
In Daniele Nardi, Martin Riedmiller, and Claude Sammut, editors, RoboCup-2004,

pp. 297-309, Springer Verlag, 2005.

A Model-Based Approach to Robot Joint Control

Daniel Stronger and Peter Stone

Department of Computer Sciences, The University of Texas at Austin
stronger,pstone@cs.utexas.edu

http://www.cs.utexas.edu/~{stronger,pstone}

Abstract. Despite efforts to design precise motor controllers, robot
joints do not always move exactly as desired. This paper introduces a
general model-based method for improving the accuracy of joint control.
First, a model that predicts the effects of joint requests is built based on
empirical data. Then this model is approximately inverted to determine
the control requests that will most closely lead to the desired movements.
We implement and validate this approach on a popular, commercially
available robot, the Sony Aibo ERS-210A.

Keywords: Sensor-Motor Control; Mobile Robots and Humanoids

1 Introduction

Joint modeling is a useful tool for effective joint control. An accurate model of a
robotic system can be used to predict the outcome of a particular combination
of requests to the joints. However, there are many ways in which a joint may
not behave exactly as desired. For example, the movement of a joint could lag
behind the commands being sent to it, or it could have physical limitations that
are not mirrored in the control software.

In this paper, we consider the case in which a joint is controlled by repeatedly
specifying an angle that the joint then tries to move to (e.g. as is the case for
PID control1). These are the requested angles, and over time they comprise a
requested angle trajectory. Immediately after each request, one can record the
actual angle of the joint. These angles make up the actual angle trajectory.

This paper presents a solution to a common problem in robot joint control,
namely that the actual angle trajectory often differs significantly from the re-
quested trajectory. We develop a model of a joint that predicts how the actual
angle trajectory behaves as a function of the requested trajectory. Then, we use
the model to alter the requested trajectory so that the resulting actual trajec-
tory more effectively matches the desired trajectory, that is, the trajectory that
we would ultimately like the joint to follow.

At a high level, our proposed approach is to:

1. Determine the various features of the joint that need to be taken into account
by the model.

1 http://www.expertune.com/tutor.html

2. By experimenting with the joint and the various ways to combine these
features, establish a mathematical model for the joint whose behavior mimics
that of the joint when given the same input sequence.

3. Use the model to compute a series of requests that yields a close approxima-
tion to the desired trajectory. If the model is accurate, then these requests
will cause the joint to behave as desired.

For expository purposes, we demonstrate the use of this technique on the
Sony Aibo ERS-210A robot,2 whose motors use PID control. However, this gen-
eral methodology is potentially applicable to any situation in which robotic joints
do not behave exactly as requested. We present empirical results comparing the
direct approach of setting the requested angles equal to the desired angles against
an approach in which the requested angles are set to a trajectory motivated by
knowledge of the joint model.

The remainder of this paper is organized as follows. Section 2 relates our work
to previous approaches. Section 3 introduces the Aibo robot and our model of its
joint motion. Section 4 describes the process of inverting this model. Section 5
presents the empirical results validating our approach, and Section 6 concludes.

2 Related Work

One common approach to model-based joint control is to determine the com-
plete physical dynamics of the system, which can in turn be used to construct
a model-predictive control scheme. For example, Bilodeau and Papadopoulos
empirically determine the dynamics of a hydraulic manipulator [1]. While this
is a valuable technique, it is only applicable in situations where the physical
parameters of the relevant joints can be ascertained. However, in many robotic
systems, determining accurate values for these parameters can be very difficult
or impossible. Another potential difficulty is that the low-level joint control pol-
icy is unattainable. This is the case for the Aibo; although we know that the
joints are controlled by a PID mechanism, there is no information available about
how the angle requests are converted to motor currents, nor about the motor
specifications for the Aibo’s joints. Our approach circumvents these problems by
experimentally modeling the behavior of each joint as a function of the high-level
angular requests that it receives. Furthermore, our approach extends beyond the
construction and testing of a model to using the model to motivate more effective
joint requests.

Although others have previously looked at the problem of correcting for joint
errors, to our knowledge the approach proposed here has not been used. English
and Maciejewski track the effects of joint failures in Euclidean space, but focus on
joints locking up or breaking rather than correcting for routine inaccuracies [2].
An alternative approach to robot joint control is presented by Kapoor, Cetin, and
Tesar [3]. They propose a system for choosing between multiple solutions to the
inverse kinematics based on multiple criteria. Their approach differs from ours
in that it is designed for robotic systems with more manipulator redundancy.

2 http://www.aibo.com

Our approach is better suited to situations in which the inverse kinematics has
a unique solution, but in which the joints do not behave exactly as requested.

3 Developing a Model

The Aibo robot has four legs that each have three joints known as the rotator,
abductor, and knee. The robot architecture allows each joint to receive a request
for an angle once every eight milliseconds. For all experiments reported in this
paper, we request angles at that maximum frequency. The Aibo also reports the
actual angles of the joints at this frequency.

Although we only have direct control over the angles of the three joints, it
is often desirable to reason about the location of the robot’s foot. The process
of converting the foot’s location in space into the corresponding joint angles
for the leg is known as inverse kinematics. Since inverse kinematics converts a
point in space to a combination of angles, it also converts a trajectory of points
in space to an angle trajectory for each joint. We have previously solved the
inverse kinematics problem for the legs of the ERS-210A robot [4].

-8

-7

-6

-5

-4

-3

-2

-1

 0

 2 4 6 8 10 12

D
is

ta
n
c
e
 U

p
 (

c
m

)

Distance Forward (cm)

Actual Spatial Trajectory

Desired Spatial Trajectory

Fig. 1. Desired and actual spa-
tial trajectory of the robot’s foot.
Only two of the three spatial di-
mensions are depicted here.

As our primary test case for this project,
we use a spatial trajectory for the foot that
is derived from the walking routine of an en-
try in the 2003 RoboCup robot soccer com-
petitions [5]. This trajectory is based on a
half ellipse, and it is shown in Figure 1. The
details of the trajectory and walking routine
are given in [4]. The high-level motivation
for this research is to enable more direct tun-
ing of the legs’ trajectories while walking.

In an actual walking situation, the ground
exerts significant and unpredictable forces
on the Aibo’s leg. In order to isolate the be-
havior of the joints unaffected by external
forces, we perform all the experiments for
this project with the robot held in the air, so that there is no interference with
the leg’s motion.

The most natural approach to trying to produce a desired trajectory for
the foot is to convert the desired foot locations into joint angles by inverse
kinematics, and then to set the requested joint angles equal to the resulting
desired angles. To evaluate this method one can record the actual angle values
of the leg’s joints, convert them into an actual spatial trajectory with forward
kinematics, and compare the desired spatial trajectory to the actual one. This
comparison is shown in Figure 1.

The difference between these two trajectories is best understood in terms of
the behaviors of the specific joints. We temporarily restrict our attention to only
the rotator joint and determine the facets of the difference between its trajectory
and the desired trajectory.

The goal of the joint model is to take as its input a sequence of requested
angles and return a sequence of angles that mimics as closely as possible the

angles that would actually be attained by the robot joint. We denote the sequence
of requests by R(t), where values of R are given in degrees, and the units for t is
the amount of time between consecutive requests (eight milliseconds in our case).
Furthermore, we restrict our attention to a period of time lasting the length of
an Aibo step. We call this length of time tstep, which is 88 in our units (i.e. each
step takes 88 · 8 = 704 milliseconds). During all of our experiments, we let the
Aibo run through many steps continuously, so that an equilibrium is reached
before measurements are taken.

-80

-60

-40

-20

 0

 20

 40

 60

 0 10 20 30 40 50 60 70 80

R
o

ta
to

r
J
o

in
t

A
n

g
le

 (
d

e
g

re
e

s
)

Time (8 msec cycles)

Actual Angle Trajectory

Requested Angle Trajectory R(t)

Fig. 2. This graph shows what
happens when the angles re-
quested of the rotator joint are
set equal to our desired angle tra-
jectory for that joint. These re-
quests are compared to the ac-
tual angles that are reported by
the robot at each time. Note that
the graphs are cyclical, e.g. R(0)
= R(88).

To construct a model of how the joint re-
sponds to different requests, we observe the
behavior of the joint as a result of various re-
quested trajectories. Figure 2 shows how the
joint responds to the sequence of requests
that equal our desired angles for it. From
this, we can start to infer the properties that
our model needs to capture.

First, the actual angle lags behind the
requests in time. Second, there appears to
be a maximum slope by which the actual
angle can change. This would amount to a
physical limit on the angular velocity of the
joint. Finally, the joint’s velocity appears to
be unable to change very quickly. In order
to isolate these features so that they can be
quantified and more precisely characterized,
we perform a series of experiments on the
joints.

For these experiments, we set R(t) to a
test trajectory given by

-40

-20

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

R
o
ta

to
r

J
o
in

t
A

n
g
le

 (
d
e
g
re

e
s
)

Time (8 msec cycles)

Actual Joint Angle

Requested Angle R(t)

Lag Time (l)

Acceleration Time (a)

Fig. 3. Requested and actual an-
gular trajectory of the rotator
joint in test case with θtest = 40.

R(t) =

{

θtest if t <
tstep

2

0 if t ≥
tstep

2

(1)

Since the sequence of requests is contin-
uously repeated, this has the effect of alter-
nating between requesting angles of 0 and
θtest. A graph of R(t) with θtest equal to 40
and the resulting actual angle is shown in
Figure 3.

This figure identifies a number of impor-
tant facets that a model of the joint must
have. First, when the requested angle sud-
denly changes by 40◦, there is a period of
time before the joint responds at all. We denote this lag time by l. Then, after
the lag time has elapsed, there is a period of time during which the joint acceler-
ates toward its new set point. This acceleration time is denoted by a. After this,

the joint’s angular speed appears to plateau. We postulate that this maximum
angular speed is the physical limit of the joint’s speed, and we denote it by vmax.

At this point, two questions need to be answered. First, will a larger angle
difference induce an angular speed greater than vmax, or is vmax really the joint’s
top speed? Second, is the acceleration time best modeled as a limit on the joint’s
angular acceleration, or as a constant acceleration time? These questions can
both be answered by performing the same test but with θtest equal to 110 degrees.
The results of this test are shown in Figure 4.

-20

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

R
o
ta

to
r

J
o
in

t
A

n
g
le

 (
d
e
g
re

e
s
)

Time (8 msec cycles)

Requested Angle R(t)

Actual Joint Angle

Acceleration Time (a)

Fig. 4. Requested and actual an-
gular trajectory of the rotator
joint in test case with θtest =
110.

In this situation, the joint has the same
maximum angular speed as in Figure 3. This
confirms that the joint cannot rotate faster
than vmax, regardless of the difference be-
tween the requested and actual angles. Mean-
while, this test disproves the hypothesis that
the acceleration time is due to a constant
limit on the angular acceleration of the joint.
This is because the joint takes the same
amount of time to accelerate from angular
velocity 0 to −vmax in Figure 3 as it does to
go from vmax to −vmax in Figure 4. A con-
stant acceleration limit hypothesis would pre-
dict that the second acceleration would take
twice as long as the first one.

Although the joint’s angular velocity is bounded by vmax, it is still the case
that, within a certain range of differences between the requested and actual
angle, the higher that difference is, the faster the joint will tend to rotate. This
suggests the use of a function f defined as:

-4

-2

 0

 2

 4

-10 -5 0 5 10

A
n
g
u
la

r
V

e
lo

c
it
y
 (

d
e
g
re

e
s
 /
 8

m
s
)

Angle Difference (degrees)

vmax

0

Fig. 5. The func-
tion f .

f(x) =







vmax if x ≥ θ0

x ·
vmax

θ0
if − θ0 < x < θ0

−vmax if x ≤ −θ0

(2)

where θ0 is a constant that denotes the size of the dif-
ference between the requested and actual angle that is
needed for the joint to move at its maximum angular
speed. Figure 5 depicts the function f .

In order to capture the effect of an acceleration time,
we set our model’s velocity to an average of a values of f .
The model’s values for the joint angle, which we denote
by MR(t), are defined by:

MR(t) = MR(t − 1) +
1

a

l+a
∑

i=l+1

f(R(t − i) − MR(t − 1)) (3)

where R(t) is the sequence of requested angles. Since the most recent value of R

that is included in this definition is R(t − l − 1), the model captures the notion
that any request takes a lag of l time steps before it begins to affect the joint.
Finally, since the model’s velocity is the average of a values of f , and f ’s absolute

value is bounded by vmax, the model captures the fact that the joint never moves
at a speed greater than vmax.

Although the model and its parameters were determined using only the re-
quest trajectories in Equation (1), it is highly accurate under a wide range of
circumstances. Measurements of the fidelity of the model in our experiments are
given in Section 5.

Table 1 summarizes the model’s parameters and their values, as determined
experimentally, for the Aibo. We use tu to denote our eight millisecond unit of
time.

Parameter Description Value

vmax Maximum Angular Speed 2.5 degrees/tu

θ0 Angle Difference Threshold 7.0 degrees

l Lag Time 4 tu

a Acceleration Time 6 tu

Table 1. Model Parameters.

It is worth noting that although the Aibo’s joints are PID controlled, the
features captured by the model are not predicted by that fact. PID control
does not predict a maximum angular speed, and it does not explain the lag
between the requests and their effects. This suggests that for the purposes of
joint modeling, it is not particularly helpful to think of the Aibo joints as being
PID controlled.

4 Inverting the Model

In order to compel the joint to move in our desired trajectory, which we call
D(t), we need to be able to convert it into a set of requests I(t) such that when
the values given by I are sent to the joint, the resulting behavior of the joint
matches D(t) as closely as possible. In terms of the model, given D(t) we would
like to find I(t) such that MI(t) = D(t). This is the process of inverting the
model.

4.1 Inverting the Model Explicitly

The first problem we encounter when trying to invert the model is that by the
model, regardless of I(t), the joint’s angular speed is bounded by vmax. That
is, |MI(t) − MI(t − 1)| ≤ vmax. If D(t) violates this constraint, it is not in the
range of the model, and there are no requests I(t) such that MI(t) = D(t). In
fact, many of the angular trajectories we get from inverse kinematics violate this
constraint. It is theoretically impossible for the model to return these trajectories
exactly.

Even when we know it is impossible to invert the model on a particular
trajectory, one possibility is to try to construct an approximation to D(t) that is
in the range of the model and invert the model on that instead. However, doing
so in general is complicated by the fact that f is not invertible, and in the range
that it is invertible, there are points with infinitely many inverses.

-80

-60

-40

-20

 0

 20

 40

 60

 0 10 20 30 40 50 60 70 80

R
o
ta

to
r

J
o
in

t
A

n
g
le

 (
d
e
g
re

e
s
)

Time (8 msec cycles)

Desired Trajectory D(t)

Piecewise Linear Approximation P(t)

Fig. 6. Piecewise linear approx-
imation. Note that the approxi-
mation diverges from the desired
trajectory on the left side due to
the slope restriction on the linear
segments.

We circumvent this problem by restrict-
ing our approximation of D(t) to be a piece-
wise linear trajectory, which we call P (t),
with the property that the slope of each line
segment is less than or equal to vmax in ab-
solute value. Note that since P (t) is a trajec-
tory of joint angles, these segments represent
an angle that varies linearly with respect to
time (i.e. with a constant angular velocity).
An example piecewise linear approximation
is shown in Figure 6. One may be able to au-
tomate this approximation, even subject to
the restriction on minimum and maximum
angular velocity. However, for the purposes
of this paper the approximations are con-
structed manually.

Although P (t) is not invertible in the
model (due to instantaneous velocity changes), we can invert the mathematical
model on the component line segments. Recombining these inverse line segments
appropriately yields a series of requests, R(t), such that the result of applying
the model to it, MR(t), is a close approximation to P (t), which is in turn a close
approximation to D(t).

4.2 Inverting Lines

Our proposed method relies on being able to determine the inverses of lines
according to the model. That is, given a particular linear trajectory, what angles
should be requested so that the given trajectory is actually achieved by the joint?
The answer is a linear trajectory that has the same slope as the desired line but
differs from it by a constant that depends on its slope. This is only possible when
our line’s slope corresponds to an angular velocity that is actually attainable, so
we will restrict our attention to the case where the absolute value of the slope
of the line is less than or equal to vmax.

Consider a linear series of requests, L(t). We say that L(t) has slope m,
where m is L(t)−L(t− 1) for all t. We temporarily restrict our attention to the
case where |m| < vmax and furthermore assume without loss of generality that
m ≥ 0. We will determine the image of L(t) in the model, ML(t). Since this will
turn out to be a line of the same slope, it will enable us to compute the inverse
of any line whose slope is in range.

We would like to be able to reason about the angular distance between points
on the requested line and those on the resulting line according to the model, and
specifically how that distance changes over time. Thus we denote the angular
distance L(t) − ML(t) by δ(t). First, however, we must understand how ML(t)
changes as a function of δ(t). This can be seen by plugging L into Equation (3)
(for R):

ML(t) = ML(t − 1) +
1

a

l+a
∑

i=l+1

f(L(t − i) − ML(t − 1)) (4)

Taking advantage of the fact that L is linear, we replace L(t− i) with L(t−
1)−m(i−1). Thus L(t−i)−ML(t−1) is equal to L(t−1)−ML(t−1)−m(i−1),
or δ(t − 1) − m(i − 1). This enables us to rewrite Equation (4) as:

ML(t) = ML(t − 1) +
1

a

l+a
∑

i=l+1

f(δ(t − 1) − m(i − 1)) (5)

This equation tells us how the the model’s value for the angle varies as a
function of the angular distance δ(t). In order to capture this relationship more
concisely, we define the function S to be:

S(x) =
1

a

l+a
∑

i=l+1

f(x − m(i − 1)) (6)

Thus we can characterize the relationship between ML and δ as ML(t) =
ML(t − 1) + S(δ(t − 1)). Now that we understand how δ influences ML, it is
useful to analyze how δ(t) changes over time. We can isolate this effect by using
the definition of δ(t) to replace ML(t) with L(t) − δ(t). This gives us:

L(t) − δ(t) = L(t − 1) − δ(t − 1) + S(δ(t − 1)) (7)

Then, since L(t) = L(t − 1) + m, we can rearrange as:

δ(t) = δ(t − 1) + m − S(δ(t − 1)) (8)

This equation indicates that as time progresses, δ(t) approaches an equilib-
rium where S(δ(t)) = m. That is, δ(t) approaches a constant, which we denote
by Cm, such that S(Cm) = m. Since ML(t) = L(t)−δ(t), this means that ML(t)
approaches L(t) − Cm.

Given a desired linear angular trajectory, DL(t), with slope m, Cm is the
amount that must be added to DL to get a sequence of requests such that the
actual joint angles will approach our desired trajectory. Thus inverting each of
our component line segments involves computing Cm for m equal to the slope
of that segment. Unfortunately, calculating Cm in terms of m explicitly is not
straightforward. Since S is defined as the average of a instances of the function
f , we would need to determine which case in the definition of f is appropriate
in each of those a instances. Nonetheless, we are able to approximate Cm quite
accurately by approximating the sum in Equation (6) with an integral. The
computation of Cm and an overview of its derivation are in the appendix.

In the case where m = vmax, Cm is not well defined, since S(x) = vmax

for any sufficiently large value of x. In fact, if f(x − vmax(l + a)) ≥ vmax, then
all of the values of f being averaged in the definition of S take on the value of
vmax, and thus S(x) equals vmax. This occurs when x ≥ θ0 + vmax(l + a). In
this situation, L(t) and ML(t) will both keep increasing at a rate of vmax, so
the distance between them will not change. Thus we use the threshold value of
θ0 + (l + a)vmax for Cm and rely on switching between the inverses of the line
segments at the right time to ensure that the actual angle trajectory stays close
to the desired line.

4.3 Combining Inverted Line Segments

Our piecewise linear approximation, P (t), is comprised of line segments DL(t)
with slopes m. For any one of these line segments, we know that by requesting
values of DL(t) + Cm, the joint angle will closely approximate DL(t). For the
joint to follow P (t) to a close approximation the whole way through, we must
transition between these lines at the appropriate times.

After the requests switch from one inverted linear trajectory to another,
how long will it take for the joint to switch between the corresponding desired
trajectories? According to the model, there is a lag time, l, before any effect
of the change will be observed. After that, the joint will accelerate from one
linear trajectory to the other over the course of an acceleration time of length
a. Ideally then, the desired piecewise linear trajectory, P (t), would transition
between components in the middle of this acceleration period. In order to achieve
this, we transition between inverted line segments l + a

2
time units before the

transition between desired line segments. This completes the specification of our
approach.

The whole process takes a desired angle trajectory, constructs a piecewise
linear approximation to it, and formulates requests to the joint based on that
approximation. These three trajectories and the resulting actual trajectory are
shown in Figure 7. Notably, the actual trajectory runs very close to the piecewise
linear approximation.

5 Experimental Results

The goal of this process is for the robot to move each joint so that it follows
a desired trajectory as closely as possible. We can evaluate the success of the
method by calculating the angular distance between the desired trajectory and
the actual one (as depicted in Figure 7).

-60

-40

-20

 0

 20

 40

 60

 0 10 20 30 40 50 60 70 80

R
o
ta

to
r

J
o
in

t
A

n
g
le

 (
d
e
g
re

e
s
)

Time (8 msec cycles)

Piecewise Linear Approximation P(t)

Requested Angle Trajectory R(t)

Desired Angle Trajectory D(t)

Actual Angle Trajectory

Fig. 7. This graph depicts the
original desired angle trajectory,
the piecewise linear approxima-
tion, the requests that are de-
rived from that approximation,
and the actual angle trajectory
that results from this process.

Although we have described our approach
thus far using the Aibo’s rotator joint as
an example, we have implemented it on all
three of the joints of an Aibo leg. Interest-
ingly, we found the parameters of our model
to be exactly the same for all three of the
leg’s joints. We analyze the method’s suc-
cess on all three joints.

We treat an angle trajectory as a tstep-
dimensional vector, where tstep is the num-
ber of requests that comprise one Aibo step
(88 in our case), and calculate the L2 and
L∞ norms between the vectors correspond-
ing to two trajectories. We consider distances
between four different trajectories for each
joint: Des, the desired trajectory, Dir, the
actual angles under the direct method of set-
ting the requests equal to the desired angles,

Pwl, the piecewise linear approximation, and MB (Model-Based), the actual
angle trajectory achieved by the our approach. Since these distances can vary
from one Aibo step to the next, the numbers given in Table 2 are averages and
standard deviations taken over 20 steps.

Comparison Rotator Abductor Knee

L2(Des, Dir) 31.0(±0.2) 29.0(±0.2) 20.1(±0.1)

L∞(Des, Dir) 57.2(±0.3) 59.5(±0.5) 42.6(±0.3)

L2(Des, MB) 9.1(±0.2) 10.4(±0.1) 5.6(±0.2)

L∞(Des, MB) 29.4(±0.8) 24.5(±0.7) 11.1(±0.5)

L2(Pwl, MB) 2.7(±0.4) 2.7(±0.3) 2.6(±0.2)

L∞(Pwl, MB) 6.4(±0.6) 6.0(±0.4) 6.2(±0.7)
Table 2. Distances between angle trajectories.

The actual angles achieved by our method come much closer to our desired
angle trajectories than the ones obtained by setting the requested angles equal
to the desired angles, as shown in the two bold rows. The very small distances
between Pwl and MB indicate the strength of the fidelity of the model.

-8

-7

-6

-5

-4

-3

-2

-1

 0

 2 4 6 8 10 12

D
is

ta
n
c
e
 U

p
 (

c
m

)

Distance Forward (cm)

New Actual

Spatial Trajectory

Desired

Spatial

Trajectory

Spatial Trajectory

Old Actual

Fig. 8. This graph depicts the
desired spatial trajectory com-
pared to the effect of simply re-
questing the desired angles (old)
and to the effect of the ap-
proach described in this paper
(new). The spatial trajectories
are computed by forward kine-
matics from the recorded actual
joint angles.

We also compare the attained spatial tra-
jectory of the Aibo’s foot to the desired spa-
tial trajectory (see Figure 8). Here we mea-
sure the improvement in the Euclidean dis-
tance between the desired and attained foot
trajectories. We calculate the distance be-
tween the desired and actual foot location at
each time and apply the L2 and L∞ norms
to these distances. The direct method yields
an L2 distance of 3.23 ± 0.01 cm and L∞

of 4.61± 0.05 cm. Our model-based method
gives us an L2 of 1.21± 0.04 cm and an L∞

of 2.34 ± 0.12 cm.

Finally, we compare our method to the
following process. For any value of k, con-
sider setting requested angles R(t) equal to
D(t+k). That is, let the requests be exactly
the same as the desired angles, but offset by
a fixed amount of time. For each of the tstep

possible values of k, we can compute the dis-
tance between the resulting actual angle tra-
jectory and the desired one. The minimum of these distances with respect to k

provides a measure of how much of our improvement can be attributed to mod-
eling the lag in the joints. The distances returned by this approach were an L2

of 1.55 ± 0.04 cm and an L∞ of 3.57 ± 0.08 cm. These distances are smaller
than those achieved by the direct method, but still significantly greater than the
distances attained by our model-based method. This result indicates that the
success of our approach is due to more than its ability to model lag in the joint.

6 Conclusion and Future Work

This paper demonstrates the development of a detailed joint model of a popu-
lar, commercially available robotic research platform. We show all the steps of
the derivation of this model using a generally applicable methodology. We then
approximately invert the model to determine control requests that cause the
robot’s joints to move in a desired trajectory. Using this approach, we success-
fully bring the robot’s actual motions significantly closer to the desired motions
than they were previously.

The high-level motivation for this research is to enable direct tuning of the
legs’ trajectories while walking. In addition to applying the proposed approach
towards that task, there are three main ways in which the work can be extended
in future research. First, since the experiments reported in this paper were per-
formed with the robot held in the air, we have a model of how the joints behave
when the external torques being exerted on them are relatively small. An ex-
tension of this work would be to model how the joints respond to significant
external torques, e.g. the torques that are exerted when a robot walks on the
ground. Second, our approach could also be extended by implementing it on
other platforms. Doing so will help elucidate the class of robotic problems on
which these techniques are effective. Third, a possibility for future work is for
the robot to learn the model of its joints automatically from experience based
on its knowledge of the joint requests and actual angles over time. This would
have the benefit that the robot could adjust its model over time to compensate
for changing properties of the joints. While it would be challenging to learn a
model of arbitrary functional form, we surmise that tuning the parameters of a
model, such as l and a in our case, would be relatively straightforward. In this
regard, one contribution of the research reported here is an identification of a
class of functions that could be used as the space of models to explore during
the learning process.

Acknowledgments

We would like to thank the members of the UT Austin Villa team for their efforts in
developing the software used as a basis for the work reported in this paper. Thanks
also to Chetan Kapoor and Ben Kuipers for helpful discussions. This research was
supported in part by NSF CAREER award IIS-0237699.

Appendix

This appendix describes the computation of Cm from m and gives an overview of the
derivation. As discussed in Section 4.2, Cm is the amount that must be added to a
line of slope m to get its inverse, and we are considering the case where mǫ[0, vmax).
The definition of Cm is that m = S(Cm), where S is defined in Equation (6). The first
step is to replace the sum in that definition with the corresponding integral, so that
m = S(Cm) becomes:

m =
1

a

∫

l+a

l

f(Cm − mi) di (9)

Next, since the definition of f is split into cases based on whether its argument
is greater than −θ0, and θ0, important thresholds in the analysis of Equation (9) are
values of i for which Cm − mi = −θ0, and θ0. We then divide our analysis into cases
based on where these two thresholds fall with respect to our limits of integration (e.g.
less than both, between them, or greater than both).

This results in three cases, each of which can be analyzed independently. Due to
the particular parameters in our model, this analysis reduces to two cases. Finally, Cm

is computed as follows. First, determine whether or not the following inequality holds:

m

(

θ0

vmax

+
a

2

)

< θ0 (10)

If it does, Cm is given by the equation:

Cm = m

(

θ0

vmax

+ l +
a

2

)

(11)

If not, it is instead given by:

Cm = θ0 + m

(

l + a −

√

2θ0

m
·
a(vmax − m)

vmax

)

(12)

This computation of q relies on two numerical facts regarding the parameters of
our model. These are:

θ0 > vmax and 4θ0 > vmaxa (13)

If these are not true, there may be more cases involved in the computation of Cm.

References

1. G. Bilodeau and E. Papadopoulos, “Modelling, identification and experimental val-
idation of a hydraulic manipulator joint for control.” in Proceedings of the 1997
International Confrerence on Intelligent Robots and Systems (IROS ’97), Victoria,
BC, October 1998.

2. J. English and A. Maciejewski, “Measuring and reducing the euclidean-space mea-
sures of robotic joint failures,” IEEE Transactions on Robotics and Automation,
vol. 17, no. 1, pp. 20–28, Feb. 2000.

3. C. Kapoor, M. Cetin, and D. Tesar, “Performance based redundancy resolution
with multiple criteria,” in Proceedings of 1998 ASME Design Engineering Technical
Conference (DETC98), Atlanta, Georgia, September 1998.

4. P. Stone, K. Dresner, S. T. Erdoğan, P. Fidelman, N. K. Jong, N. Kohl,
G. Kuhlmann, E. Lin, M. Sridharan, D. Stronger, and G. Hariharan, “UT Austin
Villa 2003: A new RoboCup four-legged team,” The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, Tech. Rep. UT-AI-TR-03-304,
2003.

5. P. Stone, T. Balch, and G. Kraetzschmar, Eds., RoboCup-2000: Robot Soccer World
Cup IV, ser. Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag, 2001,
vol. 2019.

