our robot was one of only four to make it all the way across the �eld without
touching an obstacle, and it did so in only 63.38 seconds. The German team
succeeded in just 35.76 seconds, but the next closest competitor, ARAIBO, took
104.45 seconds. Thus we ranked 2nd in this event.

OÆcially, we �nished 13th in the challenge events. However the unoÆcial
results, which did not take into account our disquali�cation in event 2, nor one
for the University of Washington, placed UT Austin Villa in fourth place. Given
that 16 of the 24 RoboCup teams were returning after having competed before,
and several of them had spent more e�ort preparing for the challenges than we
had, we were quite proud of this result and are encouraged by what it indicates
about the general robustness of our code base.

14 Conclusions and Future Work

The experiences and algorithms reported in this paper and the accompanying
technical report comprise the birth of the UT Austin Villa legged-league robot
team. Thanks to a focussed e�ort over the course of 5 1/2 months, we were able
to create an entirely new code base for the Aibos from scratch and develop it to
the point of competing in RoboCup 2003.



There are still many directions for future improvements to our team, as noted
throughout this report. We plan to continue our development toward future
RoboCup competitions. But more importantly, we now have a fully functional
research platform and are ready to use it for investigations in various direc-
tions. One current e�ort involves automatically learning to improve the walking
parameters; other investigations are likely to begin shortly.

Overall, developing a competitive RoboCup soccer team in such a short pe-
riod of time has been a rewarding learning experience. We look forward to build-
ing from it in the future and continuing to contribute to the RoboCup initiative.
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