
In Daniele Nardi, Martin Riedmiller, and Claude Sammut, editors, RoboCup 2004, Robot Soccer World Cup VIII,
pp. 196-208, Springer Verlag, Berlin, Germany, 2005.

Towards Illumination Invariance in the Legged
League

Mohan Sridharan1 and Peter Stone2

1 Electrical and Computer Engineering, The University of Texas at Austin
smohan@ece.utexas.edu

2 Department of Computer Sciences, The University of Texas at Austin
pstone@cs.utexas.edu

http://www.cs.utexas.edu/~pstone

Abstract. To date, RoboCup games have all been played under con-
stant, bright lighting conditions. However, in order to meet the over-
all goal of RoboCup, robots will need to be able to seamlessly handle
changing, natural light. One method for doing so is to be able to iden-
tify colors regardless of illumination: color constancy. Color constancy is
a relatively recent, but increasingly important, topic in vision research.
Most approaches so far have focussed on stationary cameras. In this pa-
per we propose a methodology for color constancy on mobile robots. We
describe a technique that we have used to solve a subset of the problem,
in real-time, based on color space distributions and the KL-divergence
measure. We fully implement our technique and present detailed empir-
ical results in a robot soccer scenario.
Keywords: Illumination invariance, Color constancy, KL-divergence,
mobile robots.

1 Introduction
Color constancy (or illumination invariance), though a major area of focus, con-
tinues to be a challenging problem in vision research. It represents the ability of
a visual system to recognize an object’s true color across a range of variations
in factors extrinsic to the object (such as lighting conditions) [3]. In this paper,
we consider the problem of color constancy on mobile robots.

In the RoboCup Legged League, teams of mobile robots, manufactured by
Sony [2], coordinate their activities to play a game of soccer. To date, games have
all been played on a small field (4.4m × 2.9m) under constant, bright lighting
conditions (Figure 1). However, the overall goal of the RoboCup initiative [1,
11] is, by the year 2050, to develop a team of humanoid robots that can beat
the world champion human soccer team on a real outdoor soccer field. Color
constancy is one of the important barriers to achieving this goal.

In the past, color constancy has been studied primarily on static cameras
with relatively loose computational limitations. On mobile robots, color con-
stancy must be achieved in real time, under constantly changing camera posi-
tions, while sharing computational resources with other complex tasks such as
localization, movement, decision-making etc. This paper contributes a color con-
stancy method based on the KL-divergence measure that is efficient enough to



work on mobile robots that must operate under frequent illumination changes.
Our method is fully implemented and tested on a concrete complex robot control
task.

The remainder of the paper is organized as follows. In Section 2 we present
some basic information on the problem and identify a subset of the overall prob-
lem that we address in this paper. Section 3 provides a brief review of related
approaches that have been employed to solve the color constancy problem. Sec-
tion 4 describes the experimental setup, the basic algorithm involved, and the
mathematical details of our comparison measure. Details on the experimental
results are provided in Section 5 followed by the conclusions in Section 6.

2 Background Information

In this section, we present a brief description of our experimental platform and
describe the specific problem addressed in this paper.

On the Sony Aibo ERS-7 robots [2], we perform the visual processing in
two stages: color segmentation and object recognition. During the initial off-
board training phase, we train a color cube C that maps a space of 128× 128×
128 possible pixel values3 to one of the 10 different colors that appear in its
environment (pink, yellow, blue, orange, marker green, red, dark blue, white,
field green, black – see Figure 1). C is trained using a Nearest Neighbor (NNr)
(weighted average) approach based on a set of hand-labelled input images. Due
to computational constraints, C is precomputed and then treated as a lookup
table. The robot uses C during task execution to segment an image and then
recognize objects of importance. For full details on this process see our technical
report [17].

The actual pixel readings as-

Fig. 1. An Image of the Aibo and the field.

sociated with a given object can
vary significantly with changes
in lighting conditions (both en-
vironmental and as a result of
shadows) and there is significant
overlap between some of the col-
ors in the problem space. A color
cube trained for one particular
lighting condition can therefore
be rendered ineffective by a rea-
sonably small change (e.g., the
difference between daytime and
nighttime on the same playing
field within a normal room with
windows). In this paper, we propose an approach to solve this problem.

In our lab, the lighting on the soccer field varies significantly between the
bright condition (≈ 1500 lux with all lights on) and the dark condition (≈ 350
lux with only the fluorescent ceiling lights on). One of the primary requirements

3 We use half the normal resolution of 0-255 along each dimension to reduce storage
space requirements.



to playing soccer is that of finding the ball and scoring a goal, which we de-
fine as the find-ball-and-score-goal task. If trained under the bright illumination
condition, the robot is able to perform this task proficiently. But if the same
robot is now made to function under the dark illumination condition (or any
other illumination condition significantly different from the bright illumination
condition), it is totally lost and cannot even recognize the ball. On the other
hand, if the robot is equipped with a color cube trained under the dark illumi-
nation condition, it scores a goal in the same amount of time as in the bright
illumination. Again, it is effectively blind when the lights are all turned on.

Our long-term goal is to enable the robot to perform this task in lighting
conditions that may continuously vary between the two extremes (bright and
dark). In this paper, we consider the subtask of enabling a robot to work in
three illumination conditions: bright, intermediate and dark where intermediate

refers to an illumination condition almost midway between the other two illu-
mination conditions. Preliminary results indicate that solving this subtask may
be sufficient for solving, or nearly solving, the long-term goal itself. In order to
work in all three illumination conditions, the robot must be able to:

1. Correctly classify its input images into one of the three illumination condi-
tions;

2. Transition to an appropriate color cube based on the classification and use
that for subsequent vision processing;

3. Perform all the necessary computation in real-time without having an ad-
verse effect on its task performance.

We present an algorithm that meets all of these requirements in Section 4. First,
we take a brief look at some of the previous techniques developed to achieve
illumination invariance.

3 Related approaches

Several approaches have been attempted to solve the problem of color constancy.
Though they differ in the algorithmic details, most of them, to date, have fo-
cussed on static camera images. The Retinex Theory of Land [12] and the “Gray
World” algorithm by Buchsbaum [5] are based on global or local image color av-
erages, though these have later been shown to correlate poorly with the actual
scene illuminant [4]. The gamut mapping algorithm, first proposed by Forsyth [9]
and later modified by Finlayson [6, 7], using median selection, is based on a set
of mappings that transform image colors (sensor values) under an unknown il-
luminant to the gamut of colors under a standard (canonical) illuminant. The
probabilistic correlation framework, developed by Finlayson [8], operates by de-
termining the likelihood that each of a possible set of illuminants is the scene
illuminant.

The Bayesian decision theoretic approach, proposed by Brainard [3], com-
bines all available image statistics and uses a maximum local mass (MLM) esti-
mator to compute the posterior distributions for surfaces and illuminants in the
scene for a given set of photosensor responses. Tsin [19] presents a Bayesian MAP



(maximum a posteriori) approach to achieve color constancy for the task of out-
door object recognition with a static surveillance camera while Rosenberg [15]
describes a method that develops models for sensor noise, canonical color and
illumination, and determines the global scene illuminant parameters through
an exhaustive search that uses KL-divergence as a metric. More recently, Lenser
and Veloso [13] presented a tree-based state description/identification technique.
They incorporate a time-series of average screen illuminance to distinguish be-
tween illumination conditions using the absolute value distance metric to deter-
mine the similarity between distributions. In this paper we explore an alternative
similarity measure based on color space distributions.

In the domain of mobile robots, the problem of color constancy has often
been avoided by using non-vision-based sensors such as laser range finders and
sonar sensors [18]. Even when visual input is considered, the focus has been
on recognizing just a couple of well-separated colors [10, 14]. There has been
relatively little work on illumination invariance with a moving camera in the
presence of shadows and artifacts caused by the rapid movement in complex
problem spaces. Further, with few exceptions (e.g. [13]), the approaches that do
exist for this problem cannot function in real-time with the limited processing
power that we have at our disposal.

4 Approach

In this section, we introduce our experimental setup as well as our algorithmic
framework.

4.1 Experimental Setup

We set out to see if it would be possible to distinguish between and adapt to the
three different lighting conditions in our lab. Similar to our earlier work [16], we
trained three different color cubes, one each for the bright, intermediate, and the
dark illumination conditions.

We hypothesized that images from the same lighting conditions would have
measurably similar distributions of pixels in color space. The original image
is available in the YCbCr format, quantized into 256 bins: [0-255] along each
dimension. In an attempt to reduce processing, but still retain the useful infor-
mation, we transformed the image to the normalized RGB space, i.e. (r, g, b).
By definition,

r =
R+1

R+G+B+3
, g =

G+1

R+G+B+3
, b =

B+1

R+G+B+3

and r + g + b = 1. Thus any two of the three features are a sufficient statistic
for the pixel values. For a set of training images captured at different positions
on the field for each of the three illumination conditions, we then stored the
distributions in the (r, g) space, quantized into 64 bins along each dimension.
Once the distributions are obtained (one corresponding to each training image),
the next question to address is the measure/metric to be used to compare any
two given distributions.



4.2 Comparison Measure

In order to compare image distributions, we need a well-defined measure capa-
ble of detecting the correlation between color space image distributions under
similar illumination conditions. We examined several such measures on sample
images [16], we decided to use the KL-divergence measure 4.

KL-divergence is a popular measure for comparing distributions (especially
discrete ones). Consider the case where we have a set of distributions in the 2D
(r, g) space. Given two such distributions A and B (with N = 64, the number of
bins along each dimension),

KL(A,B) = −

N−1∑

i=0

N−1∑

j=0

(Ai,j · ln
Bi,j

Ai,j

)

The more similar two distributions are, the smaller is the KL-divergence between
them. Since the KL-divergence measure contains a term that is a function of the
log of the observed color distributions, it is reasonably robust to large peaks in
the observed color distributions and is hence less affected by images with large
amounts of a single color.

4.3 Algorithmic Framework

Once we had decided on the measure to be used for comparing image distribu-
tions, we came up with a concrete algorithm to enable the robot to recognize
and adapt to the three different illumination conditions (bright, intermediate,
and dark).

The robot starts off assuming that it is in the bright illumination condition.
It is equipped with one color cube for each illumination condition and a set
of (training) sample distributions generated from images captured at various
positions on the field. In our experiments, we used 24 distributions for each
illumination condition, though, as we shall show, we do not need so many to
perform satisfactorily.

As new images are processed, one is periodically tested for membership in
one of the three illumination class, using a fixed number of training samples from
each class for comparison. The distribution obtained from a test image is com-
pared with the training samples using the KL-divergence measure, to determine
the training sample that is most similar to it. The test image is then assigned the
same illumination class label as this training sample. If sufficient number of con-
secutive images are classified as being from an illumination condition, the robot
transitions to another color cube (representing the new illumination condition)
and uses that for subsequent operations. Parameters included in this process
were as follows:

– numtrain: the number of training samples from each class per comparison.
– t: the time interval between two successive tests.

4 Strictly speaking, KL-divergence is not a metric as it does not satisfy triangle in-
equality but it has been used successfully for comparing distributions.



– numd, numi, numb: the number of consecutive dark, intermediate or bright
classifications needed to switch to the corresponding color cube. We allow
these parameters to differ.

– ang: a threshold camera tilt angle below which images are not considered
for the purposes of changing color cubes. This parameter is introduced to
account for the fact that the image appears dark when the robot is looking
straight down into the ground (or the ball), which in most cases means that
it is looking at a region enveloped in shadow.

5 Experimental Results

In this section, we describe the experiments that we used to determine the op-
timum values for the parameters. We then present the experiments that we ran
to estimate the performance of the algorithm on the robot with respect to the
goal-scoring task.

5.1 Estimation of parameters

On the ERS-7 robot, with our current code base [17], generating a test distri-
bution takes ≈ 25msec and the comparison with all 72 training distributions
takes ≈ 130msec, i.e., comparing the test sample with each training sample
takes 130

72
≈ 2msec. Further, the normal vision processing takes ≈ 30–35msec

per image, leading to a frame rate of 30 frames per second without any check for
change in illumination. Thus, if we tested for illumination change on each input
image, we would take ≈ 190msec per image giving us a very low frame rate of
5–6 frames per second, not including the processing required for action selection
and execution. Doing so would lead to a significant loss of useful sensory infor-
mation. As a result, we cannot afford to test each input image. Instead, we need
to identify parameter values that do not significantly affect the normal operation
of the robot while also ensuring that the illumination changes are recognized as
soon as possible. With the parameter values that the robot ends up using we are
still able to operate at around 25 frames per second.

Exp1: Classification accuracy The goal of this experiment was to determine
how much the classification accuracy, using KL-divergence, depended on the
parameters t and numtrain. In order to do that the robot was placed at various
positions on the field and only allowed to pan its head. The robot periodically
sampled the images that it received from its camera and tested them to identify
the illumination condition. The goal was to measure the real-time performance
and see if there was any significant correlation between the performance of the
robot and the associated position on the field. We chose six test positions, at
each of which we measured the classification accuracy over a set of one thousand
images. We first performed this experiment with t = 1 second, and with three
different training sample sizes:

1. Case1 : numtrain = 24 (all training samples).
2. Case2 : numtrain = 12.



3. Case3 : numtrain = 6.

Figure 2 shows the results of the experiment when performed under each
illumination, corresponding to cases 1, 2 and 3. We also measured the number of
times the robot transitioned between color cubes for each given test condition.
Since each test was conducted completely under one of the three illumination
conditions, ideally there would be no transitions. The values in parentheses there-
fore represent the number of (incorrect) color cube transitions that would occur
if we chose to use the corresponding values of the parameters during normal
operation. Observe that in the dark lighting conditions there were practically no
misclassifications at any of the test positions.

Bright Interm Dark
numtrain Max Min Max Min Max Min

24 950

1000
(0) 904

1000
(0) 997

1000
(0) 934

1000
(0) 1000

1000
(0) 1000

1000
(0)

12 913

1000
(0) 857

1000
(1) 979

1000
(0) 903

1000
(0) 1000

1000
(0) 999

1000
(0)

6 874

1000
(0) 712

1000
(3) 964

1000
(0) 850

1000
(0) 1000

1000
(0) 944

1000
(0)

Fig. 2. Classification accuracy and color cube transitions (all three illuminations)

The transition to the bright illumination takes place after two consecutive
test images are classified as being under the bright illumination condition while
for the other two illumination conditions (intermediate, dark), this threshold is
set at four and six respectively (i.e., numd = 6, numi = 4 and numb = 2).
The transition parameters were weighted in this manner because it was noted
during experimentation that lighting inconsistencies (such as shadows) during
both training and testing led to significantly more noise in the bright conditions.

From a close examination of the raw data, we report several observations:
– In the dark illumination, the robot did not err even in the case where

numtrain = 6. This makes sense considering the fact that the dark illu-
mination condition is much different from the bright illumination condition
(350lux vs 1500lux) and the presence of shadows or obstructions only makes
the image darker.

– In the bright and intermediate illumination conditions, the number of train-
ing samples made a difference in the performance of the robot; at each po-
sition, the performance worsens as numtrain is decreased.

– The transitions (shifts) that occurred in the bright illumination condition
were due to shadows or obstructions and this caused the robot to move from
the bright to the intermediate illumination condition.

– In the rare case that the robot changed to the incorrect color cube, the error
was sustained only for a few test frames before the robot recovered.

Next we varied t and repeated the experiments performed previously. Here,
no significant change was noticed in the classification accuracy. With t = 0.5
seconds or 0.25 seconds instead of 1 second there was no significant change in
the classification accuracy. However it did increase the processing performed. We
quantify this effect in subsequent experiments.



Exp2: Task Execution The find-ball-and-score-goal task was incorporated in
this experiment to estimate the effect of the color constancy algorithm on the
robot’s task performance under constant illumination. The robot was placed at
the center of the field facing one of the goals (say g1) while the ball was placed at
the center of the penalty box around the other goal (g2) (see Figure 1). The robot
had to find the orange ball and then score on g2. We performed this experiment
with the robot trying to score on either goal (blue/yellow) over one half of the
total number of trials. In this process, it used the colored markers around the
field to localize itself [17].

The robot performed the check for change in the illumination condition with
t = 1 and ang = −10 (i.e. consider cases where the tilt angle of the camera is
greater than 10o) and its accuracy was tested under all three sampling conditions
used in experiment 1, i.e., we tested for numtrain = 24, 12, and 6. We set the
tilt angle threshold to ensure that when the robot is staring down at the ground
or the ball, the shadows do not cause the robot to make a wrong transition.
Figure 3 displays the classification accuracy and the number of transitions that
occurred during task execution under all three cases. Since testing was done
under each illumination condition separately, the shifts column represents the
number of incorrect transitions that occurred.

numtrain Bright Shifts Intermediate Shifts Dark Shifts

24 432

500
0 456

500
0 480

500
0

12 398

500
1 421

500
1 482

500
0

6 360

500
2 395

500
1 490

500
0

Fig. 3. Accuracy and transitions under each illumination under all three sampling cases

From the results, we deduced that the value of numtrain does not make a
big change in the dark illumination case; the misclassifications that did occur in
the dark illumination case happened when the robot fell down and was staring
at the white border or field lines. But this was not the case under the bright
and intermediate illuminations; with the decrease in numtrain, the robot ended
up making more errors (and wrong transitions between color cubes). The errors
that occurred were mostly due to shadows when the robot was running into the
goal. But the robot always recovered within a few test frames (fewer than 5).

Under this tilt angle setting, the (incorrect) color cube transitions were only
one-off from the actual illumination condition, i.e., there were no incorrect tran-
sitions from bright to dark or vice versa. We could set higher tilt angle thresholds
but then the robot is slow to identify changed illumination conditions which has
a bad effect on its overall performance.

Exp3: Parameter combinations Next, we wanted to determine the param-
eter settings that would enable strong real-time performance. Specifically, we
considered the parameters numtrain and t.

To do so, we defined the find-and-walk-to-ball task. This task is identical
to the find-ball-and-score-goal task, except that the robot only needs to find



the ball and walk up to it, rather than actually score. This modification makes
the measurements less dependent on the performance of other modules, such as
kicking.

Under constant lighting conditions with a single color cube, the robot can
find-and-walk-to-ball in 6.7(±0.6) seconds. The results for the bright illumination
case, averaged over 10 trials, are in Figure 4. The values for the other two
illuminations were not significantly different (as expected). We considered the
cases where the robot did not find the ball after two minutes to be complete
misses and omitted them from the results. The numbers in parentheses indicate
the number of complete misses that occurred while collecting 10 values.

t (sec) numtrain=24 numtrain=12 numtrain=6

1.0 6.8±0.3(0) 6.8±0.4(0) 6.8±0.4(0)

0.5 6.9±0.3(0) 7.0±0.6(0) 7.0±0.5(0)

0.25 8.8±0.6(2) 9.1±1.8(0) 8.2±1.9(0)

0.125 51.8±31.7(4) 18.3±2.5(1) 11.7±6.2(0)

0.0 75.0±36.9(6) 52.8±13.1(3) 13.8±3.0(0)

Fig. 4. Time taken (in seconds) to find-and-walk-to-ball under bright illumination

From Figure 4, we conclude that:

– The parameter values t = 1 second and t = 0.5 seconds (and to some extent
t = 0.25 seconds), with all three sampling schemes, work fine on the robot
in real-time without having an adverse effect on the normal game playing
performance.

– With all the other testing frequencies there were instances, especially with
numtrain = 24, when the robot missed the ball during its scan due to the
computation involved; by the time the robot had processed one frame that
had the ball, its head was beyond the position were it could recognize the
ball (the robot needs to see the ball continuously for around 3 frames before
it accepts it as the ball [17]). In addition, when the testing was done on every
frame (or even once every 0.125 seconds), the robot’s motion towards the
ball was extremely jerky.

5.2 Changing Illumination

Once we had determined values for all the parameters, we were ready to test
the robot on its task under changing illumination conditions. Based on the
experiments described above, we chose the parameter values: ang = −10o,
t = 1 second, numd = 6, numi = 4, numb = 2, and numtrain = 24.

Real-time Transitions In these experiments, the robot was tested with the
lighting conditions changing after a specific interval. The robot starts off in one
illumination condition and after 1.5 seconds (the time it takes the robot to turn
and see the ball), the illumination is changed by adjusting the intensity of all



the lamps. The robot is then timed as it performs the find-and-walk-to-ball task.
Recall that with a single color cube, the robot is unable to do so: when the
illumination condition changes significantly, it is unable to see a ball that is
right in front of its camera. Now, when the illumination conditions change, the
robot seems lost for a couple of seconds while it recognizes the change and then
functions as normal, scoring goals once again. The results are shown in Figure 55.

Lighting (start/after 1.5 seconds) Time (seconds)

bright / intermediate 8.5 ±0.9

bright / dark 11.8 ±1.3

intermediate / bright 8.6 ±1.0

intermediate / dark 9.6 ±3.1

dark / intermediate 11.5 ±1.4

dark / bright 10.7 ±1.1

Fig. 5. Time taken to find-and-walk-to-ball under changing illumination

Stress Tests To further explore the robustness of our approach, we report the
results of two tests for which the current algorithm was not designed: inter-
mediate lighting conditions (Test 1) and adversarial illumination changes (Test
2).

Test 1 The first experiment we performed involved reducing the intensity of the
lamps in specific patterns. In our lab, we have four lamps mounted on stands
along the shorter edges of the field, as shown in Figure 6.

During testing, we reduced the intensity of all the

4400mm

2900mm

Blue Goal

Yellow Goal

ROBOT

BALL

L1 L2

L3 L4

Fig. 6. A Line drawing
of the field and the lamp
arrangement.

lamps such that the illumination on the field is in be-
tween the illumination conditions that the robot was
explicitly trained for. To enable comparison of these
results, we used the find-and-walk-to-ball task as in
previous sections and recorded the time taken by the
robot to perform the task. In Figure 7 we present the
values corresponding to the case wherein the robot
starts off in the bright illumination condition. About
1.5 seconds later, the lighting is changed such that it
is between the bright and the intermediate illumina-
tions (we also tested with the illumination changed
to be midway between the intermediate and the dark

conditions).

Test 2 Finally, we decided to test the robot under adversarial conditions. That
is, we tried our best to confuse the robot completely by varying the illumination
in the worst possible way for the robot. Here, we performed the find-ball-and-

score-goal task.

5 Video showing the robots performing under varying lighting conditions is available
at http://www.cs.utexas.edu/~AustinVilla/legged/illumination



As soon as the robot recognized the ball and started walking towards it, we
changed the illumination condition. That is, as soon as the robot transitioned to
the correct color cube, as indicated by an LED on the robot, we would change
the illumination to be one class away from the actual illumination condition. Due
to the values of numd, numi and numb, assuming that we start off under the
bright illumination, the experiment would involve changing the illumination to
correspond to the intermediate illumination after two seconds. We would turn
the lamps off (dark illumination) after another four seconds, which would be
followed by adjusting the intensity of the lamps to half the maximum value
(intermediate illumination) after a further six seconds. Then we would turn the
lamps on at full intensity (bright illumination) after around four seconds. This
cycle of change in illumination is performed repeatedly and Figure 8 depicts the
corresponding average time (and standard deviation) taken to accomplish the
find-ball-and-score-goal task.

The fact that the robot can perform Lighting Time (seconds)

bet. bright and interm 12.27 ±0.5

bet. interm and dark 13.3 ±2.0

Fig. 7. Time taken (in seconds) to
find-and-walk-to-ball

this task at all is due to the fact that
it can occasionally recognize the ball
even if it is not using the color cube cor-
responding to the current illumination
condition. Even in the case where some
of the lamps are selectively turned off
(or their intensity is reduced), the robot transitions into an appropriate color
cube and is still able to perform the task of scoring on the goal. The only way we
could confuse the robot further would be to change between the bright and the
dark illumination conditions in a similar manner. In that case, the robot does
not make any progress to the ball at all.

An important point to note here is Lighting Time (seconds)

Adversarial 34.3 (±7.8)

Fig. 8. Time taken (in seconds) to
find-ball-and-score-goal

that in previous work [16] (where we had
incorporated only two illumination con-
ditions: bright and dark) we had prob-
lems when we tested the robot on illumi-
nation conditions that it was not trained
for. There were problems especially while trying to score on the yellow goal in
differentiating between yellow and orange (and between pink and orange). The
robot would then walk away in an entirely wrong direction in an attempt to
follow a spurious estimate of the ball. We had then hypothesized that adding a
few more illumination conditions in between the two extreme ones might help
alleviate some of the problems. We now see that with the added intermediate

illumination condition, the robot does perform much better. In fact, in all the
experiments mentioned above, the robot performed equal number of trials scor-
ing/walking towards either goal (blue/yellow).

Also, in our earlier work [16] we used the previous version of the Sony robots:
ERS210A. With very little modification in code (only to incorporate one more
illumination condition), the strategy works fine to distinguish between three
different illumination conditions. We find that with this change, the robot is



better able to work in illumination conditions corresponding to which the robot
does not have training samples.

6 Conclusions/Future Work

In this paper, we have presented an approach that works in real-time to achieve
color constancy on mobile robots in the RoboCup domain. The technique uses
color space distributions, easy to train color cubes, and a simple and efficient
comparison measure (KL-divergence) to determine and adapt to three discrete
illumination conditions. Though we have solved only a subset of the problem, the
results obtained seem to indicate that we do not need to consider a continuous
spectrum of illuminations. When presented with illumination conditions that the
robot is not trained for, there is little degradation of performance.

The problem of color constancy, on mobile robots or otherwise, is extremely
challenging and is far from being solved. In the future, we shall first try to extend
the approach to enable the robot to perform well under an even wider range of
possible illumination conditions. One possible method would be to train a few
discrete color cubes to represent significantly different illuminations (as we have
done here) and then dynamically update the cubes for minor variations in il-
lumination conditions. We shall also look into alternate stochastic approaches
that may enable us to achieve illumination invariance without having to resort to
training several color cubes. Ultimately, we aim to solve the daunting problem
of developing efficient algorithms that enable a mobile robot to function un-
der completely uncontrolled natural lighting conditions, with all its associated
variations.

Acknowledgements

We would like to thank the members of the UT Austin Villa team for their efforts
in developing the soccer-playing software mentioned in this paper. This research
was supported in part by NSF CAREER award IIS-0237699.

References

1. The International RoboSoccer Competition. http://www.robocup.org.
2. The Sony Aibo robots. http://www.us.aibo.com.
3. D. H. Brainard and W. T. Freeman. Bayesian color constancy. Journal of Optical

Soceity of America A, 14(7):1393–1411, 1997.
4. D. H. Brainard and B. A. Wandell. Analysis of the retinex theory of color vision.

Journal of Optical Soceity of America A, 3(10):1651–1661, 1986.
5. G. Buchsbaum. A spatial processor model for object color perception. Journal of

Franklin Institute, 310:1–26, 1980.
6. G. Finlayson. Color in perspective. In IEEE Transactions of Pattern Analysis and

Machine Intelligence, 18(10):1034–1038, July 1996.
7. G. Finlayson and S. Hordley. Improving gamut mapping color constancy. In IEEE

Transactions on Image Processing, 9(10), October 2000.
8. G. Finlayson, S. Hordley, and P. Hubel. Color by correlation: A simple, unifying

framework for color constancy. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, 23(11), November 2001.



9. D. Forsyth. A novel algorithm for color constancy. In International Journal of

Computer Vision, 5(1):5–36, 1990.
10. Jeff Hyams, Mark W. Powell, and Robin R. Murphy. Cooperative navigation of

micro-rovers using color segmentation. In Journal of Autonomous Robots, 9(1):7–
16, 2000.

11. Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa.
Robocup:the robot world cup initiative. proceedings of the first international con-
ference on autonomous agents. In Proceedings of the International Conference of

Robotics and Automation, pages 340–347, February 1997.
12. E. H. Land. The retinex theory of color constancy. Scientific American, pages

108–129, 1977.
13. S. Lenser and M. Veloso. Automatic detection and response to environmental

change. In Proceedings of the International Conference of Robotics and Automa-

tion, May 2003.
14. B. W. Minten, R. R. Murphy, J. Hyams, and M. Micire. Low-order-complexity

vision-based docking. IEEE Transactions on Robotics and Automation, 17(6):922–
930, 2001.

15. C. Rosenberg, M. Hebert, and S. Thrun. Color constancy using kl-divergence. In
IEEE International Conference on Computer Vision, 2001.

16. M. Sridharan and P. Stone. Towards illumination invariance on mobile robots. In
The First Canadian Conference on Computer and Robot Vision, 2004.

17. Peter Stone, Kurt Dresner, Selim T. Erdoğan, Peggy Fidelman, Nicholas K. Jong,
Nate Kohl, Gregory Kuhlmann, Ellie Lin, Mohan Sridharan, Daniel Stronger, and
Gurushyam Hariharan. Ut austin villa 2003: A new robocup four-legged team,
ai technical report 03-304. Technical report, Department of Computer Sciences,
University of Texas at Austin, October 2003.

18. S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization
for mobile robots. Journal of Artificial Intelligence, 2001.

19. Y. Tsin, R. T. Collins, V. Ramesh, and T. Kanade. Bayesian color constancy for
outdoor object recognition. In IEEE Pattern Recognition and Computer Vision,
December 2001.


